/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include "../node/Constants.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../node/Packet.hpp" #include "../node/Utils.hpp" #include "../node/Address.hpp" #include "../node/Identity.hpp" #include "../node/InetAddress.hpp" #include "../node/Mutex.hpp" #include "../node/SharedPtr.hpp" #include "../node/MulticastGroup.hpp" #include "../osdep/OSUtils.hpp" #include #include #include #include #include #include #include #include #include #include #include using namespace ZeroTier; struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity &id) const { return (std::size_t)id.hashCode(); } }; struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address &a) const { return (std::size_t)a.toInt(); } }; struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress &ip) const { return (std::size_t)ip.hashCode(); } }; struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup &mg) const { return (std::size_t)mg.hashCode(); } }; struct PeerInfo { Identity id; uint8_t key[32]; InetAddress ip4,ip6; int64_t lastReceive; AtomicCounter __refCount; ZT_ALWAYS_INLINE ~PeerInfo() { Utils::burn(key,sizeof(key)); } }; static Identity self; static std::atomic_bool run; static std::vector< SharedPtr > newPeers; static std::unordered_map< uint64_t,std::unordered_map< MulticastGroup,std::unordered_map< Address,int64_t,AddressHasher >,MulticastGroupHasher > > multicastSubscriptions; static std::unordered_map< Identity,SharedPtr,IdentityHasher > peersByIdentity; static std::unordered_map< Address,std::set< SharedPtr >,AddressHasher > peersByVirtAddr; static std::unordered_map< InetAddress,std::set< SharedPtr >,InetAddressHasher > peersByPhysAddr; static std::mutex newPeers_l; static std::mutex multicastSubscriptions_l; static std::mutex peersByIdentity_l; static std::mutex peersByVirtAddr_l; static std::mutex peersByPhysAddr_l; static void handlePacket(const int sock,const InetAddress *const ip,Packet &pkt) { char ipstr[128],ipstr2[128],astr[32],tmpstr[256]; const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR; // See if this is destined for us and isn't a fragment / fragmented. (No packets // understood by the root are fragments/fragmented.) if ((!fragment)&&(!pkt.fragmented())&&(pkt.destination() == self.address())) { SharedPtr peer; // If this is an un-encrypted HELLO, either learn a new peer or verify // that this is a peer we already know. if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(pkt.verb() == Packet::VERB_HELLO)) { Identity id; if (id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) { { std::lock_guard pbi_l(peersByIdentity_l); auto pById = peersByIdentity.find(id); if (pById != peersByIdentity.end()) { peer = pById->second; //printf("%s has %s (known (1))" ZT_EOL_S,ip->toString(ipstr),pkt.source().toString(astr)); } } if (peer) { if (!pkt.dearmor(peer->key)) { printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr)); return; } } else { peer.set(new PeerInfo); if (self.agree(id,peer->key)) { if (pkt.dearmor(peer->key)) { peer->id = id; { std::lock_guard np_l(newPeers_l); newPeers.push_back(peer); } { std::lock_guard pbi_l(peersByIdentity_l); peersByIdentity.emplace(id,peer); } { std::lock_guard pbv_l(peersByVirtAddr_l); peersByVirtAddr[id.address()].emplace(peer); } } else { printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr)); return; } } else { printf("%s HELLO rejected: key agreement failed" ZT_EOL_S,ip->toString(ipstr)); return; } } } } // If it wasn't a HELLO, check to see if any known identities for the sender's // short ZT address successfully decrypt the packet. if (!peer) { std::lock_guard pbv_l(peersByVirtAddr_l); auto peers = peersByVirtAddr.find(pkt.source()); if (peers != peersByVirtAddr.end()) { for(auto p=peers->second.begin();p!=peers->second.end();++p) { if (pkt.dearmor((*p)->key)) { peer = (*p); //printf("%s has %s (known (2))" ZT_EOL_S,ip->toString(ipstr),pkt.source().toString(astr)); break; } } } } // If we found the peer, update IP and/or time. if (peer) { InetAddress *const peerIp = (ip->ss_family == AF_INET) ? &(peer->ip4) : &(peer->ip6); if (*peerIp != ip) { std::lock_guard pbp_l(peersByPhysAddr_l); if (*peerIp) { auto prev = peersByPhysAddr.find(*peerIp); if (prev != peersByPhysAddr.end()) { prev->second.erase(peer); if (prev->second.empty()) peersByPhysAddr.erase(prev); } } *peerIp = ip; peersByPhysAddr[ip].emplace(peer); } const int64_t now = OSUtils::now(); peer->lastReceive = now; switch(pkt.verb()) { case Packet::VERB_HELLO: { const uint64_t origId = pkt.packetId(); const uint64_t ts = pkt.template at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); pkt.reset(pkt.source(),self.address(),Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_HELLO); pkt.append(origId); pkt.append(ts); pkt.append((uint8_t)ZT_PROTO_VERSION); pkt.append((uint8_t)0); pkt.append((uint8_t)0); pkt.append((uint16_t)0); ip->serialize(pkt); pkt.armor(peer->key,true); sendto(sock,pkt.data(),pkt.size(),0,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); //printf("%s <- OK(HELLO)" ZT_EOL_S,ip->toString(ipstr)); } break; case Packet::VERB_MULTICAST_LIKE: { std::lock_guard l(multicastSubscriptions_l); for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+18)<=pkt.size();ptr+=18) { const uint64_t nwid = pkt.template at(ptr); const MulticastGroup mg(MAC(pkt.field(ptr + 8,6),6),pkt.template at(ptr + 14)); multicastSubscriptions[nwid][mg][peer->id.address()] = now; //printf("%s subscribes to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid); } } break; case Packet::VERB_MULTICAST_GATHER: { const uint64_t nwid = pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID); const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS]; const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI)); unsigned int gatherLimit = pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT); if (gatherLimit > 255) gatherLimit = 255; const uint64_t origId = pkt.packetId(); pkt.reset(pkt.source(),self.address(),Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER); pkt.append(origId); pkt.append(nwid); mg.mac().appendTo(pkt); pkt.append((uint32_t)mg.adi()); { std::lock_guard l(multicastSubscriptions_l); auto forNet = multicastSubscriptions.find(nwid); if (forNet != multicastSubscriptions.end()) { auto forGroup = forNet->second.find(mg); if (forGroup != forNet->second.end()) { pkt.append((uint32_t)forGroup->second.size()); pkt.append((uint16_t)std::min(std::min((unsigned int)forGroup->second.size(),(unsigned int)65535),gatherLimit)); auto g = forGroup->second.begin(); unsigned int l = 0; for(;((lsecond.end()));++l,++g) g->first.appendTo(pkt); if (l > 0) { sendto(sock,pkt.data(),pkt.size(),0,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); printf("%s gathered %u subscribers to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),l,mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid); } } } } } break; default: break; } return; } } std::vector toAddrs; { const int64_t now = OSUtils::now(); std::lock_guard pbv_l(peersByVirtAddr_l); auto peers = peersByVirtAddr.find(pkt.destination()); if (peers != peersByVirtAddr.end()) { for(auto p=peers->second.begin();p!=peers->second.end();++p) { if ((now - (*p)->lastReceive) < ZT_PEER_ACTIVITY_TIMEOUT) { if ((*p)->ip6) toAddrs.push_back((*p)->ip6); else if ((*p)->ip4) toAddrs.push_back((*p)->ip4); } } } } if (toAddrs.empty()) { printf("%s not forwarding to %s: no destinations found" ZT_EOL_S,ip->toString(ipstr),pkt.destination().toString(astr)); return; } if (fragment) { if (reinterpret_cast(&pkt)->incrementHops() >= ZT_PROTO_MAX_HOPS) { printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),pkt.destination().toString(astr)); return; } } else { if (pkt.incrementHops() >= ZT_PROTO_MAX_HOPS) { printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),pkt.destination().toString(astr)); return; } } for(auto i=toAddrs.begin();i!=toAddrs.end();++i) { printf("%s -> %s for %s" ZT_EOL_S,ip->toString(ipstr),i->toString(ipstr2),pkt.destination().toString(astr)); sendto(sock,pkt.data(),pkt.size(),0,(const struct sockaddr *)&(*i),(socklen_t)((i->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); } } static int bindSocket(struct sockaddr *bindAddr) { int s = socket(bindAddr->sa_family,SOCK_DGRAM,0); if (s < 0) { close(s); return -1; } int f = 131072; setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f)); f = 131072; setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f)); if (bindAddr->sa_family == AF_INET6) { f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); #ifdef IPV6_MTU_DISCOVER f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f)); #endif #ifdef IPV6_DONTFRAG f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f)); #endif } f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f)); f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f)); f = 1; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(void *)&f,sizeof(f)); #ifdef IP_DONTFRAG f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f)); #endif #ifdef IP_MTU_DISCOVER f = IP_PMTUDISC_DONT; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f)); #endif #ifdef SO_NO_CHECK if (bindAddr->sa_family == AF_INET) { f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f)); } #endif if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) { close(s); return -1; } return s; } void shutdownSigHandler(int sig) { run = false; } int main(int argc,char **argv) { signal(SIGTERM,shutdownSigHandler); signal(SIGINT,shutdownSigHandler); signal(SIGQUIT,shutdownSigHandler); signal(SIGPIPE,SIG_IGN); signal(SIGUSR1,SIG_IGN); signal(SIGUSR2,SIG_IGN); if (argc < 2) { printf("Usage: zerotier-root []" ZT_EOL_S); return 1; } std::string myIdStr; if (!OSUtils::readFile(argv[1],myIdStr)) { printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S,argv[1]); return 1; } if (!self.fromString(myIdStr.c_str())) { printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S,argv[1]); return 1; } if (!self.hasPrivate()) { printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S,argv[1]); return 1; } unsigned int ncores = std::thread::hardware_concurrency(); if (ncores == 0) ncores = 1; run = true; std::vector threads; std::vector sockets; for(unsigned int tn=0;tn 0) { try { pkt.setSize((unsigned int)pl); handlePacket(s6,reinterpret_cast(&in6),pkt); } catch ( ... ) { printf("* unexpected exception" ZT_EOL_S); } } else { break; } } })); threads.push_back(std::thread([s4]() { struct sockaddr_in in4; Packet pkt; memset(&in4,0,sizeof(in4)); for(;;) { socklen_t sl = sizeof(in4); const int pl = (int)recvfrom(s4,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in4,&sl); if (pl > 0) { try { pkt.setSize((unsigned int)pl); handlePacket(s4,reinterpret_cast(&in4),pkt); } catch ( ... ) { printf("* unexpected exception" ZT_EOL_S); } } else { break; } } })); } int64_t lastCleanedMulticastSubscriptions = 0; while (run) { peersByIdentity_l.lock(); peersByPhysAddr_l.lock(); printf("*** have %lu peers at %lu physical endpoints" ZT_EOL_S,(unsigned long)peersByIdentity.size(),(unsigned long)peersByPhysAddr.size()); peersByPhysAddr_l.unlock(); peersByIdentity_l.unlock(); sleep(1); const int64_t now = OSUtils::now(); if ((now - lastCleanedMulticastSubscriptions) > 120000) { lastCleanedMulticastSubscriptions = now; std::lock_guard l(multicastSubscriptions_l); for(auto a=multicastSubscriptions.begin();a!=multicastSubscriptions.end();) { for(auto b=a->second.begin();b!=a->second.end();) { for(auto c=b->second.begin();c!=b->second.end();) { if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE) b->second.erase(c++); else ++c; } if (b->second.empty()) a->second.erase(b++); else ++b; } if (a->second.empty()) multicastSubscriptions.erase(a++); else ++a; } } } for(auto s=sockets.begin();s!=sockets.end();++s) { shutdown(*s,SHUT_RDWR); close(*s); } for(auto t=threads.begin();t!=threads.end();++t) t->join(); return 0; }