/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#include "../version.h"
#include "Constants.hpp"
#include "Peer.hpp"
#include "Node.hpp"
#include "Switch.hpp"
#include "Network.hpp"
#include "SelfAwareness.hpp"
#include "Packet.hpp"
#include "Trace.hpp"
namespace ZeroTier {
Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :
RR(renv),
_lastReceive(0),
_lastNontrivialReceive(0),
_lastTriedMemorizedPath(0),
_lastDirectPathPushSent(0),
_lastDirectPathPushReceive(0),
_lastCredentialRequestSent(0),
_lastWhoisRequestReceived(0),
_lastEchoRequestReceived(0),
_lastComRequestReceived(0),
_lastComRequestSent(0),
_lastCredentialsReceived(0),
_lastTrustEstablishedPacketReceived(0),
_vProto(0),
_vMajor(0),
_vMinor(0),
_vRevision(0),
_id(peerIdentity),
_latency(0),
_directPathPushCutoffCount(0),
_credentialsCutoffCount(0)
{
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
throw ZT_EXCEPTION_INVALID_ARGUMENT;
}
void Peer::received(
void *tPtr,
const SharedPtr &path,
const unsigned int hops,
const uint64_t packetId,
const Packet::Verb verb,
const uint64_t inRePacketId,
const Packet::Verb inReVerb,
const bool trustEstablished,
const uint64_t networkId)
{
const uint64_t now = RR->node->now();
/*
#ifdef ZT_ENABLE_CLUSTER
bool isClusterSuboptimalPath = false;
if ((RR->cluster)&&(hops == 0)) {
// Note: findBetterEndpoint() is first since we still want to check
// for a better endpoint even if we don't actually send a redirect.
InetAddress redirectTo;
if ( (verb != Packet::VERB_OK) && (verb != Packet::VERB_ERROR) && (verb != Packet::VERB_RENDEZVOUS) && (verb != Packet::VERB_PUSH_DIRECT_PATHS) && (RR->cluster->findBetterEndpoint(redirectTo,_id.address(),path->address(),false)) ) {
if (_vProto >= 5) {
// For newer peers we can send a more idiomatic verb: PUSH_DIRECT_PATHS.
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.append((uint16_t)1); // count == 1
outp.append((uint8_t)ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT); // flags: cluster redirect
outp.append((uint16_t)0); // no extensions
if (redirectTo.ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append((uint8_t)6);
outp.append(redirectTo.rawIpData(),4);
} else {
outp.append((uint8_t)6);
outp.append((uint8_t)18);
outp.append(redirectTo.rawIpData(),16);
}
outp.append((uint16_t)redirectTo.port());
outp.armor(_key,true,path->nextOutgoingCounter());
path->send(RR,tPtr,outp.data(),outp.size(),now);
} else {
// For older peers we use RENDEZVOUS to coax them into contacting us elsewhere.
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0); // no flags
RR->identity.address().appendTo(outp);
outp.append((uint16_t)redirectTo.port());
if (redirectTo.ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append(redirectTo.rawIpData(),4);
} else {
outp.append((uint8_t)16);
outp.append(redirectTo.rawIpData(),16);
}
outp.armor(_key,true,path->nextOutgoingCounter());
path->send(RR,tPtr,outp.data(),outp.size(),now);
}
isClusterSuboptimalPath = true;
}
}
#endif
*/
_lastReceive = now;
switch (verb) {
case Packet::VERB_FRAME:
case Packet::VERB_EXT_FRAME:
case Packet::VERB_NETWORK_CONFIG_REQUEST:
case Packet::VERB_NETWORK_CONFIG:
case Packet::VERB_MULTICAST_FRAME:
_lastNontrivialReceive = now;
break;
default: break;
}
if (trustEstablished) {
_lastTrustEstablishedPacketReceived = now;
path->trustedPacketReceived(now);
}
if (_vProto >= 9)
path->updateLinkQuality((unsigned int)(packetId & 7));
if (hops == 0) {
// If this is a direct packet (no hops), update existing paths or learn new ones
bool pathAlreadyKnown = false;
{
Mutex::Lock _l(_paths_m);
if ((path->address().ss_family == AF_INET)&&(_v4Path.p)) {
const struct sockaddr_in *const r = reinterpret_cast(&(path->address()));
const struct sockaddr_in *const l = reinterpret_cast(&(_v4Path.p->address()));
if ((r->sin_addr.s_addr == l->sin_addr.s_addr)&&(r->sin_port == l->sin_port)&&(path->localSocket() == _v4Path.p->localSocket())) {
_v4Path.lr = now;
pathAlreadyKnown = true;
}
} else if ((path->address().ss_family == AF_INET6)&&(_v6Path.p)) {
const struct sockaddr_in6 *const r = reinterpret_cast(&(path->address()));
const struct sockaddr_in6 *const l = reinterpret_cast(&(_v6Path.p->address()));
if ((!memcmp(r->sin6_addr.s6_addr,l->sin6_addr.s6_addr,16))&&(r->sin6_port == l->sin6_port)&&(path->localSocket() == _v6Path.p->localSocket())) {
_v6Path.lr = now;
pathAlreadyKnown = true;
}
}
}
if ( (!pathAlreadyKnown) && (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address())) ) {
Mutex::Lock _l(_paths_m);
_PeerPath *replacablePath = (_PeerPath *)0;
if (path->address().ss_family == AF_INET) {
if ( ( (!_v4Path.p) || (!_v4Path.p->alive(now)) || (path->preferenceRank() >= _v4Path.p->preferenceRank()) ) && ( (now - _v4Path.sticky) > ZT_PEER_PATH_EXPIRATION ) ) {
replacablePath = &_v4Path;
}
} else if (path->address().ss_family == AF_INET6) {
if ( ( (!_v6Path.p) || (!_v6Path.p->alive(now)) || (path->preferenceRank() >= _v6Path.p->preferenceRank()) ) && ( (now - _v6Path.sticky) > ZT_PEER_PATH_EXPIRATION ) ) {
replacablePath = &_v6Path;
}
}
if (replacablePath) {
if (verb == Packet::VERB_OK) {
RR->t->peerLearnedNewPath(tPtr,networkId,*this,replacablePath->p,path,packetId);
replacablePath->lr = now;
replacablePath->p = path;
} else {
RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);
attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true,path->nextOutgoingCounter());
path->sent(now);
}
}
}
} else if (this->trustEstablished(now)) {
// Send PUSH_DIRECT_PATHS if hops>0 (relayed) and we have a trust relationship (common network membership)
if ((now - _lastDirectPathPushSent) >= ZT_DIRECT_PATH_PUSH_INTERVAL) {
_lastDirectPathPushSent = now;
std::vector pathsToPush;
std::vector dps(RR->node->directPaths());
for(std::vector::const_iterator i(dps.begin());i!=dps.end();++i)
pathsToPush.push_back(*i);
std::vector sym(RR->sa->getSymmetricNatPredictions());
for(unsigned long i=0,added=0;inode->prng() % sym.size()]);
if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) {
pathsToPush.push_back(tmp);
if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
break;
}
}
if (pathsToPush.size() > 0) {
std::vector::const_iterator p(pathsToPush.begin());
while (p != pathsToPush.end()) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.addSize(2); // leave room for count
unsigned int count = 0;
while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) {
uint8_t addressType = 4;
switch(p->ss_family) {
case AF_INET:
break;
case AF_INET6:
addressType = 6;
break;
default: // we currently only push IP addresses
++p;
continue;
}
outp.append((uint8_t)0); // no flags
outp.append((uint16_t)0); // no extensions
outp.append(addressType);
outp.append((uint8_t)((addressType == 4) ? 6 : 18));
outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16));
outp.append((uint16_t)p->port());
++count;
++p;
}
if (count) {
outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
outp.armor(_key,true,path->nextOutgoingCounter());
path->send(RR,tPtr,outp.data(),outp.size(),now);
}
}
}
}
}
}
bool Peer::sendDirect(void *tPtr,const void *data,unsigned int len,uint64_t now,bool force)
{
Mutex::Lock _l(_paths_m);
uint64_t v6lr = 0;
if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) )
v6lr = _v6Path.p->lastIn();
uint64_t v4lr = 0;
if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) )
v4lr = _v4Path.p->lastIn();
if ( (v6lr > v4lr) && ((now - v6lr) < ZT_PATH_ALIVE_TIMEOUT) ) {
return _v6Path.p->send(RR,tPtr,data,len,now);
} else if ((now - v4lr) < ZT_PATH_ALIVE_TIMEOUT) {
return _v4Path.p->send(RR,tPtr,data,len,now);
} else if (force) {
if (v6lr > v4lr) {
return _v6Path.p->send(RR,tPtr,data,len,now);
} else if (v4lr) {
return _v4Path.p->send(RR,tPtr,data,len,now);
}
}
return false;
}
SharedPtr Peer::getBestPath(uint64_t now,bool includeExpired)
{
Mutex::Lock _l(_paths_m);
uint64_t v6lr = 0;
if ( ( includeExpired || ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) && (_v6Path.p) )
v6lr = _v6Path.p->lastIn();
uint64_t v4lr = 0;
if ( ( includeExpired || ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) && (_v4Path.p) )
v4lr = _v4Path.p->lastIn();
if (v6lr > v4lr) {
return _v6Path.p;
} else if (v4lr) {
return _v4Path.p;
}
return SharedPtr();
}
void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,uint64_t now,unsigned int counter)
{
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(now);
RR->identity.serialize(outp,false);
atAddress.serialize(outp);
outp.append((uint64_t)RR->topology->planetWorldId());
outp.append((uint64_t)RR->topology->planetWorldTimestamp());
const unsigned int startCryptedPortionAt = outp.size();
std::vector moons(RR->topology->moons());
std::vector moonsWanted(RR->topology->moonsWanted());
outp.append((uint16_t)(moons.size() + moonsWanted.size()));
for(std::vector::const_iterator m(moons.begin());m!=moons.end();++m) {
outp.append((uint8_t)m->type());
outp.append((uint64_t)m->id());
outp.append((uint64_t)m->timestamp());
}
for(std::vector::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {
outp.append((uint8_t)World::TYPE_MOON);
outp.append(*m);
outp.append((uint64_t)0);
}
const unsigned int corSizeAt = outp.size();
outp.addSize(2);
RR->topology->appendCertificateOfRepresentation(outp);
outp.setAt(corSizeAt,(uint16_t)(outp.size() - (corSizeAt + 2)));
outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);
RR->node->expectReplyTo(outp.packetId());
if (atAddress) {
outp.armor(_key,false,counter); // false == don't encrypt full payload, but add MAC
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
} else {
RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC
}
}
void Peer::attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,uint64_t now,bool sendFullHello,unsigned int counter)
{
if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
RR->node->expectReplyTo(outp.packetId());
outp.armor(_key,true,counter);
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
} else {
sendHELLO(tPtr,localSocket,atAddress,now,counter);
}
}
void Peer::tryMemorizedPath(void *tPtr,uint64_t now)
{
if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {
_lastTriedMemorizedPath = now;
InetAddress mp;
if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp))
attemptToContactAt(tPtr,InetAddress(),mp,now,true,0);
}
}
bool Peer::doPingAndKeepalive(void *tPtr,uint64_t now,int inetAddressFamily)
{
Mutex::Lock _l(_paths_m);
if (inetAddressFamily < 0) {
uint64_t v6lr = 0;
if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) )
v6lr = _v6Path.p->lastIn();
uint64_t v4lr = 0;
if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) )
v4lr = _v4Path.p->lastIn();
if (v6lr > v4lr) {
if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v6Path.p->localSocket(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
_v6Path.p->sent(now);
return true;
}
} else if (v4lr) {
if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v4Path.p->localSocket(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
_v4Path.p->sent(now);
return true;
}
}
} else {
if ( (inetAddressFamily == AF_INET) && ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) {
if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v4Path.p->localSocket(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
_v4Path.p->sent(now);
return true;
}
} else if ( (inetAddressFamily == AF_INET6) && ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) {
if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v6Path.p->localSocket(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
_v6Path.p->sent(now);
return true;
}
}
}
return false;
}
void Peer::redirect(void *tPtr,const int64_t localSocket,const InetAddress &remoteAddress,const uint64_t now)
{
if ((remoteAddress.ss_family != AF_INET)&&(remoteAddress.ss_family != AF_INET6)) // sanity check
return;
SharedPtr op;
SharedPtr np(RR->topology->getPath(localSocket,remoteAddress));
attemptToContactAt(tPtr,localSocket,remoteAddress,now,true,np->nextOutgoingCounter());
{
Mutex::Lock _l(_paths_m);
if (remoteAddress.ss_family == AF_INET) {
op = _v4Path.p;
_v4Path.p = np;
_v4Path.sticky = now;
} else if (remoteAddress.ss_family == AF_INET6) {
op = _v6Path.p;
_v6Path.p = np;
_v6Path.sticky = now;
}
}
RR->t->peerRedirected(tPtr,0,*this,op,np);
}
} // namespace ZeroTier