/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include #include #include #include #include "../version.h" #include "Constants.hpp" #include "SharedPtr.hpp" #include "Node.hpp" #include "RuntimeEnvironment.hpp" #include "NetworkController.hpp" #include "Switch.hpp" #include "Multicaster.hpp" #include "Topology.hpp" #include "Buffer.hpp" #include "Packet.hpp" #include "Address.hpp" #include "Identity.hpp" #include "SelfAwareness.hpp" #include "Network.hpp" #include "Trace.hpp" namespace ZeroTier { /****************************************************************************/ /* Public Node interface (C++, exposed via CAPI bindings) */ /****************************************************************************/ Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) : _RR(this), RR(&_RR), _uPtr(uptr), _networks(8), _now(now), _lastPingCheck(0), _lastGratuitousPingCheck(0), _lastHousekeepingRun(0), _lastMemoizedTraceSettings(0) { if (callbacks->version != 0) throw ZT_EXCEPTION_INVALID_ARGUMENT; memcpy(&_cb,callbacks,sizeof(ZT_Node_Callbacks)); // Initialize non-cryptographic PRNG from a good random source Utils::getSecureRandom((void *)_prngState,sizeof(_prngState)); _online = false; memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr)); memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo)); memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification)); memset((void *)(&_stats),0,sizeof(_stats)); uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0; char tmp[2048]; int n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,tmp,sizeof(tmp) - 1); if (n > 0) { tmp[n] = (char)0; if (RR->identity.fromString(tmp)) { RR->identity.toString(false,RR->publicIdentityStr); RR->identity.toString(true,RR->secretIdentityStr); } else { n = -1; } } if (n <= 0) { RR->identity.generate(); RR->identity.toString(false,RR->publicIdentityStr); RR->identity.toString(true,RR->secretIdentityStr); idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0; stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr)); stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr)); } else { idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0; n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,tmp,sizeof(tmp) - 1); if ((n > 0)&&(n < (int)sizeof(RR->publicIdentityStr))&&(n < (int)sizeof(tmp))) { if (memcmp(tmp,RR->publicIdentityStr,n)) stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr)); } } char *m = (char *)0; try { const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0); const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0); const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0); const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0); const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0); const unsigned long bc = sizeof(Bond) + (((sizeof(Bond) & 0xf) != 0) ? (16 - (sizeof(Bond) & 0xf)) : 0); m = reinterpret_cast(::malloc(16 + ts + sws + mcs + topologys + sas + bc)); if (!m) throw std::bad_alloc(); RR->rtmem = m; while (((uintptr_t)m & 0xf) != 0) ++m; RR->t = new (m) Trace(RR); m += ts; RR->sw = new (m) Switch(RR); m += sws; RR->mc = new (m) Multicaster(RR); m += mcs; RR->topology = new (m) Topology(RR,tptr); m += topologys; RR->sa = new (m) SelfAwareness(RR); m += sas; RR->bc = new (m) Bond(RR); } catch ( ... ) { if (RR->sa) RR->sa->~SelfAwareness(); if (RR->topology) RR->topology->~Topology(); if (RR->mc) RR->mc->~Multicaster(); if (RR->sw) RR->sw->~Switch(); if (RR->t) RR->t->~Trace(); if (RR->bc) RR->bc->~Bond(); ::free(m); throw; } postEvent(tptr,ZT_EVENT_UP); } Node::~Node() { { Mutex::Lock _l(_networks_m); _networks.clear(); // destroy all networks before shutdown } if (RR->sa) RR->sa->~SelfAwareness(); if (RR->topology) RR->topology->~Topology(); if (RR->mc) RR->mc->~Multicaster(); if (RR->sw) RR->sw->~Switch(); if (RR->t) RR->t->~Trace(); if (RR->bc) RR->bc->~Bond(); ::free(RR->rtmem); } ZT_ResultCode Node::processWirePacket( void *tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile int64_t *nextBackgroundTaskDeadline) { _now = now; RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast(remoteAddress)),packetData,packetLength); return ZT_RESULT_OK; } ZT_ResultCode Node::processVirtualNetworkFrame( void *tptr, int64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile int64_t *nextBackgroundTaskDeadline) { _now = now; SharedPtr nw(this->network(nwid)); if (nw) { RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } // Closure used to ping upstream and active/online peers class _PingPeersThatNeedPing { public: _PingPeersThatNeedPing(const RuntimeEnvironment *renv,void *tPtr,Hashtable< Address,std::vector > &alwaysContact,int64_t now) : RR(renv), _tPtr(tPtr), _alwaysContact(alwaysContact), _now(now), _bestCurrentUpstream(RR->topology->getUpstreamPeer()) { } inline void operator()(Topology &t,const SharedPtr &p) { const std::vector *const alwaysContactEndpoints = _alwaysContact.get(p->address()); if (alwaysContactEndpoints) { const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now); bool contacted = (sent != 0); if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) { const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()]; if (addr.ss_family == AF_INET) { p->sendHELLO(_tPtr,-1,addr,_now); contacted = true; break; } } } if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) { const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()]; if (addr.ss_family == AF_INET6) { p->sendHELLO(_tPtr,-1,addr,_now); contacted = true; break; } } } if ((!contacted)&&(_bestCurrentUpstream)) { const SharedPtr up(_bestCurrentUpstream->getAppropriatePath(_now,true)); if (up) p->sendHELLO(_tPtr,up->localSocket(),up->address(),_now); } _alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain } else if (p->isActive(_now)) { p->doPingAndKeepalive(_tPtr,_now); } } private: const RuntimeEnvironment *RR; void *_tPtr; Hashtable< Address,std::vector > &_alwaysContact; const int64_t _now; const SharedPtr _bestCurrentUpstream; }; ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline) { _now = now; Mutex::Lock bl(_backgroundTasksLock); // Process background bond tasks unsigned long bondCheckInterval = ZT_PING_CHECK_INVERVAL; if (RR->bc->inUse()) { bondCheckInterval = std::max(RR->bc->minReqMonitorInterval(), ZT_CORE_TIMER_TASK_GRANULARITY); if ((now - _lastGratuitousPingCheck) >= ZT_CORE_TIMER_TASK_GRANULARITY) { _lastGratuitousPingCheck = now; RR->bc->processBackgroundTasks(tptr, now); } } unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL; const int64_t timeSinceLastPingCheck = now - _lastPingCheck; if (timeSinceLastPingCheck >= timeUntilNextPingCheck) { try { _lastPingCheck = now; // Get designated VL1 upstreams Hashtable< Address,std::vector > alwaysContact; RR->topology->getUpstreamsToContact(alwaysContact); // Uncomment to dump stats /* for(unsigned int i=0;i<32;i++) { if (_stats.inVerbCounts[i] > 0) printf("%.2x\t%12lld %lld\n",i,(unsigned long long)_stats.inVerbCounts[i],(unsigned long long)_stats.inVerbBytes[i]); } printf("\n"); */ // Check last receive time on designated upstreams to see if we seem to be online int64_t lastReceivedFromUpstream = 0; { Hashtable< Address,std::vector >::Iterator i(alwaysContact); Address *upstreamAddress = (Address *)0; std::vector *upstreamStableEndpoints = (std::vector *)0; while (i.next(upstreamAddress,upstreamStableEndpoints)) { SharedPtr p(RR->topology->getPeerNoCache(*upstreamAddress)); if (p) lastReceivedFromUpstream = std::max(p->lastReceive(),lastReceivedFromUpstream); } } // Clean up any old local controller auth memorizations. { _localControllerAuthorizations_m.lock(); Hashtable< _LocalControllerAuth,int64_t >::Iterator i(_localControllerAuthorizations); _LocalControllerAuth *k = (_LocalControllerAuth *)0; int64_t *v = (int64_t *)0; while (i.next(k,v)) { if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) _localControllerAuthorizations.erase(*k); } _localControllerAuthorizations_m.unlock(); } // Get peers we should stay connected to according to network configs // Also get networks and whether they need config so we only have to do one pass over networks std::vector< std::pair< SharedPtr,bool > > networkConfigNeeded; { Mutex::Lock l(_networks_m); Hashtable< uint64_t,SharedPtr >::Iterator i(_networks); uint64_t *nwid = (uint64_t *)0; SharedPtr *network = (SharedPtr *)0; while (i.next(nwid,network)) { (*network)->config().alwaysContactAddresses(alwaysContact); networkConfigNeeded.push_back( std::pair< SharedPtr,bool >(*network,(((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!(*network)->hasConfig()))) ); } } // Ping active peers, upstreams, and others that we should always contact _PingPeersThatNeedPing pfunc(RR,tptr,alwaysContact,now); RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc); // Run WHOIS to create Peer for alwaysContact addresses that could not be contacted { Hashtable< Address,std::vector >::Iterator i(alwaysContact); Address *upstreamAddress = (Address *)0; std::vector *upstreamStableEndpoints = (std::vector *)0; while (i.next(upstreamAddress,upstreamStableEndpoints)) RR->sw->requestWhois(tptr,now,*upstreamAddress); } // Refresh network config or broadcast network updates to members as needed for(std::vector< std::pair< SharedPtr,bool > >::const_iterator n(networkConfigNeeded.begin());n!=networkConfigNeeded.end();++n) { if (n->second) n->first->requestConfiguration(tptr); n->first->sendUpdatesToMembers(tptr); } // Update online status, post status change as event const bool oldOnline = _online; _online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amUpstream())); if (oldOnline != _online) postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } else { timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck; } if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) { _lastMemoizedTraceSettings = now; RR->t->updateMemoizedSettings(); } if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) { _lastHousekeepingRun = now; try { RR->topology->doPeriodicTasks(tptr,now); RR->sa->clean(now); RR->mc->clean(now); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } try { *nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(bondCheckInterval,std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(tptr,now))),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } return ZT_RESULT_OK; } ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr) { Mutex::Lock _l(_networks_m); SharedPtr &nw = _networks[nwid]; if (!nw) nw = SharedPtr(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0)); return ZT_RESULT_OK; } ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr) { ZT_VirtualNetworkConfig ctmp; void **nUserPtr = (void **)0; { Mutex::Lock _l(_networks_m); SharedPtr *nw = _networks.get(nwid); RR->sw->removeNetworkQoSControlBlock(nwid); if (!nw) return ZT_RESULT_OK; if (uptr) *uptr = (*nw)->userPtr(); (*nw)->externalConfig(&ctmp); (*nw)->destroy(); nUserPtr = (*nw)->userPtr(); } if (nUserPtr) RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp); { Mutex::Lock _l(_networks_m); _networks.erase(nwid); } uint64_t tmp[2]; tmp[0] = nwid; tmp[1] = 0; RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp); return ZT_RESULT_OK; } ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } ZT_ResultCode Node::orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed) { RR->topology->addMoon(tptr,moonWorldId,Address(moonSeed)); return ZT_RESULT_OK; } ZT_ResultCode Node::deorbit(void *tptr,uint64_t moonWorldId) { RR->topology->removeMoon(tptr,moonWorldId); return ZT_RESULT_OK; } uint64_t Node::address() const { return RR->identity.address().toInt(); } void Node::status(ZT_NodeStatus *status) const { status->address = RR->identity.address().toInt(); status->publicIdentity = RR->publicIdentityStr; status->secretIdentity = RR->secretIdentityStr; status->online = _online ? 1 : 0; } ZT_PeerList *Node::peers() const { std::vector< std::pair< Address,SharedPtr > > peers(RR->topology->allPeers()); std::sort(peers.begin(),peers.end()); char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size())); if (!buf) return (ZT_PeerList *)0; ZT_PeerList *pl = (ZT_PeerList *)buf; pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList)); pl->peerCount = 0; for(std::vector< std::pair< Address,SharedPtr > >::iterator pi(peers.begin());pi!=peers.end();++pi) { ZT_Peer *p = &(pl->peers[pl->peerCount++]); p->address = pi->second->address().toInt(); p->isBonded = 0; if (pi->second->remoteVersionKnown()) { p->versionMajor = pi->second->remoteVersionMajor(); p->versionMinor = pi->second->remoteVersionMinor(); p->versionRev = pi->second->remoteVersionRevision(); } else { p->versionMajor = -1; p->versionMinor = -1; p->versionRev = -1; } p->latency = pi->second->latency(_now); if (p->latency >= 0xffff) p->latency = -1; p->role = RR->topology->role(pi->second->identity().address()); std::vector< SharedPtr > paths(pi->second->paths(_now)); SharedPtr bestp(pi->second->getAppropriatePath(_now,false)); p->pathCount = 0; for(std::vector< SharedPtr >::iterator path(paths.begin());path!=paths.end();++path) { memcpy(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage)); p->paths[p->pathCount].localSocket = (*path)->localSocket(); p->paths[p->pathCount].lastSend = (*path)->lastOut(); p->paths[p->pathCount].lastReceive = (*path)->lastIn(); p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address()); p->paths[p->pathCount].expired = 0; p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0; p->paths[p->pathCount].scope = (*path)->ipScope(); ++p->pathCount; } if (pi->second->bond()) { p->isBonded = pi->second->bond(); p->bondingPolicy = pi->second->bond()->policy(); p->isHealthy = pi->second->bond()->isHealthy(); p->numAliveLinks = pi->second->bond()->getNumAliveLinks(); p->numTotalLinks = pi->second->bond()->getNumTotalLinks(); } } return pl; } ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const { Mutex::Lock _l(_networks_m); const SharedPtr *nw = _networks.get(nwid); if (nw) { ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig)); (*nw)->externalConfig(nc); return nc; } return (ZT_VirtualNetworkConfig *)0; } ZT_VirtualNetworkList *Node::networks() const { Mutex::Lock _l(_networks_m); char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size())); if (!buf) return (ZT_VirtualNetworkList *)0; ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf; nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList)); nl->networkCount = 0; Hashtable< uint64_t,SharedPtr >::Iterator i(*const_cast< Hashtable< uint64_t,SharedPtr > *>(&_networks)); uint64_t *k = (uint64_t *)0; SharedPtr *v = (SharedPtr *)0; while (i.next(k,v)) (*v)->externalConfig(&(nl->networks[nl->networkCount++])); return nl; } void Node::freeQueryResult(void *qr) { if (qr) ::free(qr); } int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr) { if (Path::isAddressValidForPath(*(reinterpret_cast(addr)))) { Mutex::Lock _l(_directPaths_m); if (std::find(_directPaths.begin(),_directPaths.end(),*(reinterpret_cast(addr))) == _directPaths.end()) { _directPaths.push_back(*(reinterpret_cast(addr))); return 1; } } return 0; } void Node::clearLocalInterfaceAddresses() { Mutex::Lock _l(_directPaths_m); _directPaths.clear(); } int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len) { try { if (RR->identity.address().toInt() != dest) { Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE); outp.append(typeId); outp.append(data,len); outp.compress(); RR->sw->send(tptr,outp,true); return 1; } } catch ( ... ) {} return 0; } void Node::setNetconfMaster(void *networkControllerInstance) { RR->localNetworkController = reinterpret_cast(networkControllerInstance); if (networkControllerInstance) RR->localNetworkController->init(RR->identity,this); } /****************************************************************************/ /* Node methods used only within node/ */ /****************************************************************************/ bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Address &ztaddr,const int64_t localSocket,const InetAddress &remoteAddress) { if (!Path::isAddressValidForPath(remoteAddress)) return false; if (RR->topology->isProhibitedEndpoint(ztaddr,remoteAddress)) return false; { Mutex::Lock _l(_networks_m); Hashtable< uint64_t,SharedPtr >::Iterator i(_networks); uint64_t *k = (uint64_t *)0; SharedPtr *v = (SharedPtr *)0; while (i.next(k,v)) { if ((*v)->hasConfig()) { for(unsigned int k=0;k<(*v)->config().staticIpCount;++k) { if ((*v)->config().staticIps[k].containsAddress(remoteAddress)) return false; } } } } return ( (_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast(this),_uPtr,tPtr,ztaddr.toInt(),localSocket,reinterpret_cast(&remoteAddress)) != 0) : true); } uint64_t Node::prng() { // https://en.wikipedia.org/wiki/Xorshift#xorshift.2B uint64_t x = _prngState[0]; const uint64_t y = _prngState[1]; _prngState[0] = y; x ^= x << 23; const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26); _prngState[1] = z; return z + y; } ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig) { RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig); return ZT_RESULT_OK; } World Node::planet() const { return RR->topology->planet(); } std::vector Node::moons() const { return RR->topology->moons(); } void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig) { _localControllerAuthorizations_m.lock(); _localControllerAuthorizations[_LocalControllerAuth(nwid,destination)] = now(); _localControllerAuthorizations_m.unlock(); if (destination == RR->identity.address()) { SharedPtr n(network(nwid)); if (!n) return; n->setConfiguration((void *)0,nc,true); } else { Dictionary *dconf = new Dictionary(); try { if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) { uint64_t configUpdateId = prng(); if (!configUpdateId) ++configUpdateId; const unsigned int totalSize = dconf->sizeBytes(); unsigned int chunkIndex = 0; while (chunkIndex < totalSize) { const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256))); Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG); if (requestPacketId) { outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); } const unsigned int sigStart = outp.size(); outp.append(nwid); outp.append((uint16_t)chunkLen); outp.append((const void *)(dconf->data() + chunkIndex),chunkLen); outp.append((uint8_t)0); // no flags outp.append((uint64_t)configUpdateId); outp.append((uint32_t)totalSize); outp.append((uint32_t)chunkIndex); C25519::Signature sig(RR->identity.sign(reinterpret_cast(outp.data()) + sigStart,outp.size() - sigStart)); outp.append((uint8_t)1); outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN); outp.append(sig.data,ZT_C25519_SIGNATURE_LEN); outp.compress(); RR->sw->send((void *)0,outp,true); chunkIndex += chunkLen; } } delete dconf; } catch ( ... ) { delete dconf; throw; } } } void Node::ncSendRevocation(const Address &destination,const Revocation &rev) { if (destination == RR->identity.address()) { SharedPtr n(network(rev.networkId())); if (!n) return; n->addCredential((void *)0,RR->identity.address(),rev); } else { Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); outp.append((uint8_t)0x00); outp.append((uint16_t)0); outp.append((uint16_t)0); outp.append((uint16_t)1); rev.serialize(outp); outp.append((uint16_t)0); RR->sw->send((void *)0,outp,true); } } void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode, const void *errorData, unsigned int errorDataSize) { if (destination == RR->identity.address()) { SharedPtr n(network(nwid)); if (!n) return; switch(errorCode) { case NetworkController::NC_ERROR_OBJECT_NOT_FOUND: case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR: n->setNotFound(); break; case NetworkController::NC_ERROR_ACCESS_DENIED: n->setAccessDenied(); break; case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: { } break; default: break; } } else if (requestPacketId) { Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); switch(errorCode) { //case NetworkController::NC_ERROR_OBJECT_NOT_FOUND: //case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR: default: outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND); break; case NetworkController::NC_ERROR_ACCESS_DENIED: outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_); break; case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: outp.append((unsigned char)Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED); break; } outp.append(nwid); if ((errorData)&&(errorDataSize > 0)&&(errorDataSize <= 0xffff)) { outp.append((uint16_t)errorDataSize); outp.append(errorData, errorDataSize); } RR->sw->send((void *)0,outp,true); } // else we can't send an ERROR() in response to nothing, so discard } } // namespace ZeroTier /****************************************************************************/ /* CAPI bindings */ /****************************************************************************/ extern "C" { enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) { *node = (ZT_Node *)0; try { *node = reinterpret_cast(new ZeroTier::Node(uptr,tptr,callbacks,now)); return ZT_RESULT_OK; } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (std::runtime_error &exc) { return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_Node_delete(ZT_Node *node) { try { delete (reinterpret_cast(node)); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_processWirePacket( ZT_Node *node, void *tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile int64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up } } enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame( ZT_Node *node, void *tptr, int64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile int64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr) { try { return reinterpret_cast(node)->join(nwid,uptr,tptr); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr) { try { return reinterpret_cast(node)->leave(nwid,uptr,tptr); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed) { try { return reinterpret_cast(node)->orbit(tptr,moonWorldId,moonSeed); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId) { try { return reinterpret_cast(node)->deorbit(tptr,moonWorldId); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } uint64_t ZT_Node_address(ZT_Node *node) { return reinterpret_cast(node)->address(); } void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status) { try { reinterpret_cast(node)->status(status); } catch ( ... ) {} } ZT_PeerList *ZT_Node_peers(ZT_Node *node) { try { return reinterpret_cast(node)->peers(); } catch ( ... ) { return (ZT_PeerList *)0; } } ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->networkConfig(nwid); } catch ( ... ) { return (ZT_VirtualNetworkConfig *)0; } } ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node) { try { return reinterpret_cast(node)->networks(); } catch ( ... ) { return (ZT_VirtualNetworkList *)0; } } void ZT_Node_freeQueryResult(ZT_Node *node,void *qr) { try { reinterpret_cast(node)->freeQueryResult(qr); } catch ( ... ) {} } int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr) { try { return reinterpret_cast(node)->addLocalInterfaceAddress(addr); } catch ( ... ) { return 0; } } void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node) { try { reinterpret_cast(node)->clearLocalInterfaceAddresses(); } catch ( ... ) {} } int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len) { try { return reinterpret_cast(node)->sendUserMessage(tptr,dest,typeId,data,len); } catch ( ... ) { return 0; } } void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance) { try { reinterpret_cast(node)->setNetconfMaster(networkControllerInstance); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig) { try { return reinterpret_cast(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_version(int *major,int *minor,int *revision) { if (major) *major = ZEROTIER_ONE_VERSION_MAJOR; if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR; if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION; } } // extern "C"