/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "../version.h" #include "Constants.hpp" #include "Peer.hpp" #include "Switch.hpp" #include "Network.hpp" #include "SelfAwareness.hpp" #include "Packet.hpp" #include "Trace.hpp" #include "InetAddress.hpp" #include "RingBuffer.hpp" #include "Utils.hpp" namespace ZeroTier { static unsigned char s_freeRandomByteCounter = 0; Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) : RR(renv), _lastReceive(0), _lastNontrivialReceive(0), _lastTriedMemorizedPath(0), _lastDirectPathPushSent(0), _lastDirectPathPushReceive(0), _lastEchoRequestReceived(0), _lastCredentialRequestSent(0), _lastWhoisRequestReceived(0), _lastCredentialsReceived(0), _lastTrustEstablishedPacketReceived(0), _lastSentFullHello(0), _lastEchoCheck(0), _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter), _vProto(0), _vMajor(0), _vMinor(0), _vRevision(0), _id(peerIdentity), _directPathPushCutoffCount(0), _credentialsCutoffCount(0), _echoRequestCutoffCount(0), _uniqueAlivePathCount(0), _localMultipathSupported(false), _remoteMultipathSupported(false), _canUseMultipath(false), _shouldCollectPathStatistics(0), _lastComputedAggregateMeanLatency(0) { if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH)) { throw ZT_EXCEPTION_INVALID_ARGUMENT; } } void Peer::received( void *tPtr, const SharedPtr &path, const unsigned int hops, const uint64_t packetId, const unsigned int payloadLength, const Packet::Verb verb, const uint64_t inRePacketId, const Packet::Verb inReVerb, const bool trustEstablished, const uint64_t networkId, const int32_t flowId) { const int64_t now = RR->node->now(); _lastReceive = now; switch (verb) { case Packet::VERB_FRAME: case Packet::VERB_EXT_FRAME: case Packet::VERB_NETWORK_CONFIG_REQUEST: case Packet::VERB_NETWORK_CONFIG: case Packet::VERB_MULTICAST_FRAME: _lastNontrivialReceive = now; break; default: break; } recordIncomingPacket(tPtr, path, packetId, payloadLength, verb, flowId, now); if (trustEstablished) { _lastTrustEstablishedPacketReceived = now; path->trustedPacketReceived(now); } if (hops == 0) { // If this is a direct packet (no hops), update existing paths or learn new ones bool havePath = false; { Mutex::Lock _l(_paths_m); for(unsigned int i=0;inode->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()))) { Mutex::Lock _l(_paths_m); for(unsigned int i=0;ialive(now)) && ( ((_paths[i].p->localSocket() == path->localSocket())&&(_paths[i].p->address().ss_family == path->address().ss_family)) && (_paths[i].p->address().ipsEqual2(path->address())) ) ) { // port if (_paths[i].p->address().port() == path->address().port()) { replaceIdx = i; break; } } } } if (replaceIdx == ZT_MAX_PEER_NETWORK_PATHS) { for(unsigned int i=0;it->peerLearnedNewPath(tPtr,networkId,*this,path,packetId); performMultipathStateCheck(now); if (_bondToPeer) { _bondToPeer->nominatePath(path, now); } _paths[replaceIdx].lr = now; _paths[replaceIdx].p = path; _paths[replaceIdx].priority = 1; } else { attemptToContact = true; } } } if (attemptToContact) { attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true); path->sent(now); RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb); } } // If we have a trust relationship periodically push a message enumerating // all known external addresses for ourselves. If we already have a path this // is done less frequently. if (this->trustEstablished(now)) { const int64_t sinceLastPush = now - _lastDirectPathPushSent; if (sinceLastPush >= ((hops == 0) ? ZT_DIRECT_PATH_PUSH_INTERVAL_HAVEPATH : ZT_DIRECT_PATH_PUSH_INTERVAL)) { _lastDirectPathPushSent = now; std::vector pathsToPush(RR->node->directPaths()); if (pathsToPush.size() > 0) { std::vector::const_iterator p(pathsToPush.begin()); while (p != pathsToPush.end()) { Packet *const outp = new Packet(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp->addSize(2); // leave room for count unsigned int count = 0; while ((p != pathsToPush.end())&&((outp->size() + 24) < 1200)) { uint8_t addressType = 4; switch(p->ss_family) { case AF_INET: break; case AF_INET6: addressType = 6; break; default: // we currently only push IP addresses ++p; continue; } outp->append((uint8_t)0); // no flags outp->append((uint16_t)0); // no extensions outp->append(addressType); outp->append((uint8_t)((addressType == 4) ? 6 : 18)); outp->append(p->rawIpData(),((addressType == 4) ? 4 : 16)); outp->append((uint16_t)p->port()); ++count; ++p; } if (count) { outp->setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count); outp->compress(); outp->armor(_key,true); path->send(RR,tPtr,outp->data(),outp->size(),now); } delete outp; } } } } } SharedPtr Peer::getAppropriatePath(int64_t now, bool includeExpired, int32_t flowId) { if (!_bondToPeer) { Mutex::Lock _l(_paths_m); unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS; /** * Send traffic across the highest quality path only. This algorithm will still * use the old path quality metric from protocol version 9. */ long bestPathQuality = 2147483647; for(unsigned int i=0;iquality(now) / _paths[i].priority; if (q <= bestPathQuality) { bestPathQuality = q; bestPath = i; } } } else break; } if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) { return _paths[bestPath].p; } return SharedPtr(); } return _bondToPeer->getAppropriatePath(now, flowId); } void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr &other) const { unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1]; unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1]; long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1]; long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1]; unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1]; unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1]; long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1]; long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1]; for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) { myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS; myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS; myBestV4QualityByScope[i] = 2147483647; myBestV6QualityByScope[i] = 2147483647; theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS; theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS; theirBestV4QualityByScope[i] = 2147483647; theirBestV6QualityByScope[i] = 2147483647; } Mutex::Lock _l1(_paths_m); for(unsigned int i=0;iquality(now) / _paths[i].priority; const unsigned int s = (unsigned int)_paths[i].p->ipScope(); switch(_paths[i].p->address().ss_family) { case AF_INET: if (q <= myBestV4QualityByScope[s]) { myBestV4QualityByScope[s] = q; myBestV4ByScope[s] = i; } break; case AF_INET6: if (q <= myBestV6QualityByScope[s]) { myBestV6QualityByScope[s] = q; myBestV6ByScope[s] = i; } break; } } else break; } Mutex::Lock _l2(other->_paths_m); for(unsigned int i=0;i_paths[i].p) { const long q = other->_paths[i].p->quality(now) / other->_paths[i].priority; const unsigned int s = (unsigned int)other->_paths[i].p->ipScope(); switch(other->_paths[i].p->address().ss_family) { case AF_INET: if (q <= theirBestV4QualityByScope[s]) { theirBestV4QualityByScope[s] = q; theirBestV4ByScope[s] = i; } break; case AF_INET6: if (q <= theirBestV6QualityByScope[s]) { theirBestV6QualityByScope[s] = q; theirBestV6ByScope[s] = i; } break; } } else break; } unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS; unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS; for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) { if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) { mine = myBestV6ByScope[s]; theirs = theirBestV6ByScope[s]; break; } if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) { mine = myBestV4ByScope[s]; theirs = theirBestV4ByScope[s]; break; } } if (mine != ZT_MAX_PEER_NETWORK_PATHS) { unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons const unsigned int completed = alt + 2; while (alt != completed) { if ((alt & 1) == 0) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); other->_id.address().appendTo(outp); outp.append((uint16_t)other->_paths[theirs].p->address().port()); if (other->_paths[theirs].p->address().ss_family == AF_INET6) { outp.append((uint8_t)16); outp.append(other->_paths[theirs].p->address().rawIpData(),16); } else { outp.append((uint8_t)4); outp.append(other->_paths[theirs].p->address().rawIpData(),4); } outp.armor(_key,true); _paths[mine].p->send(RR,tPtr,outp.data(),outp.size(),now); } else { Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); _id.address().appendTo(outp); outp.append((uint16_t)_paths[mine].p->address().port()); if (_paths[mine].p->address().ss_family == AF_INET6) { outp.append((uint8_t)16); outp.append(_paths[mine].p->address().rawIpData(),16); } else { outp.append((uint8_t)4); outp.append(_paths[mine].p->address().rawIpData(),4); } outp.armor(other->_key,true); other->_paths[theirs].p->send(RR,tPtr,outp.data(),outp.size(),now); } ++alt; } } } void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); RR->identity.serialize(outp,false); atAddress.serialize(outp); outp.append((uint64_t)RR->topology->planetWorldId()); outp.append((uint64_t)RR->topology->planetWorldTimestamp()); const unsigned int startCryptedPortionAt = outp.size(); std::vector moons(RR->topology->moons()); std::vector moonsWanted(RR->topology->moonsWanted()); outp.append((uint16_t)(moons.size() + moonsWanted.size())); for(std::vector::const_iterator m(moons.begin());m!=moons.end();++m) { outp.append((uint8_t)m->type()); outp.append((uint64_t)m->id()); outp.append((uint64_t)m->timestamp()); } for(std::vector::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) { outp.append((uint8_t)World::TYPE_MOON); outp.append(*m); outp.append((uint64_t)0); } outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt); RR->node->expectReplyTo(outp.packetId()); if (atAddress) { outp.armor(_key,false); // false == don't encrypt full payload, but add MAC RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size()); } else { RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC } } void Peer::attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello) { if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO); RR->node->expectReplyTo(outp.packetId()); outp.armor(_key,true); RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size()); } else { sendHELLO(tPtr,localSocket,atAddress,now); } } void Peer::tryMemorizedPath(void *tPtr,int64_t now) { if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) { _lastTriedMemorizedPath = now; InetAddress mp; if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp)) attemptToContactAt(tPtr,-1,mp,now,true); } } void Peer::performMultipathStateCheck(int64_t now) { /** * Check for conditions required for multipath bonding and create a bond * if allowed. */ _localMultipathSupported = ((RR->bc->inUse()) && (ZT_PROTO_VERSION > 9)); if (_localMultipathSupported) { int currAlivePathCount = 0; int duplicatePathsFound = 0; for (unsigned int i=0;iaddress().ipsEqual2(_paths[j].p->address()) && i != j) { duplicatePathsFound+=1; break; } } } } _uniqueAlivePathCount = (currAlivePathCount - (duplicatePathsFound / 2)); _remoteMultipathSupported = _vProto > 9; _canUseMultipath = _localMultipathSupported && _remoteMultipathSupported && (_uniqueAlivePathCount > 1); } if (_canUseMultipath && !_bondToPeer) { if (RR->bc) { _bondToPeer = RR->bc->createTransportTriggeredBond(RR, this); /** * Allow new bond to retroactively learn all paths known to this peer */ if (_bondToPeer) { for (unsigned int i=0;inominatePath(_paths[i].p, now); } } } } } } unsigned int Peer::doPingAndKeepalive(void *tPtr,int64_t now) { unsigned int sent = 0; Mutex::Lock _l(_paths_m); performMultipathStateCheck(now); const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD); _lastSentFullHello = now; // Right now we only keep pinging links that have the maximum priority. The // priority is used to track cluster redirections, meaning that when a cluster // redirects us its redirect target links override all other links and we // let those old links expire. long maxPriority = 0; for(unsigned int i=0;ineedsHeartbeat(now)) || (_canUseMultipath && _paths[i].p->needsGratuitousHeartbeat(now))) { attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,sendFullHello); _paths[i].p->sent(now); sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2; } if (i != j) _paths[j] = _paths[i]; ++j; } } else break; } return sent; } void Peer::clusterRedirect(void *tPtr,const SharedPtr &originatingPath,const InetAddress &remoteAddress,const int64_t now) { SharedPtr np(RR->topology->getPath(originatingPath->localSocket(),remoteAddress)); RR->t->peerRedirected(tPtr,0,*this,np); attemptToContactAt(tPtr,originatingPath->localSocket(),remoteAddress,now,true); { Mutex::Lock _l(_paths_m); // New priority is higher than the priority of the originating path (if known) long newPriority = 1; for(unsigned int i=0;i= newPriority)&&(!_paths[i].p->address().ipsEqual2(remoteAddress))) { if (i != j) _paths[j] = _paths[i]; ++j; } } } if (j < ZT_MAX_PEER_NETWORK_PATHS) { _paths[j].lr = now; _paths[j].p = np; _paths[j].priority = newPriority; ++j; while (j < ZT_MAX_PEER_NETWORK_PATHS) { _paths[j].lr = 0; _paths[j].p.zero(); _paths[j].priority = 1; ++j; } } } } void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now) { Mutex::Lock _l(_paths_m); for(unsigned int i=0;iaddress().ss_family == inetAddressFamily)&&(_paths[i].p->ipScope() == scope)) { attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,false); _paths[i].p->sent(now); _paths[i].lr = 0; // path will not be used unless it speaks again } } else break; } } void Peer::recordOutgoingPacket(const SharedPtr &path, const uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now) { if (!_shouldCollectPathStatistics || !_bondToPeer) { return; } _bondToPeer->recordOutgoingPacket(path, packetId, payloadLength, verb, flowId, now); } void Peer::recordIncomingInvalidPacket(const SharedPtr& path) { if (!_shouldCollectPathStatistics || !_bondToPeer) { return; } _bondToPeer->recordIncomingInvalidPacket(path); } void Peer::recordIncomingPacket(void *tPtr, const SharedPtr &path, const uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now) { if (!_shouldCollectPathStatistics || !_bondToPeer) { return; } _bondToPeer->recordIncomingPacket(path, packetId, payloadLength, verb, flowId, now); } } // namespace ZeroTier