/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #ifndef ZT_PHY_HPP #define ZT_PHY_HPP #include #include #include #include #include #if defined(_WIN32) || defined(_WIN64) #include #include #include #define ZT_PHY_SOCKFD_TYPE SOCKET #define ZT_PHY_SOCKFD_NULL (INVALID_SOCKET) #define ZT_PHY_SOCKFD_VALID(s) ((s) != INVALID_SOCKET) #define ZT_PHY_CLOSE_SOCKET(s) ::closesocket(s) #define ZT_PHY_MAX_SOCKETS (FD_SETSIZE) #define ZT_PHY_MAX_INTERCEPTS ZT_PHY_MAX_SOCKETS #define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage #else // not Windows #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux) #ifndef IPV6_DONTFRAG #define IPV6_DONTFRAG 62 #endif #endif #define ZT_PHY_SOCKFD_TYPE int #define ZT_PHY_SOCKFD_NULL (-1) #define ZT_PHY_SOCKFD_VALID(s) ((s) > -1) #define ZT_PHY_CLOSE_SOCKET(s) ::close(s) #define ZT_PHY_MAX_SOCKETS (FD_SETSIZE) #define ZT_PHY_MAX_INTERCEPTS ZT_PHY_MAX_SOCKETS #define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage #endif // Windows or not namespace ZeroTier { /** * Opaque socket type */ typedef void PhySocket; /** * Simple templated non-blocking sockets implementation * * Yes there is boost::asio and libuv, but I like small binaries and I hate * build dependencies. Both drag in a whole bunch of pasta with them. * * This class is templated on a pointer to a handler class which must * implement the following functions: * * For all platforms: * * phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len) * phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) * phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) * phyOnTcpClose(PhySocket *sock,void **uptr) * phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) * phyOnTcpWritable(PhySocket *sock,void **uptr) * phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) * * On Linux/OSX/Unix only (not required/used on Windows or elsewhere): * * phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) * phyOnUnixClose(PhySocket *sock,void **uptr) * phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) * phyOnUnixWritable(PhySocket *sock,void **uptr) * * These templates typically refer to function objects. Templates are used to * avoid the call overhead of indirection, which is surprisingly high for high * bandwidth applications pushing a lot of packets. * * The 'sock' pointer above is an opaque pointer to a socket. Each socket * has a 'uptr' user-settable/modifiable pointer associated with it, which * can be set on bind/connect calls and is passed as a void ** to permit * resetting at any time. The ACCEPT handler takes two sets of sock and * uptr: sockL and uptrL for the listen socket, and sockN and uptrN for * the new TCP connection socket that has just been created. * * Handlers are always called. On outgoing TCP connection, CONNECT is always * called on either success or failure followed by DATA and/or WRITABLE as * indicated. On socket close, handlers are called unless close() is told * explicitly not to call handlers. It is safe to close a socket within a * handler, and in that case close() can be told not to call handlers to * prevent recursion. * * This isn't thread-safe with the exception of whack(), which is safe to * call from another thread to abort poll(). */ template class Phy { private: HANDLER_PTR_TYPE _handler; enum PhySocketType { ZT_PHY_SOCKET_CLOSED = 0x00, // socket is closed, will be removed on next poll() ZT_PHY_SOCKET_TCP_OUT_PENDING = 0x01, ZT_PHY_SOCKET_TCP_OUT_CONNECTED = 0x02, ZT_PHY_SOCKET_TCP_IN = 0x03, ZT_PHY_SOCKET_TCP_LISTEN = 0x04, ZT_PHY_SOCKET_UDP = 0x05, ZT_PHY_SOCKET_FD = 0x06, ZT_PHY_SOCKET_UNIX_IN = 0x07, ZT_PHY_SOCKET_UNIX_LISTEN = 0x08 }; struct PhySocketImpl { PhySocketImpl() { memset(ifname, 0, sizeof(ifname)); } PhySocketType type; ZT_PHY_SOCKFD_TYPE sock; void *uptr; // user-settable pointer ZT_PHY_SOCKADDR_STORAGE_TYPE saddr; // remote for TCP_OUT and TCP_IN, local for TCP_LISTEN, RAW, and UDP char ifname[16]; }; std::list _socks; fd_set _readfds; fd_set _writefds; #if defined(_WIN32) || defined(_WIN64) fd_set _exceptfds; #endif long _nfds; ZT_PHY_SOCKFD_TYPE _whackReceiveSocket; ZT_PHY_SOCKFD_TYPE _whackSendSocket; bool _noDelay; bool _noCheck; public: /** * @param handler Pointer of type HANDLER_PTR_TYPE to handler * @param noDelay If true, disable TCP NAGLE algorithm on TCP sockets * @param noCheck If true, attempt to set UDP SO_NO_CHECK option to disable sending checksums */ Phy(HANDLER_PTR_TYPE handler,bool noDelay,bool noCheck) : _handler(handler) { FD_ZERO(&_readfds); FD_ZERO(&_writefds); #if defined(_WIN32) || defined(_WIN64) FD_ZERO(&_exceptfds); SOCKET pipes[2]; { // hack copied from StackOverflow, behaves a bit like pipe() on *nix systems struct sockaddr_in inaddr; struct sockaddr addr; SOCKET lst=::socket(AF_INET, SOCK_STREAM,IPPROTO_TCP); if (lst == INVALID_SOCKET) throw std::runtime_error("unable to create pipes for select() abort"); memset(&inaddr, 0, sizeof(inaddr)); memset(&addr, 0, sizeof(addr)); inaddr.sin_family = AF_INET; inaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); inaddr.sin_port = 0; int yes=1; setsockopt(lst,SOL_SOCKET,SO_REUSEADDR,(char*)&yes,sizeof(yes)); bind(lst,(struct sockaddr *)&inaddr,sizeof(inaddr)); listen(lst,1); int len=sizeof(inaddr); getsockname(lst, &addr,&len); pipes[0]=::socket(AF_INET, SOCK_STREAM,0); if (pipes[0] == INVALID_SOCKET) throw std::runtime_error("unable to create pipes for select() abort"); connect(pipes[0],&addr,len); pipes[1]=accept(lst,0,0); closesocket(lst); } #else // not Windows int pipes[2]; if (::pipe(pipes)) throw std::runtime_error("unable to create pipes for select() abort"); #endif // Windows or not _nfds = (pipes[0] > pipes[1]) ? (long)pipes[0] : (long)pipes[1]; _whackReceiveSocket = pipes[0]; _whackSendSocket = pipes[1]; _noDelay = noDelay; _noCheck = noCheck; } ~Phy() { for(typename std::list::const_iterator s(_socks.begin());s!=_socks.end();++s) { if (s->type != ZT_PHY_SOCKET_CLOSED) this->close((PhySocket *)&(*s),true); } ZT_PHY_CLOSE_SOCKET(_whackReceiveSocket); ZT_PHY_CLOSE_SOCKET(_whackSendSocket); } /** * @param s Socket object * @return Underlying OS-type (usually int or long) file descriptor associated with object */ static inline ZT_PHY_SOCKFD_TYPE getDescriptor(PhySocket *s) throw() { return reinterpret_cast(s)->sock; } /** * @param s Socket object * @return Pointer to user object */ static inline void** getuptr(PhySocket *s) throw() { return &(reinterpret_cast(s)->uptr); } /** * @param s Socket object * @param nameBuf Buffer to store name of interface which this Socket object is bound to * @param buflen Length of buffer to copy name into */ static inline void getIfName(PhySocket *s, char *nameBuf, int buflen) { if (s) { memcpy(nameBuf, reinterpret_cast(s)->ifname, buflen); } } /** * @param s Socket object * @param ifname Buffer containing name of interface that this Socket object is bound to * @param len Length of name of interface */ static inline void setIfName(PhySocket *s, char *ifname, int len) { if (s) { memcpy(&(reinterpret_cast(s)->ifname), ifname, len); } } /** * Whether or not the socket object is in a closed state * * @param s Socket object * @return true if socket is closed, false if otherwise */ inline bool isClosed(PhySocket *s) { PhySocketImpl *sws = (reinterpret_cast(s)); return sws->type == ZT_PHY_SOCKET_CLOSED; } /** * Get state of socket object * * @param s Socket object * @return State of socket */ inline int getState(PhySocket *s) { PhySocketImpl *sws = (reinterpret_cast(s)); return sws->type; } /** * In the event that this socket is erased, we need a way to convey to the multipath logic * that this path is no longer valid. * * @param s Socket object * @return Whether the state of this socket is within an acceptable range of values */ inline bool isValidState(PhySocket *s) { if (s) { PhySocketImpl *sws = (reinterpret_cast(s)); return sws->type >= ZT_PHY_SOCKET_CLOSED && sws->type <= ZT_PHY_SOCKET_UNIX_LISTEN; } return false; } /** * Cause poll() to stop waiting immediately * * This can be used to reset the polling loop after changes that require * attention, or to shut down a background thread that is waiting, etc. */ inline void whack() { #if defined(_WIN32) || defined(_WIN64) ::send(_whackSendSocket,(const char *)this,1,0); #else (void)(::write(_whackSendSocket,(PhySocket *)this,1)); #endif } /** * @return Number of open sockets */ inline unsigned long count() const throw() { return _socks.size(); } /** * @return Maximum number of sockets allowed */ inline unsigned long maxCount() const throw() { return ZT_PHY_MAX_SOCKETS; } /** * Wrap a raw file descriptor in a PhySocket structure * * This can be used to select/poll on a raw file descriptor as part of this * class's I/O loop. By default the fd is set for read notification but * this can be controlled with setNotifyReadable(). When any detected * condition is present, the phyOnFileDescriptorActivity() callback is * called with one or both of its arguments 'true'. * * The Phy<>::close() method *must* be called when you're done with this * file descriptor to remove it from the select/poll set, but unlike other * types of sockets Phy<> does not actually close the underlying fd or * otherwise manage its life cycle. There is also no close notification * callback for this fd, since Phy<> doesn't actually perform reading or * writing or detect error conditions. This is only useful for adding a * file descriptor to Phy<> to select/poll on it. * * @param fd Raw file descriptor * @param uptr User pointer to supply to callbacks * @return PhySocket wrapping fd or NULL on failure (out of memory or too many sockets) */ inline PhySocket *wrapSocket(ZT_PHY_SOCKFD_TYPE fd,void *uptr = (void *)0) { if (_socks.size() >= ZT_PHY_MAX_SOCKETS) return (PhySocket *)0; try { _socks.push_back(PhySocketImpl()); } catch ( ... ) { return (PhySocket *)0; } PhySocketImpl &sws = _socks.back(); if ((long)fd > _nfds) _nfds = (long)fd; FD_SET(fd,&_readfds); sws.type = ZT_PHY_SOCKET_UNIX_IN; /* TODO: Type was changed to allow for CBs with new RPC model */ sws.sock = fd; sws.uptr = uptr; memset(&(sws.saddr),0,sizeof(struct sockaddr_storage)); // no sockaddr for this socket type, leave saddr null return (PhySocket *)&sws; } /** * Bind a UDP socket * * @param localAddress Local endpoint address and port * @param uptr Initial value of user pointer associated with this socket (default: NULL) * @param bufferSize Desired socket receive/send buffer size -- will set as close to this as possible (default: 0, leave alone) * @return Socket or NULL on failure to bind */ inline PhySocket *udpBind(const struct sockaddr *localAddress,void *uptr = (void *)0,int bufferSize = 0) { if (_socks.size() >= ZT_PHY_MAX_SOCKETS) return (PhySocket *)0; ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_DGRAM,0); if (!ZT_PHY_SOCKFD_VALID(s)) return (PhySocket *)0; if (bufferSize > 0) { int bs = bufferSize; while (bs >= 65536) { int tmpbs = bs; if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0) break; bs -= 16384; } bs = bufferSize; while (bs >= 65536) { int tmpbs = bs; if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0) break; bs -= 16384; } } #if defined(_WIN32) || defined(_WIN64) { BOOL f; if (localAddress->sa_family == AF_INET6) { f = TRUE; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f)); f = FALSE; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,(const char *)&f,sizeof(f)); } f = FALSE; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f)); f = TRUE; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char *)&f,sizeof(f)); } #else // not Windows { int f; if (localAddress->sa_family == AF_INET6) { f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); #ifdef IPV6_MTU_DISCOVER f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f)); #endif #ifdef IPV6_DONTFRAG f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f)); #endif } f = 0; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f)); f = 1; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(void *)&f,sizeof(f)); #ifdef IP_DONTFRAG f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f)); #endif #ifdef IP_MTU_DISCOVER f = 0; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f)); #endif #ifdef SO_NO_CHECK // For now at least we only set SO_NO_CHECK on IPv4 sockets since some // IPv6 stacks incorrectly discard zero checksum packets. May remove // this restriction later once broken stuff dies more. if ((localAddress->sa_family == AF_INET)&&(_noCheck)) { f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f)); } #endif } #endif // Windows or not if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } #if defined(_WIN32) || defined(_WIN64) { u_long iMode=1; ioctlsocket(s,FIONBIO,&iMode); } #else fcntl(s,F_SETFL,O_NONBLOCK); #endif try { _socks.push_back(PhySocketImpl()); } catch ( ... ) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } PhySocketImpl &sws = _socks.back(); if ((long)s > _nfds) _nfds = (long)s; FD_SET(s,&_readfds); sws.type = ZT_PHY_SOCKET_UDP; sws.sock = s; sws.uptr = uptr; memset(&(sws.saddr),0,sizeof(struct sockaddr_storage)); memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)); return (PhySocket *)&sws; } /** * Set the IP TTL for the next outgoing packet (for IPv4 UDP sockets only) * * @param ttl New TTL (0 or >255 will set it to 255) * @return True on success */ inline bool setIp4UdpTtl(PhySocket *sock,unsigned int ttl) { PhySocketImpl &sws = *(reinterpret_cast(sock)); #if defined(_WIN32) || defined(_WIN64) DWORD tmp = ((ttl == 0)||(ttl > 255)) ? 255 : (DWORD)ttl; return (::setsockopt(sws.sock,IPPROTO_IP,IP_TTL,(const char *)&tmp,sizeof(tmp)) == 0); #else int tmp = ((ttl == 0)||(ttl > 255)) ? 255 : (int)ttl; return (::setsockopt(sws.sock,IPPROTO_IP,IP_TTL,(void *)&tmp,sizeof(tmp)) == 0); #endif } /** * Send a UDP packet * * @param sock UDP socket * @param remoteAddress Destination address (must be correct type for socket) * @param data Data to send * @param len Length of packet * @return True if packet appears to have been sent successfully */ inline bool udpSend(PhySocket *sock,const struct sockaddr *remoteAddress,const void *data,unsigned long len) { PhySocketImpl &sws = *(reinterpret_cast(sock)); #if defined(_WIN32) || defined(_WIN64) return ((long)::sendto(sws.sock,reinterpret_cast(data),len,0,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)) == (long)len); #else return ((long)::sendto(sws.sock,data,len,0,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)) == (long)len); #endif } #ifdef __UNIX_LIKE__ /** * Listen for connections on a Unix domain socket * * @param path Path to Unix domain socket * @param uptr Arbitrary pointer to associate * @return PhySocket or NULL if cannot bind */ inline PhySocket *unixListen(const char *path,void *uptr = (void *)0) { struct sockaddr_un sun; if (_socks.size() >= ZT_PHY_MAX_SOCKETS) return (PhySocket *)0; memset(&sun,0,sizeof(sun)); sun.sun_family = AF_UNIX; if (strlen(path) >= sizeof(sun.sun_path)) return (PhySocket *)0; strcpy(sun.sun_path,path); ZT_PHY_SOCKFD_TYPE s = ::socket(PF_UNIX,SOCK_STREAM,0); if (!ZT_PHY_SOCKFD_VALID(s)) return (PhySocket *)0; ::fcntl(s,F_SETFL,O_NONBLOCK); ::unlink(path); if (::bind(s,(struct sockaddr *)&sun,sizeof(struct sockaddr_un)) != 0) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } if (::listen(s,128) != 0) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } try { _socks.push_back(PhySocketImpl()); } catch ( ... ) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } PhySocketImpl &sws = _socks.back(); if ((long)s > _nfds) _nfds = (long)s; FD_SET(s,&_readfds); sws.type = ZT_PHY_SOCKET_UNIX_LISTEN; sws.sock = s; sws.uptr = uptr; memset(&(sws.saddr),0,sizeof(struct sockaddr_storage)); memcpy(&(sws.saddr),&sun,sizeof(struct sockaddr_un)); return (PhySocket *)&sws; } #endif // __UNIX_LIKE__ /** * Bind a local listen socket to listen for new TCP connections * * @param localAddress Local address and port * @param uptr Initial value of uptr for new socket (default: NULL) * @return Socket or NULL on failure to bind */ inline PhySocket *tcpListen(const struct sockaddr *localAddress,void *uptr = (void *)0) { if (_socks.size() >= ZT_PHY_MAX_SOCKETS) return (PhySocket *)0; ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_STREAM,0); if (!ZT_PHY_SOCKFD_VALID(s)) return (PhySocket *)0; #if defined(_WIN32) || defined(_WIN64) { BOOL f; f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f)); f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f)); f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); u_long iMode=1; ioctlsocket(s,FIONBIO,&iMode); } #else { int f; f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f)); f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); fcntl(s,F_SETFL,O_NONBLOCK); } #endif if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } if (::listen(s,1024)) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } try { _socks.push_back(PhySocketImpl()); } catch ( ... ) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } PhySocketImpl &sws = _socks.back(); if ((long)s > _nfds) _nfds = (long)s; FD_SET(s,&_readfds); sws.type = ZT_PHY_SOCKET_TCP_LISTEN; sws.sock = s; sws.uptr = uptr; memset(&(sws.saddr),0,sizeof(struct sockaddr_storage)); memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)); return (PhySocket *)&sws; } /** * Start a non-blocking connect; CONNECT handler is called on success or failure * * A return value of NULL indicates a synchronous failure such as a * failure to open a socket. The TCP connection handler is not called * in this case. * * It is possible on some platforms for an "instant connect" to occur, * such as when connecting to a loopback address. In this case, the * 'connected' result parameter will be set to 'true' and if the * 'callConnectHandler' flag is true (the default) the TCP connect * handler will be called before the function returns. * * These semantics can be a bit confusing, but they're less so than * the underlying semantics of asynchronous TCP connect. * * @param remoteAddress Remote address * @param connected Result parameter: set to whether an "instant connect" has occurred (true if yes) * @param uptr Initial value of uptr for new socket (default: NULL) * @param callConnectHandler If true, call TCP connect handler even if result is known before function exit (default: true) * @return New socket or NULL on failure */ inline PhySocket *tcpConnect(const struct sockaddr *remoteAddress,bool &connected,void *uptr = (void *)0,bool callConnectHandler = true) { if (_socks.size() >= ZT_PHY_MAX_SOCKETS) return (PhySocket *)0; ZT_PHY_SOCKFD_TYPE s = ::socket(remoteAddress->sa_family,SOCK_STREAM,0); if (!ZT_PHY_SOCKFD_VALID(s)) { connected = false; return (PhySocket *)0; } #if defined(_WIN32) || defined(_WIN64) { BOOL f; if (remoteAddress->sa_family == AF_INET6) { f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f)); } f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f)); f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); u_long iMode=1; ioctlsocket(s,FIONBIO,&iMode); } #else { int f; if (remoteAddress->sa_family == AF_INET6) { f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); } f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f)); f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); fcntl(s,F_SETFL,O_NONBLOCK); } #endif connected = true; if (::connect(s,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) { connected = false; #if defined(_WIN32) || defined(_WIN64) if (WSAGetLastError() != WSAEWOULDBLOCK) { #else if (errno != EINPROGRESS) { #endif ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } // else connection is proceeding asynchronously... } try { _socks.push_back(PhySocketImpl()); } catch ( ... ) { ZT_PHY_CLOSE_SOCKET(s); return (PhySocket *)0; } PhySocketImpl &sws = _socks.back(); if ((long)s > _nfds) _nfds = (long)s; if (connected) { FD_SET(s,&_readfds); sws.type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED; } else { FD_SET(s,&_writefds); #if defined(_WIN32) || defined(_WIN64) FD_SET(s,&_exceptfds); #endif sws.type = ZT_PHY_SOCKET_TCP_OUT_PENDING; } sws.sock = s; sws.uptr = uptr; memset(&(sws.saddr),0,sizeof(struct sockaddr_storage)); memcpy(&(sws.saddr),remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)); if ((callConnectHandler)&&(connected)) { try { _handler->phyOnTcpConnect((PhySocket *)&sws,&(sws.uptr),true); } catch ( ... ) {} } return (PhySocket *)&sws; } /** * Try to set buffer sizes as close to the given value as possible * * This will try the specified value and then lower values in 16K increments * until one works. * * @param sock Socket * @param receiveBufferSize Desired size of receive buffer * @param sendBufferSize Desired size of send buffer */ inline void setBufferSizes(const PhySocket *sock,int receiveBufferSize,int sendBufferSize) { PhySocketImpl &sws = *(reinterpret_cast(sock)); if (receiveBufferSize > 0) { while (receiveBufferSize > 0) { int tmpbs = receiveBufferSize; if (::setsockopt(sws.sock,SOL_SOCKET,SO_RCVBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0) break; receiveBufferSize -= 16384; } } if (sendBufferSize > 0) { while (sendBufferSize > 0) { int tmpbs = sendBufferSize; if (::setsockopt(sws.sock,SOL_SOCKET,SO_SNDBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0) break; sendBufferSize -= 16384; } } } /** * Attempt to send data to a stream socket (non-blocking) * * If -1 is returned, the socket should no longer be used as it is now * destroyed. If callCloseHandler is true, the close handler will be * called before the function returns. * * This can be used with TCP, Unix, or socket pair sockets. * * @param sock An open stream socket (other socket types will fail) * @param data Data to send * @param len Length of data * @param callCloseHandler If true, call close handler on socket closing failure condition (default: true) * @return Number of bytes actually sent or -1 on fatal error (socket closure) */ inline long streamSend(PhySocket *sock,const void *data,unsigned long len,bool callCloseHandler = true) { PhySocketImpl &sws = *(reinterpret_cast(sock)); #if defined(_WIN32) || defined(_WIN64) long n = (long)::send(sws.sock,reinterpret_cast(data),len,0); if (n == SOCKET_ERROR) { switch(WSAGetLastError()) { case WSAEINTR: case WSAEWOULDBLOCK: return 0; default: this->close(sock,callCloseHandler); return -1; } } #else // not Windows long n = (long)::send(sws.sock,data,len,0); if (n < 0) { switch(errno) { #ifdef EAGAIN case EAGAIN: #endif #if defined(EWOULDBLOCK) && ( !defined(EAGAIN) || (EWOULDBLOCK != EAGAIN) ) case EWOULDBLOCK: #endif #ifdef EINTR case EINTR: #endif return 0; default: this->close(sock,callCloseHandler); return -1; } } #endif // Windows or not return n; } #ifdef __UNIX_LIKE__ /** * Attempt to send data to a Unix domain socket connection (non-blocking) * * If -1 is returned, the socket should no longer be used as it is now * destroyed. If callCloseHandler is true, the close handler will be * called before the function returns. * * @param sock An open Unix socket (other socket types will fail) * @param data Data to send * @param len Length of data * @param callCloseHandler If true, call close handler on socket closing failure condition (default: true) * @return Number of bytes actually sent or -1 on fatal error (socket closure) */ inline long unixSend(PhySocket *sock,const void *data,unsigned long len,bool callCloseHandler = true) { PhySocketImpl &sws = *(reinterpret_cast(sock)); long n = (long)::write(sws.sock,data,len); if (n < 0) { switch(errno) { #ifdef EAGAIN case EAGAIN: #endif #if defined(EWOULDBLOCK) && ( !defined(EAGAIN) || (EWOULDBLOCK != EAGAIN) ) case EWOULDBLOCK: #endif #ifdef EINTR case EINTR: #endif return 0; default: this->close(sock,callCloseHandler); return -1; } } return n; } #endif // __UNIX_LIKE__ /** * For streams, sets whether we want to be notified that the socket is writable * * This can be used with TCP, Unix, or socket pair sockets. * * Call whack() if this is being done from another thread and you want * it to take effect immediately. Otherwise it is only guaranteed to * take effect on the next poll(). * * @param sock Stream connection socket * @param notifyWritable Want writable notifications? */ inline void setNotifyWritable(PhySocket *sock,bool notifyWritable) { PhySocketImpl &sws = *(reinterpret_cast(sock)); if (notifyWritable) { FD_SET(sws.sock,&_writefds); } else { FD_CLR(sws.sock,&_writefds); } } /** * Set whether we want to be notified that a socket is readable * * This is primarily for raw sockets added with wrapSocket(). It could be * used with others, but doing so would essentially lock them and prevent * data from being read from them until this is set to 'true' again. * * @param sock Socket to modify * @param notifyReadable True if socket should be monitored for readability */ inline void setNotifyReadable(PhySocket *sock,bool notifyReadable) { PhySocketImpl &sws = *(reinterpret_cast(sock)); if (notifyReadable) { FD_SET(sws.sock,&_readfds); } else { FD_CLR(sws.sock,&_readfds); } } /** * Wait for activity and handle one or more events * * Note that this is not guaranteed to wait up to 'timeout' even * if nothing happens, as whack() or other events such as signals * may cause premature termination. * * @param timeout Timeout in milliseconds or 0 for none (forever) */ inline void poll(unsigned long timeout) { char buf[131072]; struct sockaddr_storage ss; struct timeval tv; fd_set rfds,wfds,efds; memcpy(&rfds,&_readfds,sizeof(rfds)); memcpy(&wfds,&_writefds,sizeof(wfds)); #if defined(_WIN32) || defined(_WIN64) memcpy(&efds,&_exceptfds,sizeof(efds)); #else FD_ZERO(&efds); #endif tv.tv_sec = (long)(timeout / 1000); tv.tv_usec = (long)((timeout % 1000) * 1000); if (::select((int)_nfds + 1,&rfds,&wfds,&efds,(timeout > 0) ? &tv : (struct timeval *)0) <= 0) return; if (FD_ISSET(_whackReceiveSocket,&rfds)) { char tmp[16]; #if defined(_WIN32) || defined(_WIN64) ::recv(_whackReceiveSocket,tmp,16,0); #else ::read(_whackReceiveSocket,tmp,16); #endif } for(typename std::list::iterator s(_socks.begin());s!=_socks.end();) { switch (s->type) { case ZT_PHY_SOCKET_TCP_OUT_PENDING: #if defined(_WIN32) || defined(_WIN64) if (FD_ISSET(s->sock,&efds)) { this->close((PhySocket *)&(*s),true); } else // ... if #endif if (FD_ISSET(s->sock,&wfds)) { socklen_t slen = sizeof(ss); if (::getpeername(s->sock,(struct sockaddr *)&ss,&slen) != 0) { this->close((PhySocket *)&(*s),true); } else { s->type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED; FD_SET(s->sock,&_readfds); FD_CLR(s->sock,&_writefds); #if defined(_WIN32) || defined(_WIN64) FD_CLR(s->sock,&_exceptfds); #endif try { _handler->phyOnTcpConnect((PhySocket *)&(*s),&(s->uptr),true); } catch ( ... ) {} } } break; case ZT_PHY_SOCKET_TCP_OUT_CONNECTED: case ZT_PHY_SOCKET_TCP_IN: { ZT_PHY_SOCKFD_TYPE sock = s->sock; // if closed, s->sock becomes invalid as s is no longer dereferencable if (FD_ISSET(sock,&rfds)) { long n = (long)::recv(sock,buf,sizeof(buf),0); if (n <= 0) { this->close((PhySocket *)&(*s),true); } else { try { _handler->phyOnTcpData((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n); } catch ( ... ) {} } } if ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))) { try { _handler->phyOnTcpWritable((PhySocket *)&(*s),&(s->uptr)); } catch ( ... ) {} } } break; case ZT_PHY_SOCKET_TCP_LISTEN: if (FD_ISSET(s->sock,&rfds)) { memset(&ss,0,sizeof(ss)); socklen_t slen = sizeof(ss); ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen); if (ZT_PHY_SOCKFD_VALID(newSock)) { if (_socks.size() >= ZT_PHY_MAX_SOCKETS) { ZT_PHY_CLOSE_SOCKET(newSock); } else { #if defined(_WIN32) || defined(_WIN64) { BOOL f = (_noDelay ? TRUE : FALSE); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); } { u_long iMode=1; ioctlsocket(newSock,FIONBIO,&iMode); } #else { int f = (_noDelay ? 1 : 0); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); } fcntl(newSock,F_SETFL,O_NONBLOCK); #endif _socks.push_back(PhySocketImpl()); PhySocketImpl &sws = _socks.back(); FD_SET(newSock,&_readfds); if ((long)newSock > _nfds) _nfds = (long)newSock; sws.type = ZT_PHY_SOCKET_TCP_IN; sws.sock = newSock; sws.uptr = (void *)0; memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage)); try { _handler->phyOnTcpAccept((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr),(const struct sockaddr *)&(sws.saddr)); } catch ( ... ) {} } } } break; case ZT_PHY_SOCKET_UDP: if (FD_ISSET(s->sock,&rfds)) { for(int k=0;k<1024;++k) { memset(&ss,0,sizeof(ss)); socklen_t slen = sizeof(ss); long n = (long)::recvfrom(s->sock,buf,sizeof(buf),0,(struct sockaddr *)&ss,&slen); if (n > 0) { try { _handler->phyOnDatagram((PhySocket *)&(*s),&(s->uptr),(const struct sockaddr *)&(s->saddr),(const struct sockaddr *)&ss,(void *)buf,(unsigned long)n); } catch ( ... ) {} } else if (n < 0) break; } } break; case ZT_PHY_SOCKET_UNIX_IN: { #ifdef __UNIX_LIKE__ ZT_PHY_SOCKFD_TYPE sock = s->sock; // if closed, s->sock becomes invalid as s is no longer dereferencable if ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))) { try { _handler->phyOnUnixWritable((PhySocket *)&(*s),&(s->uptr)); } catch ( ... ) {} } if (FD_ISSET(sock,&rfds)) { long n = (long)::read(sock,buf,sizeof(buf)); if (n <= 0) { this->close((PhySocket *)&(*s),true); } else { try { _handler->phyOnUnixData((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n); } catch ( ... ) {} } } #endif // __UNIX_LIKE__ } break; case ZT_PHY_SOCKET_UNIX_LISTEN: #ifdef __UNIX_LIKE__ if (FD_ISSET(s->sock,&rfds)) { memset(&ss,0,sizeof(ss)); socklen_t slen = sizeof(ss); ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen); if (ZT_PHY_SOCKFD_VALID(newSock)) { if (_socks.size() >= ZT_PHY_MAX_SOCKETS) { ZT_PHY_CLOSE_SOCKET(newSock); } else { fcntl(newSock,F_SETFL,O_NONBLOCK); _socks.push_back(PhySocketImpl()); PhySocketImpl &sws = _socks.back(); FD_SET(newSock,&_readfds); if ((long)newSock > _nfds) _nfds = (long)newSock; sws.type = ZT_PHY_SOCKET_UNIX_IN; sws.sock = newSock; sws.uptr = (void *)0; memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage)); try { //_handler->phyOnUnixAccept((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr)); } catch ( ... ) {} } } } #endif // __UNIX_LIKE__ break; case ZT_PHY_SOCKET_FD: { ZT_PHY_SOCKFD_TYPE sock = s->sock; const bool readable = ((FD_ISSET(sock,&rfds))&&(FD_ISSET(sock,&_readfds))); const bool writable = ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))); if ((readable)||(writable)) { try { //_handler->phyOnFileDescriptorActivity((PhySocket *)&(*s),&(s->uptr),readable,writable); } catch ( ... ) {} } } break; default: break; } if (s->type == ZT_PHY_SOCKET_CLOSED) _socks.erase(s++); else ++s; } } /** * @param sock Socket to close * @param callHandlers If true, call handlers for TCP connect (success: false) or close (default: true) */ inline void close(PhySocket *sock,bool callHandlers = true) { if (!sock) return; PhySocketImpl &sws = *(reinterpret_cast(sock)); if (sws.type == ZT_PHY_SOCKET_CLOSED) return; FD_CLR(sws.sock,&_readfds); FD_CLR(sws.sock,&_writefds); #if defined(_WIN32) || defined(_WIN64) FD_CLR(sws.sock,&_exceptfds); #endif if (sws.type != ZT_PHY_SOCKET_FD) ZT_PHY_CLOSE_SOCKET(sws.sock); #ifdef __UNIX_LIKE__ if (sws.type == ZT_PHY_SOCKET_UNIX_LISTEN) ::unlink(((struct sockaddr_un *)(&(sws.saddr)))->sun_path); #endif // __UNIX_LIKE__ if (callHandlers) { switch(sws.type) { case ZT_PHY_SOCKET_TCP_OUT_PENDING: try { _handler->phyOnTcpConnect(sock,&(sws.uptr),false); } catch ( ... ) {} break; case ZT_PHY_SOCKET_TCP_OUT_CONNECTED: case ZT_PHY_SOCKET_TCP_IN: try { _handler->phyOnTcpClose(sock,&(sws.uptr)); } catch ( ... ) {} break; case ZT_PHY_SOCKET_UNIX_IN: #ifdef __UNIX_LIKE__ try { _handler->phyOnUnixClose(sock,&(sws.uptr)); } catch ( ... ) {} #endif // __UNIX_LIKE__ break; default: break; } } // Causes entry to be deleted from list in poll(), ignored elsewhere sws.type = ZT_PHY_SOCKET_CLOSED; if ((long)sws.sock >= (long)_nfds) { long nfds = (long)_whackSendSocket; if ((long)_whackReceiveSocket > nfds) nfds = (long)_whackReceiveSocket; for(typename std::list::iterator s(_socks.begin());s!=_socks.end();++s) { if ((s->type != ZT_PHY_SOCKET_CLOSED)&&((long)s->sock > nfds)) nfds = (long)s->sock; } _nfds = nfds; } } }; } // namespace ZeroTier #endif