/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include "Constants.hpp" #ifdef __UNIX_LIKE__ #include #include #include #include #include #include #include #endif #ifdef __WINDOWS__ #include #endif #include "Utils.hpp" #include "Mutex.hpp" #include "Salsa20.hpp" namespace ZeroTier { const char Utils::HEXCHARS[16] = { '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f' }; static void _Utils_doBurn(char *ptr,unsigned int len) { for(unsigned int i=0;i> 4]); r.push_back(HEXCHARS[((const unsigned char *)data)[i] & 0x0f]); } return r; } std::string Utils::unhex(const char *hex,unsigned int maxlen) { int n = 1; unsigned char c,b = 0; const char *eof = hex + maxlen; std::string r; if (!maxlen) return r; while ((c = (unsigned char)*(hex++))) { if ((c >= 48)&&(c <= 57)) { // 0..9 if ((n ^= 1)) r.push_back((char)(b | (c - 48))); else b = (c - 48) << 4; } else if ((c >= 65)&&(c <= 70)) { // A..F if ((n ^= 1)) r.push_back((char)(b | (c - (65 - 10)))); else b = (c - (65 - 10)) << 4; } else if ((c >= 97)&&(c <= 102)) { // a..f if ((n ^= 1)) r.push_back((char)(b | (c - (97 - 10)))); else b = (c - (97 - 10)) << 4; } if (hex == eof) break; } return r; } unsigned int Utils::unhex(const char *hex,unsigned int maxlen,void *buf,unsigned int len) { int n = 1; unsigned char c,b = 0; unsigned int l = 0; const char *eof = hex + maxlen; if (!maxlen) return 0; while ((c = (unsigned char)*(hex++))) { if ((c >= 48)&&(c <= 57)) { // 0..9 if ((n ^= 1)) { if (l >= len) break; ((unsigned char *)buf)[l++] = (b | (c - 48)); } else b = (c - 48) << 4; } else if ((c >= 65)&&(c <= 70)) { // A..F if ((n ^= 1)) { if (l >= len) break; ((unsigned char *)buf)[l++] = (b | (c - (65 - 10))); } else b = (c - (65 - 10)) << 4; } else if ((c >= 97)&&(c <= 102)) { // a..f if ((n ^= 1)) { if (l >= len) break; ((unsigned char *)buf)[l++] = (b | (c - (97 - 10))); } else b = (c - (97 - 10)) << 4; } if (hex == eof) break; } return l; } void Utils::getSecureRandom(void *buf,unsigned int bytes) { static Mutex globalLock; static Salsa20 s20; static bool s20Initialized = false; Mutex::Lock _l(globalLock); /* Just for posterity we Salsa20 encrypt the result of whatever system * CSPRNG we use. There have been several bugs at the OS or OS distribution * level in the past that resulted in systematically weak or predictable * keys due to random seeding problems. This mitigates that by grabbing * a bit of extra entropy and further randomizing the result, and comes * at almost no cost and with no real downside if the random source is * good. */ if (!s20Initialized) { s20Initialized = true; uint64_t s20Key[4]; s20Key[0] = (uint64_t)time(0); // system clock s20Key[1] = (uint64_t)buf; // address of buf s20Key[2] = (uint64_t)s20Key; // address of s20Key[] s20Key[3] = (uint64_t)&s20; // address of s20 s20.init(s20Key,256,s20Key); } #ifdef __WINDOWS__ static HCRYPTPROV cryptProvider = NULL; if (cryptProvider == NULL) { if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n"); exit(1); return; } } if (!CryptGenRandom(cryptProvider,(DWORD)bytes,(BYTE *)buf)) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n"); exit(1); } #else // not __WINDOWS__ static char randomBuf[131072]; static unsigned int randomPtr = sizeof(randomBuf); static int devURandomFd = -1; if (devURandomFd <= 0) { devURandomFd = ::open("/dev/urandom",O_RDONLY); if (devURandomFd <= 0) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n"); exit(1); return; } } for(unsigned int i=0;i= sizeof(randomBuf)) { for(;;) { if ((int)::read(devURandomFd,randomBuf,sizeof(randomBuf)) != (int)sizeof(randomBuf)) { ::close(devURandomFd); devURandomFd = ::open("/dev/urandom",O_RDONLY); if (devURandomFd <= 0) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n"); exit(1); return; } } else break; } randomPtr = 0; } ((char *)buf)[i] = randomBuf[randomPtr++]; } #endif // __WINDOWS__ or not s20.encrypt12(buf,buf,bytes); } bool Utils::scopy(char *dest,unsigned int len,const char *src) { if (!len) return false; // sanity check if (!src) { *dest = (char)0; return true; } char *end = dest + len; while ((*dest++ = *src++)) { if (dest == end) { *(--dest) = (char)0; return false; } } return true; } unsigned int Utils::snprintf(char *buf,unsigned int len,const char *fmt,...) throw(std::length_error) { va_list ap; va_start(ap,fmt); int n = (int)vsnprintf(buf,len,fmt,ap); va_end(ap); if ((n >= (int)len)||(n < 0)) { if (len) buf[len - 1] = (char)0; throw std::length_error("buf[] overflow in Utils::snprintf"); } return (unsigned int)n; } } // namespace ZeroTier