/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ /* * This is a high-throughput minimal root server. It implements only * those functions of a ZT node that a root must perform and does so * using highly efficient multithreaded I/O code. It's only been * thoroughly tested on Linux but should also run on BSDs. * * Root configuration file format (JSON): * * { * "name": Name of this root for documentation/UI purposes (string) * "port": UDP port (int) * "httpPort": Local HTTP port for basic stats (int) * "statsRoot": If present, path to periodically save stats files (string) * "siblings": [ * { * "name": Sibling name for UI/documentation purposes (string) * "id": Full public identity of subling (string) * "ip": IP address of sibling (string) * "port": port of subling (for ZeroTier UDP) (int) * }, ... * ] * } * * The only required field is port. If statsRoot is present then files * are periodically written there containing the root's current state. * It should be a memory filesystem like /dev/shm on Linux as these * files are large and rewritten frequently and do not need to be * persisted. * * Siblings are other root servers that should receive packets to peers * that we can't find. This can occur due to e.g. network topology * hiccups, IP blockages, etc. Siblings are used in the order in which * they appear with the first alive sibling being used. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ZeroTier; using json = nlohmann::json; #ifdef MSG_DONTWAIT #define SENDTO_FLAGS MSG_DONTWAIT #else #define SENDTO_FLAGS 0 #endif ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // Hashers for std::unordered_map struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity &id) const { return (std::size_t)id.hashCode(); } }; struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address &a) const { return (std::size_t)a.toInt(); } }; struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress &ip) const { return (std::size_t)ip.hashCode(); } }; struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup &mg) const { return (std::size_t)mg.hashCode(); } }; // An ordered tuple key representing an introduction of one peer to another struct RendezvousKey { RendezvousKey(const Address &aa,const Address &bb) { if (aa > bb) { a = aa; b = bb; } else { a = bb; b = aa; } } Address a,b; ZT_ALWAYS_INLINE bool operator==(const RendezvousKey &k) const { return ((a == k.a)&&(b == k.b)); } ZT_ALWAYS_INLINE bool operator!=(const RendezvousKey &k) const { return ((a != k.a)||(b != k.b)); } struct Hasher { ZT_ALWAYS_INLINE std::size_t operator()(const RendezvousKey &k) const { return (std::size_t)(k.a.toInt() ^ k.b.toInt()); } }; }; /** * RootPeer is a normal peer known to this root * * This can also be a sibling root, which is itself a peer. Sibling roots * are sent HELLO while for other peers we only listen for HELLO. */ struct RootPeer { ZT_ALWAYS_INLINE RootPeer() : lastSend(0),lastReceive(0),lastSync(0),lastEcho(0),lastHello(0),vMajor(-1),vMinor(-1),vRev(-1) {} ZT_ALWAYS_INLINE ~RootPeer() { Utils::burn(key,sizeof(key)); } Identity id; // Identity uint8_t key[32]; // Shared secret key InetAddress ip4,ip6; // IPv4 and IPv6 addresses int64_t lastSend; // Time of last send (any packet) int64_t lastReceive; // Time of last receive (any packet) int64_t lastSync; // Time of last data synchronization with LF or other root state backend (currently unused) int64_t lastEcho; // Time of last received ECHO int64_t lastHello; // Time of last received HELLO int vMajor,vMinor,vRev; // Peer version or -1,-1,-1 if unknown bool sibling; // If true, this is a sibling root that will get forwards we don't know where to send std::mutex lock; AtomicCounter __refCount; }; static int64_t startTime; static std::vector ports; static Identity self; static std::atomic_bool run; static json config; static std::string statsRoot; static Meter inputRate; static Meter outputRate; static Meter forwardRate; static Meter siblingForwardRate; static std::vector< SharedPtr > siblings; static std::unordered_map< uint64_t,std::unordered_map< MulticastGroup,std::unordered_map< Address,int64_t,AddressHasher >,MulticastGroupHasher > > multicastSubscriptions; static std::unordered_map< Identity,SharedPtr,IdentityHasher > peersByIdentity; static std::unordered_map< Address,std::set< SharedPtr >,AddressHasher > peersByVirtAddr; static std::unordered_map< InetAddress,std::set< SharedPtr >,InetAddressHasher > peersByPhysAddr; static std::unordered_map< RendezvousKey,int64_t,RendezvousKey::Hasher > lastRendezvous; static std::mutex siblings_l; static std::mutex multicastSubscriptions_l; static std::mutex peersByIdentity_l; static std::mutex peersByVirtAddr_l; static std::mutex peersByPhysAddr_l; static std::mutex lastRendezvous_l; ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void handlePacket(const int v4s,const int v6s,const InetAddress *const ip,Packet &pkt) { char ipstr[128],ipstr2[128],astr[32],astr2[32],tmpstr[256]; const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR; const Address source(pkt.source()); const Address dest(pkt.destination()); const int64_t now = OSUtils::now(); inputRate.log(now,pkt.size()); if ((!fragment)&&(!pkt.fragmented())&&(dest == self.address())) { SharedPtr peer; // If this is an un-encrypted HELLO, either learn a new peer or verify // that this is a peer we already know. if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(pkt.verb() == Packet::VERB_HELLO)) { std::lock_guard pbi_l(peersByIdentity_l); std::lock_guard pbv_l(peersByVirtAddr_l); Identity id; if (id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) { { auto pById = peersByIdentity.find(id); if (pById != peersByIdentity.end()) { peer = pById->second; //printf("%s has %s (known (1))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr)); } } if (peer) { if (!pkt.dearmor(peer->key)) { printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr)); return; } } else { peer.set(new RootPeer); if (self.agree(id,peer->key)) { if (pkt.dearmor(peer->key)) { if (!pkt.uncompress()) { printf("%s HELLO rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr)); return; } peer->id = id; peer->lastReceive = now; peersByIdentity.emplace(id,peer); peersByVirtAddr[id.address()].emplace(peer); } else { printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr)); return; } } else { printf("%s HELLO rejected: key agreement failed" ZT_EOL_S,ip->toString(ipstr)); return; } } } } // If it wasn't a HELLO, check to see if any known identities for the sender's // short ZT address successfully decrypt the packet. if (!peer) { std::lock_guard pbv_l(peersByVirtAddr_l); auto peers = peersByVirtAddr.find(source); if (peers != peersByVirtAddr.end()) { for(auto p=peers->second.begin();p!=peers->second.end();++p) { if (pkt.dearmor((*p)->key)) { if (!pkt.uncompress()) { printf("%s packet rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr)); return; } peer = (*p); //printf("%s has %s (known (2))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr)); break; } } } } // If we found the peer, update IP and/or time and handle certain key packet types that the // root must concern itself with. if (peer) { std::lock_guard pl(peer->lock); InetAddress *const peerIp = ip->isV4() ? &(peer->ip4) : &(peer->ip6); if (*peerIp != ip) { std::lock_guard pbp_l(peersByPhysAddr_l); if (*peerIp) { auto prev = peersByPhysAddr.find(*peerIp); if (prev != peersByPhysAddr.end()) { prev->second.erase(peer); if (prev->second.empty()) peersByPhysAddr.erase(prev); } } *peerIp = ip; peersByPhysAddr[ip].emplace(peer); } const int64_t now = OSUtils::now(); peer->lastReceive = now; switch(pkt.verb()) { case Packet::VERB_HELLO: try { if ((now - peer->lastHello) > 1000) { peer->lastHello = now; peer->vMajor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION]; peer->vMinor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION]; peer->vRev = (int)pkt.template at(ZT_PROTO_VERB_HELLO_IDX_REVISION); const uint64_t origId = pkt.packetId(); const uint64_t ts = pkt.template at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); pkt.reset(source,self.address(),Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_HELLO); pkt.append(origId); pkt.append(ts); pkt.append((uint8_t)ZT_PROTO_VERSION); pkt.append((uint8_t)0); pkt.append((uint8_t)0); pkt.append((uint16_t)0); ip->serialize(pkt); pkt.armor(peer->key,true); sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); outputRate.log(now,pkt.size()); peer->lastSend = now; } } catch ( ... ) { printf("* unexpected exception handling HELLO from %s" ZT_EOL_S,ip->toString(ipstr)); } break; case Packet::VERB_ECHO: try { if ((now - peer->lastEcho) > 1000) { peer->lastEcho = now; Packet outp(source,self.address(),Packet::VERB_OK); outp.append((uint8_t)Packet::VERB_ECHO); outp.append(pkt.packetId()); outp.append(((const uint8_t *)pkt.data()) + ZT_PACKET_IDX_PAYLOAD,pkt.size() - ZT_PACKET_IDX_PAYLOAD); outp.compress(); outp.armor(peer->key,true); sendto(ip->isV4() ? v4s : v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); outputRate.log(now,outp.size()); peer->lastSend = now; } } catch ( ... ) { printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr)); } case Packet::VERB_WHOIS: try { std::vector< SharedPtr > results; { std::lock_guard l(peersByVirtAddr_l); for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+ZT_ADDRESS_LENGTH)<=pkt.size();ptr+=ZT_ADDRESS_LENGTH) { auto peers = peersByVirtAddr.find(Address(pkt.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH)); if (peers != peersByVirtAddr.end()) { for(auto p=peers->second.begin();p!=peers->second.end();++p) results.push_back(*p); } } } if (!results.empty()) { const uint64_t origId = pkt.packetId(); pkt.reset(source,self.address(),Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_WHOIS); pkt.append(origId); for(auto p=results.begin();p!=results.end();++p) (*p)->id.serialize(pkt,false); pkt.armor(peer->key,true); sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); outputRate.log(now,pkt.size()); peer->lastSend = now; } } catch ( ... ) { printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr)); } case Packet::VERB_MULTICAST_LIKE: try { std::lock_guard l(multicastSubscriptions_l); for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+18)<=pkt.size();ptr+=18) { const uint64_t nwid = pkt.template at(ptr); const MulticastGroup mg(MAC(pkt.field(ptr + 8,6),6),pkt.template at(ptr + 14)); multicastSubscriptions[nwid][mg][source] = now; //printf("%s %s subscribes to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid); } } catch ( ... ) { printf("* unexpected exception handling MULTICAST_LIKE from %s" ZT_EOL_S,ip->toString(ipstr)); } break; case Packet::VERB_MULTICAST_GATHER: try { const uint64_t nwid = pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID); //const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS]; const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI)); unsigned int gatherLimit = pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT); if (gatherLimit > 255) gatherLimit = 255; const uint64_t origId = pkt.packetId(); pkt.reset(source,self.address(),Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER); pkt.append(origId); pkt.append(nwid); mg.mac().appendTo(pkt); pkt.append((uint32_t)mg.adi()); { std::lock_guard l(multicastSubscriptions_l); auto forNet = multicastSubscriptions.find(nwid); if (forNet != multicastSubscriptions.end()) { auto forGroup = forNet->second.find(mg); if (forGroup != forNet->second.end()) { pkt.append((uint32_t)forGroup->second.size()); const unsigned int countAt = pkt.size(); pkt.addSize(2); unsigned int l = 0; for(auto g=forGroup->second.begin();((lsecond.end()));++g) { if (g->first != source) { ++l; g->first.appendTo(pkt); } } if (l > 0) { pkt.setAt(countAt,(uint16_t)l); pkt.armor(peer->key,true); sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)(ip->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); outputRate.log(now,pkt.size()); peer->lastSend = now; //printf("%s %s gathered %u subscribers to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),l,mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid); } } } } } catch ( ... ) { printf("* unexpected exception handling MULTICAST_GATHER from %s" ZT_EOL_S,ip->toString(ipstr)); } break; default: break; } return; } } // If we made it here, we are forwarding this packet to someone else and also possibly // sending a RENDEZVOUS message. bool introduce = false; if (!fragment) { RendezvousKey rk(source,dest); std::lock_guard l(lastRendezvous_l); int64_t &lr = lastRendezvous[rk]; if ((now - lr) >= 45000) { lr = now; introduce = true; } } std::vector< std::pair< InetAddress *,SharedPtr > > toAddrs; { std::lock_guard pbv_l(peersByVirtAddr_l); auto peers = peersByVirtAddr.find(dest); if (peers != peersByVirtAddr.end()) { for(auto p=peers->second.begin();p!=peers->second.end();++p) { if ((*p)->ip4) { toAddrs.push_back(std::pair< InetAddress *,SharedPtr >(&((*p)->ip4),*p)); } else if ((*p)->ip6) { toAddrs.push_back(std::pair< InetAddress *,SharedPtr >(&((*p)->ip6),*p)); } } } } if (toAddrs.empty()) { std::lock_guard sib_l(siblings_l); for(auto s=siblings.begin();s!=siblings.end();++s) { if (((now - (*s)->lastReceive) < (ZT_PEER_PING_PERIOD * 2))&&((*s)->sibling)) { if ((*s)->ip4) { toAddrs.push_back(std::pair< InetAddress *,SharedPtr >(&((*s)->ip4),*s)); } else if ((*s)->ip6) { toAddrs.push_back(std::pair< InetAddress *,SharedPtr >(&((*s)->ip6),*s)); } } } } if (toAddrs.empty()) return; if (introduce) { std::lock_guard l(peersByVirtAddr_l); auto sources = peersByVirtAddr.find(source); if (sources != peersByVirtAddr.end()) { for(auto a=sources->second.begin();a!=sources->second.end();++a) { for(auto b=toAddrs.begin();b!=toAddrs.end();++b) { if (((*a)->ip6)&&(b->second->ip6)) { //printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip6.toString(ipstr2),dest.toString(astr2)); // Introduce source to destination (V6) Packet outp(source,self.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); dest.appendTo(outp); outp.append((uint16_t)b->second->ip6.port()); outp.append((uint8_t)16); outp.append((const uint8_t *)b->second->ip6.rawIpData(),16); outp.armor((*a)->key,true); sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip6),(socklen_t)sizeof(struct sockaddr_in6)); outputRate.log(now,outp.size()); (*a)->lastSend = now; // Introduce destination to source (V6) outp.reset(dest,self.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); source.appendTo(outp); outp.append((uint16_t)ip->port()); outp.append((uint8_t)16); outp.append((const uint8_t *)ip->rawIpData(),16); outp.armor(b->second->key,true); sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip6),(socklen_t)sizeof(struct sockaddr_in6)); outputRate.log(now,outp.size()); b->second->lastSend = now; } if (((*a)->ip4)&&(b->second->ip4)) { //printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip4.toString(ipstr2),dest.toString(astr2)); // Introduce source to destination (V4) Packet outp(source,self.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); dest.appendTo(outp); outp.append((uint16_t)b->second->ip4.port()); outp.append((uint8_t)4); outp.append((const uint8_t *)b->second->ip4.rawIpData(),4); outp.armor((*a)->key,true); sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip4),(socklen_t)sizeof(struct sockaddr_in)); outputRate.log(now,outp.size()); (*a)->lastSend = now; // Introduce destination to source (V4) outp.reset(dest,self.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); source.appendTo(outp); outp.append((uint16_t)ip->port()); outp.append((uint8_t)4); outp.append((const uint8_t *)ip->rawIpData(),4); outp.armor(b->second->key,true); sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip4),(socklen_t)sizeof(struct sockaddr_in)); outputRate.log(now,outp.size()); b->second->lastSend = now; } } } } } if (fragment) { if (reinterpret_cast(&pkt)->incrementHops() >= ZT_PROTO_MAX_HOPS) { printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr)); return; } } else { if (pkt.incrementHops() >= ZT_PROTO_MAX_HOPS) { printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr)); return; } } for(auto i=toAddrs.begin();i!=toAddrs.end();++i) { //printf("%s -> %s for %s -> %s (%u bytes)" ZT_EOL_S,ip->toString(ipstr),i->first->toString(ipstr2),source.toString(astr),dest.toString(astr2),pkt.size()); if (sendto(i->first->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)i->first,(socklen_t)(i->first->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) <= 0) { printf("* write error forwarding packet to %s: %s" ZT_EOL_S,i->first->toString(ipstr),strerror(errno)); } else { outputRate.log(now,pkt.size()); forwardRate.log(now,pkt.size()); if (i->second->sibling) siblingForwardRate.log(now,pkt.size()); i->second->lastSend = now; } } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int bindSocket(struct sockaddr *const bindAddr) { const int s = socket(bindAddr->sa_family,SOCK_DGRAM,0); if (s < 0) { close(s); return -1; } int f = 1048576; while (f > 16384) { if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f)) == 0) break; f -= 16384; } f = 1048576; while (f > 16384) { if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f)) == 0) break; f -= 16384; } if (bindAddr->sa_family == AF_INET6) { f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); #ifdef IPV6_MTU_DISCOVER f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f)); #endif #ifdef IPV6_DONTFRAG f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f)); #endif } #ifdef IP_DONTFRAG f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f)); #endif #ifdef IP_MTU_DISCOVER f = IP_PMTUDISC_DONT; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f)); #endif #ifdef SO_NO_CHECK if (bindAddr->sa_family == AF_INET) { f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f)); } #endif #if defined(SO_REUSEPORT) f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f)); #endif #ifndef __LINUX__ // linux wants just SO_REUSEPORT f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f)); #endif if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) { close(s); //printf("%s\n",strerror(errno)); return -1; } return s; } static void shutdownSigHandler(int sig) { run = false; } int main(int argc,char **argv) { signal(SIGTERM,shutdownSigHandler); signal(SIGINT,shutdownSigHandler); signal(SIGQUIT,shutdownSigHandler); signal(SIGPIPE,SIG_IGN); signal(SIGUSR1,SIG_IGN); signal(SIGUSR2,SIG_IGN); signal(SIGCHLD,SIG_IGN); startTime = OSUtils::now(); if (argc < 3) { printf("Usage: zerotier-root " ZT_EOL_S); return 1; } { std::string myIdStr; if (!OSUtils::readFile(argv[1],myIdStr)) { printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S,argv[1]); return 1; } if (!self.fromString(myIdStr.c_str())) { printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S,argv[1]); return 1; } if (!self.hasPrivate()) { printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S,argv[1]); return 1; } } { std::string configStr; if (!OSUtils::readFile(argv[2],configStr)) { printf("FATAL: cannot read config file at %s" ZT_EOL_S,argv[2]); return 1; } try { config = json::parse(configStr); } catch (std::exception &exc) { printf("FATAL: config file at %s invalid: %s" ZT_EOL_S,argv[2],exc.what()); return 1; } catch ( ... ) { printf("FATAL: config file at %s invalid: unknown exception" ZT_EOL_S,argv[2]); return 1; } if (!config.is_object()) { printf("FATAL: config file at %s invalid: does not contain a JSON object" ZT_EOL_S,argv[2]); return 1; } } try { auto jport = config["port"]; if (jport.is_array()) { for(long i=0;i<(long)jport.size();++i) { int port = jport[i]; if ((port <= 0)||(port > 65535)) { printf("FATAL: invalid port in config file %d" ZT_EOL_S,port); return 1; } ports.push_back(port); } } else { int port = jport; if ((port <= 0)||(port > 65535)) { printf("FATAL: invalid port in config file %d" ZT_EOL_S,port); return 1; } ports.push_back(port); } } catch ( ... ) {} if (ports.empty()) ports.push_back(ZT_DEFAULT_PORT); std::sort(ports.begin(),ports.end()); int httpPort = ZT_DEFAULT_PORT; try { httpPort = config["httpPort"]; if ((httpPort <= 0)||(httpPort > 65535)) { printf("FATAL: invalid HTTP port in config file %d" ZT_EOL_S,httpPort); return 1; } } catch ( ... ) { httpPort = ZT_DEFAULT_PORT; } try { statsRoot = config["statsRoot"]; while ((statsRoot.length() > 0)&&(statsRoot[statsRoot.length()-1] == ZT_PATH_SEPARATOR)) statsRoot = statsRoot.substr(0,statsRoot.length()-1); if (statsRoot.length() > 0) OSUtils::mkdir(statsRoot); } catch ( ... ) { statsRoot = ""; } try { auto sibs = config["siblings"]; if (sibs.is_array()) { for(long i=0;i<(long)siblings.size();++i) { auto sib = sibs[i]; if (sib.is_object()) { std::string idStr = sib["id"]; std::string ipStr = sib["ip"]; Identity id; if (!id.fromString(idStr.c_str())) { printf("FATAL: invalid JSON while parsing siblings section in config file: invalid identity in sibling entry" ZT_EOL_S); return 1; } InetAddress ip; if (!ip.fromString(ipStr.c_str())) { printf("FATAL: invalid JSON while parsing siblings section in config file: invalid IP address in sibling entry" ZT_EOL_S); return 1; } ip.setPort((unsigned int)sib["port"]); SharedPtr rp(new RootPeer); rp->id = id; if (!self.agree(id,rp->key)) { printf("FATAL: invalid JSON while parsing siblings section in config file: invalid identity in sibling entry (unable to execute key agreement)" ZT_EOL_S); return 1; } if (ip.isV4()) { rp->ip4 = ip; } else if (ip.isV6()) { rp->ip6 = ip; } else { printf("FATAL: invalid JSON while parsing siblings section in config file: invalid IP address in sibling entry" ZT_EOL_S); return 1; } rp->sibling = true; siblings.push_back(rp); } else { printf("FATAL: invalid JSON while parsing siblings section in config file: sibling entry is not a JSON object" ZT_EOL_S); return 1; } } } else { printf("FATAL: invalid JSON while parsing siblings section in config file: siblings is not a JSON array" ZT_EOL_S); return 1; } } catch ( ... ) { printf("FATAL: invalid JSON while parsing siblings section in config file: parse error" ZT_EOL_S); return 1; } unsigned int ncores = std::thread::hardware_concurrency(); if (ncores == 0) ncores = 1; run = true; std::vector threads; std::vector sockets; int v4Sock = -1,v6Sock = -1; for(auto port=ports.begin();port!=ports.end();++port) { for(unsigned int tn=0;tn 0) { if (pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { try { pkt.setSize((unsigned int)pl); handlePacket(s4,s6,reinterpret_cast(&in6),pkt); } catch ( ... ) { char ipstr[128]; printf("* unexpected exception handling packet from %s" ZT_EOL_S,reinterpret_cast(&in6)->toString(ipstr)); } } } else { break; } } })); threads.push_back(std::thread([s6,s4]() { struct sockaddr_in in4; Packet pkt; memset(&in4,0,sizeof(in4)); for(;;) { socklen_t sl = sizeof(in4); const int pl = (int)recvfrom(s4,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in4,&sl); if (pl > 0) { if (pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { try { pkt.setSize((unsigned int)pl); handlePacket(s4,s6,reinterpret_cast(&in4),pkt); } catch ( ... ) { char ipstr[128]; printf("* unexpected exception handling packet from %s" ZT_EOL_S,reinterpret_cast(&in4)->toString(ipstr)); } } } else { break; } } })); } } // Minimal local API for use with monitoring clients, etc. httplib::Server apiServ; threads.push_back(std::thread([&apiServ,httpPort]() { apiServ.Get("/",[](const httplib::Request &req,httplib::Response &res) { std::ostringstream o; std::lock_guard l0(peersByIdentity_l); std::lock_guard l1(peersByPhysAddr_l); o << "ZeroTier Root Server " << ZEROTIER_ONE_VERSION_MAJOR << '.' << ZEROTIER_ONE_VERSION_MINOR << '.' << ZEROTIER_ONE_VERSION_REVISION << ZT_EOL_S; o << "(c)2019 ZeroTier, Inc." ZT_EOL_S "Licensed under the ZeroTier BSL 1.1" ZT_EOL_S ZT_EOL_S; o << "Peers Online: " << peersByIdentity.size() << ZT_EOL_S; o << "Physical Addresses: " << peersByPhysAddr.size() << ZT_EOL_S; res.set_content(o.str(),"text/plain"); }); apiServ.Get("/peer",[](const httplib::Request &req,httplib::Response &res) { char tmp[256]; std::ostringstream o; o << '['; { bool first = true; std::lock_guard l(peersByIdentity_l); for(auto p=peersByIdentity.begin();p!=peersByIdentity.end();++p) { if (first) first = false; else o << ','; o << "{\"address\":\"" << p->first.address().toString(tmp) << "\"" ",\"latency\":-1" ",\"paths\":["; if (p->second->ip4) { o << "{\"active\":true" ",\"address\":\"" << p->second->ip4.toIpString(tmp) << "\\/" << p->second->ip4.port() << "\"" ",\"expired\":false" ",\"lastReceive\":" << p->second->lastReceive << ",\"lastSend\":" << p->second->lastSend << ",\"preferred\":true" ",\"trustedPathId\":0}"; } if (p->second->ip6) { if (p->second->ip4) o << ','; o << "{\"active\":true" ",\"address\":\"" << p->second->ip6.toIpString(tmp) << "\\/" << p->second->ip6.port() << "\"" ",\"expired\":false" ",\"lastReceive\":" << p->second->lastReceive << ",\"lastSend\":" << p->second->lastSend << ",\"preferred\":" << ((p->second->ip4) ? "false" : "true") << ",\"trustedPathId\":0}"; } o << "]" ",\"role\":\"LEAF\"" ",\"version\":\"" << p->second->vMajor << '.' << p->second->vMinor << '.' << p->second->vRev << "\"" ",\"versionMajor\":" << p->second->vMajor << ",\"versionMinor\":" << p->second->vMinor << ",\"versionRev\":" << p->second->vRev << "}"; } } o << ']'; res.set_content(o.str(),"application/json"); }); apiServ.listen("127.0.0.1",httpPort,0); })); // In the main thread periodically clean stuff up int64_t lastCleaned = 0; int64_t lastWroteStats = 0; int64_t lastPingedSiblings = 0; while (run) { //peersByIdentity_l.lock(); //peersByPhysAddr_l.lock(); //printf("*** have %lu peers at %lu physical endpoints" ZT_EOL_S,(unsigned long)peersByIdentity.size(),(unsigned long)peersByPhysAddr.size()); //peersByPhysAddr_l.unlock(); //peersByIdentity_l.unlock(); sleep(1); const int64_t now = OSUtils::now(); // Send HELLO to sibling roots if ((now - lastPingedSiblings) >= ZT_PEER_PING_PERIOD) { lastPingedSiblings = now; std::lock_guard l(siblings_l); for(auto s=siblings.begin();s!=siblings.end();++s) { const InetAddress *ip = nullptr; socklen_t sl = 0; Packet outp((*s)->id.address(),self.address(),Packet::VERB_HELLO); outp.append((uint8_t)ZT_PROTO_VERSION); outp.append((uint8_t)ZEROTIER_ONE_VERSION_MAJOR); outp.append((uint8_t)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append((uint64_t)now); self.serialize(outp,false); if ((*s)->ip4) { (*s)->ip4.serialize(outp); ip = &((*s)->ip4); sl = sizeof(struct sockaddr_in); } else if ((*s)->ip6) { (*s)->ip6.serialize(outp); ip = &((*s)->ip6); sl = sizeof(struct sockaddr_in6); } if (ip) { outp.armor((*s)->key,false); sendto(ip->isV4() ? v4Sock : v6Sock,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,sl); } } } if ((now - lastCleaned) > 120000) { lastCleaned = now; // Old multicast subscription cleanup { std::lock_guard l(multicastSubscriptions_l); for(auto a=multicastSubscriptions.begin();a!=multicastSubscriptions.end();) { for(auto b=a->second.begin();b!=a->second.end();) { for(auto c=b->second.begin();c!=b->second.end();) { if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE) b->second.erase(c++); else ++c; } if (b->second.empty()) a->second.erase(b++); else ++b; } if (a->second.empty()) multicastSubscriptions.erase(a++); else ++a; } } // Remove expired peers { std::lock_guard pbi_l(peersByIdentity_l); for(auto p=peersByIdentity.begin();p!=peersByIdentity.end();) { if (((now - p->second->lastReceive) > ZT_PEER_ACTIVITY_TIMEOUT)&&(!p->second->sibling)) { std::lock_guard pbv_l(peersByVirtAddr_l); std::lock_guard pbp_l(peersByPhysAddr_l); auto pbv = peersByVirtAddr.find(p->second->id.address()); if (pbv != peersByVirtAddr.end()) { pbv->second.erase(p->second); if (pbv->second.empty()) peersByVirtAddr.erase(pbv); } if (p->second->ip4) { auto pbp = peersByPhysAddr.find(p->second->ip4); if (pbp != peersByPhysAddr.end()) { pbp->second.erase(p->second); if (pbp->second.empty()) peersByPhysAddr.erase(pbp); } } if (p->second->ip6) { auto pbp = peersByPhysAddr.find(p->second->ip6); if (pbp != peersByPhysAddr.end()) { pbp->second.erase(p->second); if (pbp->second.empty()) peersByPhysAddr.erase(pbp); } } peersByIdentity.erase(p++); } else ++p; } } // Remove old rendezvous tracking entries { std::lock_guard l(lastRendezvous_l); for(auto lr=lastRendezvous.begin();lr!=lastRendezvous.end();) { if ((now - lr->second) > ZT_PEER_ACTIVITY_TIMEOUT) lastRendezvous.erase(lr++); else ++lr; } } } // Write stats if configured to do so if (((now - lastWroteStats) > 15000)&&(statsRoot.length() > 0)) { lastWroteStats = now; std::string peersFilePath(statsRoot); peersFilePath.append("/.peers.tmp"); FILE *pf = fopen(peersFilePath.c_str(),"wb"); if (pf) { std::vector< SharedPtr > sp; { std::lock_guard pbi_l(peersByIdentity_l); sp.reserve(peersByIdentity.size()); for(auto p=peersByIdentity.begin();p!=peersByIdentity.end();++p) { sp.push_back(p->second); } } std::sort(sp.begin(),sp.end(),[](const SharedPtr &a,const SharedPtr &b) { return (a->id < b->id); }); char ip4[128],ip6[128]; for(auto p=sp.begin();p!=sp.end();++p) { if ((*p)->ip4) { (*p)->ip4.toString(ip4); } else { ip4[0] = '-'; ip4[1] = 0; } if ((*p)->ip6) { (*p)->ip6.toString(ip6); } else { ip6[0] = '-'; ip6[1] = 0; } fprintf(pf,"%.10llx %21s %45s %5.4f %d.%d.%d" ZT_EOL_S,(unsigned long long)(*p)->id.address().toInt(),ip4,ip6,fabs((double)(now - (*p)->lastReceive) / 1000.0),(*p)->vMajor,(*p)->vMinor,(*p)->vRev); } fclose(pf); std::string peersFilePath2(statsRoot); peersFilePath2.append("/peers"); OSUtils::rm(peersFilePath2); OSUtils::rename(peersFilePath.c_str(),peersFilePath2.c_str()); } std::string statsFilePath(statsRoot); statsFilePath.append("/.stats.tmp"); FILE *sf = fopen(statsFilePath.c_str(),"wb"); if (sf) { fprintf(sf,"Uptime (seconds) : %ld" ZT_EOL_S,(long)((now - startTime) / 1000)); peersByIdentity_l.lock(); fprintf(sf,"Peers : %llu" ZT_EOL_S,(unsigned long long)peersByIdentity.size()); peersByVirtAddr_l.lock(); fprintf(sf,"Virtual Address Collisions : %llu" ZT_EOL_S,(unsigned long long)(peersByIdentity.size() - peersByVirtAddr.size())); peersByVirtAddr_l.unlock(); peersByIdentity_l.unlock(); peersByPhysAddr_l.lock(); fprintf(sf,"Physical Endpoints : %llu" ZT_EOL_S,(unsigned long long)peersByPhysAddr.size()); peersByPhysAddr_l.unlock(); lastRendezvous_l.lock(); fprintf(sf,"Recent P2P Graph Edges : %llu" ZT_EOL_S,(unsigned long long)lastRendezvous.size()); lastRendezvous_l.unlock(); fprintf(sf,"Input BPS : %.4f" ZT_EOL_S,inputRate.perSecond(now)); fprintf(sf,"Output BPS : %.4f" ZT_EOL_S,outputRate.perSecond(now)); fprintf(sf,"Forwarded BPS : %.4f" ZT_EOL_S,forwardRate.perSecond(now)); fprintf(sf,"Sibling Forwarded BPS : %.4f" ZT_EOL_S,siblingForwardRate.perSecond(now)); fclose(sf); std::string statsFilePath2(statsRoot); statsFilePath2.append("/stats"); OSUtils::rm(statsFilePath2); OSUtils::rename(statsFilePath.c_str(),statsFilePath2.c_str()); } } } // If we received a kill signal, close everything and wait // for threads to die before exiting. apiServ.stop(); for(auto s=sockets.begin();s!=sockets.end();++s) { shutdown(*s,SHUT_RDWR); close(*s); } for(auto t=threads.begin();t!=threads.end();++t) t->join(); return 0; }