/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_AES_HPP #define ZT_AES_HPP #include "Constants.hpp" #include "Utils.hpp" #include "SHA512.hpp" #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64)) #include #include #include #define ZT_AES_AESNI 1 // AES-aesni.c extern "C" void zt_crypt_ctr_aesni(const __m128i key[14],const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out); #endif // x64 #define ZT_AES_KEY_SIZE 32 #define ZT_AES_BLOCK_SIZE 16 namespace ZeroTier { /** * AES-256 and pals */ class AES { public: /** * This will be true if your platform's type of AES acceleration is supported on this machine */ static const bool HW_ACCEL; ZT_ALWAYS_INLINE AES() {} ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); } ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); } /** * Set (or re-set) this AES256 cipher's key */ ZT_ALWAYS_INLINE void init(const uint8_t key[32]) { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _init_aesni(key); return; } #endif _initSW(key); } /** * Encrypt a single AES block (ECB mode) * * @param in Input block * @param out Output block (can be same as input) */ ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _encrypt_aesni(in,out); return; } #endif _encryptSW(in,out); } /** * Compute GMAC-AES256 (GCM without ciphertext) * * @param iv 96-bit IV * @param in Input data * @param len Length of input * @param out 128-bit authorization tag from GMAC */ ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _gmac_aesni(iv,(const uint8_t *)in,len,out); return; } #endif _gmacSW(iv,(const uint8_t *)in,len,out); } /** * Encrypt or decrypt (they're the same) using AES256-CTR * * The counter here is a 128-bit big-endian that starts at the IV. The code only * increments the least significant 64 bits, making it only safe to use for a * maximum of 2^64-1 bytes (much larger than we ever do). * * @param iv 128-bit CTR IV * @param in Input plaintext or ciphertext * @param len Length of input * @param out Output plaintext or ciphertext */ ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { zt_crypt_ctr_aesni(_k.ni.k,iv,(const uint8_t *)in,len,(uint8_t *)out); return; } #endif uint64_t ctr[2],cenc[2]; memcpy(ctr,iv,16); uint64_t bctr = Utils::ntoh(ctr[1]); const uint8_t *i = (const uint8_t *)in; uint8_t *o = (uint8_t *)out; while (len >= 16) { _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc); ctr[1] = Utils::hton(++bctr); #ifdef ZT_NO_TYPE_PUNNING for(unsigned int k=0;k<16;++k) *(o++) = *(i++) ^ ((uint8_t *)cenc)[k]; #else *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0]; o += 8; i += 8; *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1]; o += 8; i += 8; #endif len -= 16; } if (len) { _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc); for(unsigned int k=0;k> 16); miv[10] = (uint8_t)(len >> 8); miv[11] = (uint8_t)len; // Compute auth tag: AES-ECB[k2](GMAC[k1](miv,plaintext))[0:8] k1.gmac(miv,in,len,ctrIv); k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF #ifdef ZT_NO_TYPE_PUNNING for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i]; #else *((uint64_t *)tag) = *((uint64_t *)ctrIv); #endif // Create synthetic CTR IV: AES-ECB[k3](TAG | MIV[0:4] | (MIV[4:8] XOR MIV[8:12])) #ifndef __GNUC__ for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i]; for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4]; #else ((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0]; ((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2]; #endif k3.encrypt(ctrIv,ctrIv); // Encrypt with AES[k4]-CTR k4.ctr(ctrIv,in,len,out); } /** * Decrypt a message encrypted with AES-GMAC-SIV and check its authenticity * * @param k1 GMAC key * @param k2 GMAC auth tag keyed hash key * @param k3 CTR IV keyed hash key * @param k4 AES-CTR key * @param iv 64-bit message IV * @param pc Packet characteristics byte * @param in Message ciphertext * @param len Length of ciphertext * @param out Output buffer to receive plaintext * @param tag Authentication tag supplied with message * @return True if authentication tags match and message appears authentic */ static ZT_ALWAYS_INLINE bool gmacSivDecrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,const uint8_t tag[8]) { #ifdef __GNUC__ uint8_t __attribute__ ((aligned (16))) miv[12]; uint8_t __attribute__ ((aligned (16))) ctrIv[16]; uint8_t __attribute__ ((aligned (16))) gmacOut[16]; #else uint8_t miv[12]; uint8_t ctrIv[16]; uint8_t gmacOut[16]; #endif // Extend packet IV to 96-bit message IV using direction byte and message length #ifdef ZT_NO_TYPE_PUNNING for(unsigned int i=0;i<8;++i) miv[i] = iv[i]; #else *((uint64_t *)miv) = *((const uint64_t *)iv); #endif miv[8] = pc; miv[9] = (uint8_t)(len >> 16); miv[10] = (uint8_t)(len >> 8); miv[11] = (uint8_t)len; // Recover synthetic and secret CTR IV from auth tag and packet IV #ifndef __GNUC__ for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i]; for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i]; for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4]; #else *((uint64_t *)ctrIv) = *((const uint64_t *)tag); ((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0]; ((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2]; #endif k3.encrypt(ctrIv,ctrIv); // Decrypt with AES[k4]-CTR k4.ctr(ctrIv,in,len,out); // Compute AES[k2](GMAC[k1](iv,plaintext)) k1.gmac(miv,out,len,gmacOut); k2.encrypt(gmacOut,gmacOut); // Check that packet's auth tag matches first 64 bits of AES(GMAC) #ifdef ZT_NO_TYPE_PUNNING return Utils::secureEq(gmacOut,tag,8); #else return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag)); #endif } /** * Use KBKDF with HMAC-SHA-384 to derive four sub-keys for AES-GMAC-SIV from a single master key * * See section 5.1 at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf * * @param masterKey Master 256-bit key * @param k1 GMAC key * @param k2 GMAC auth tag keyed hash key * @param k3 CTR IV keyed hash key * @param k4 AES-CTR key */ static ZT_ALWAYS_INLINE void initGmacCtrKeys(const uint8_t masterKey[32],AES &k1,AES &k2,AES &k3,AES &k4) { uint8_t k[32]; KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K1,0,0,k); k1.init(k); KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K2,0,0,k); k2.init(k); KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K3,0,0,k); k3.init(k); KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K4,0,0,k); k4.init(k); } private: static const uint32_t Te0[256]; static const uint32_t Te1[256]; static const uint32_t Te2[256]; static const uint32_t Te3[256]; static const uint32_t rcon[10]; void _initSW(const uint8_t key[32]); void _encryptSW(const uint8_t in[16],uint8_t out[16]) const; void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const; /**************************************************************************/ union { #ifdef ZT_AES_ARMNEON struct { uint32x4_t k[15]; } neon; #endif #ifdef ZT_AES_AESNI struct { __m128i k[15]; __m128i h,hh,hhh,hhhh; } ni; #endif struct { uint64_t h[2]; uint32_t ek[60]; } sw; } _k; /**************************************************************************/ #ifdef ZT_AES_ARMNEON /******************************************************/ static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2) { uint32_t round1[4], round2[4], prv1[4], prv2[4]; vst1q_u32(prv1, prev1); vst1q_u32(prv2, prev2); round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0]; round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1]; round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2]; round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3]; round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0]; round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1]; round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2]; round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3]; *e1 = vld1q_u3(round1); *e2 = vld1q_u3(round2); //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)}; //return expansion; } inline void _init_armneon(uint8x16_t encKey) { uint32x4_t *schedule = _k.neon.k; uint32x4_t e1,e2; (*schedule)[0] = vld1q_u32(encKey); (*schedule)[1] = vld1q_u32(encKey + 16); _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2); (*schedule)[2] = e1; (*schedule)[3] = e2; _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2); (*schedule)[4] = e1; (*schedule)[5] = e2; _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2); (*schedule)[6] = e1; (*schedule)[7] = e2; _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2); (*schedule)[8] = e1; (*schedule)[9] = e2; _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2); (*schedule)[10] = e1; (*schedule)[11] = e2; _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2); (*schedule)[12] = e1; (*schedule)[13] = e2; _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2); (*schedule)[14] = e1; /* doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01); (*schedule)[2] = doubleRound[0]; (*schedule)[3] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02); (*schedule)[4] = doubleRound[0]; (*schedule)[5] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04); (*schedule)[6] = doubleRound[0]; (*schedule)[7] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08); (*schedule)[8] = doubleRound[0]; (*schedule)[9] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10); (*schedule)[10] = doubleRound[0]; (*schedule)[11] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20); (*schedule)[12] = doubleRound[0]; (*schedule)[13] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40); (*schedule)[14] = doubleRound[0]; */ } inline void _encrypt_armneon(uint8x16_t *data) const { *data = veorq_u8(*data, _k.neon.k[0]); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13])); *data = vaeseq_u8(*data, _k.neon.k[14]); } #endif /*********************************************************************/ #ifdef ZT_AES_AESNI /********************************************************/ static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b) { __m128i x,y; b = _mm_shuffle_epi32(b,0xff); y = _mm_slli_si128(a,0x04); x = _mm_xor_si128(a,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); x = _mm_xor_si128(x,b); return x; } static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b) { __m128i x,y,z; y = _mm_aeskeygenassist_si128(a,0x00); z = _mm_shuffle_epi32(y,0xaa); y = _mm_slli_si128(b,0x04); x = _mm_xor_si128(b,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); x = _mm_xor_si128(x,z); return x; } ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32]) { __m128i t1,t2; _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key); _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16)); _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01)); _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02)); _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04)); _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08)); _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10)); _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20)); _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40)); __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]); h = _mm_aesenc_si128(h,_k.ni.k[1]); h = _mm_aesenc_si128(h,_k.ni.k[2]); h = _mm_aesenc_si128(h,_k.ni.k[3]); h = _mm_aesenc_si128(h,_k.ni.k[4]); h = _mm_aesenc_si128(h,_k.ni.k[5]); h = _mm_aesenc_si128(h,_k.ni.k[6]); h = _mm_aesenc_si128(h,_k.ni.k[7]); h = _mm_aesenc_si128(h,_k.ni.k[8]); h = _mm_aesenc_si128(h,_k.ni.k[9]); h = _mm_aesenc_si128(h,_k.ni.k[10]); h = _mm_aesenc_si128(h,_k.ni.k[11]); h = _mm_aesenc_si128(h,_k.ni.k[12]); h = _mm_aesenc_si128(h,_k.ni.k[13]); h = _mm_aesenclast_si128(h,_k.ni.k[14]); const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15); __m128i hswap = _mm_shuffle_epi8(h,shuf); __m128i hh = _mult_block_aesni(shuf,hswap,h); __m128i hhh = _mult_block_aesni(shuf,hswap,hh); __m128i hhhh = _mult_block_aesni(shuf,hswap,hhh); _k.ni.h = hswap; _k.ni.hh = _mm_shuffle_epi8(hh,shuf); _k.ni.hhh = _mm_shuffle_epi8(hhh,shuf); _k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf); } ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const { __m128i tmp; tmp = _mm_loadu_si128((const __m128i *)in); tmp = _mm_xor_si128(tmp,_k.ni.k[0]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]); _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14])); } static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y) { y = _mm_shuffle_epi8(y,shuf); __m128i t1 = _mm_clmulepi64_si128(h,y,0x00); __m128i t2 = _mm_clmulepi64_si128(h,y,0x01); __m128i t3 = _mm_clmulepi64_si128(h,y,0x10); __m128i t4 = _mm_clmulepi64_si128(h,y,0x11); t2 = _mm_xor_si128(t2,t3); t3 = _mm_slli_si128(t2,8); t2 = _mm_srli_si128(t2,8); t1 = _mm_xor_si128(t1,t3); t4 = _mm_xor_si128(t4,t2); __m128i t5 = _mm_srli_epi32(t1,31); t1 = _mm_slli_epi32(t1,1); __m128i t6 = _mm_srli_epi32(t4,31); t4 = _mm_slli_epi32(t4,1); t3 = _mm_srli_si128(t5,12); t6 = _mm_slli_si128(t6,4); t5 = _mm_slli_si128(t5,4); t1 = _mm_or_si128(t1,t5); t4 = _mm_or_si128(t4,t6); t4 = _mm_or_si128(t4,t3); t5 = _mm_slli_epi32(t1,31); t6 = _mm_slli_epi32(t1,30); t3 = _mm_slli_epi32(t1,25); t5 = _mm_xor_si128(t5,t6); t5 = _mm_xor_si128(t5,t3); t6 = _mm_srli_si128(t5,4); t4 = _mm_xor_si128(t4,t6); t5 = _mm_slli_si128(t5,12); t1 = _mm_xor_si128(t1,t5); t4 = _mm_xor_si128(t4,t1); t5 = _mm_srli_epi32(t1,1); t2 = _mm_srli_epi32(t1,2); t3 = _mm_srli_epi32(t1,7); t4 = _mm_xor_si128(t4,t2); t4 = _mm_xor_si128(t4,t3); t4 = _mm_xor_si128(t4,t5); return _mm_shuffle_epi8(t4,shuf); } static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); } ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const { const __m128i *const ab = (const __m128i *)in; const unsigned int blocks = len / 16; const unsigned int pblocks = blocks - (blocks % 4); const unsigned int rem = len % 16; const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15); __m128i y = _mm_setzero_si128(); unsigned int i = 0; for (;i