#![feature(test)] #![cfg(feature = "rand")] extern crate test; use num_bigint::{BigInt, BigUint, RandBigInt}; use num_traits::{FromPrimitive, Num, One, Zero}; use std::mem::replace; use test::Bencher; mod rng; use rng::get_rng; fn multiply_bench(b: &mut Bencher, xbits: u64, ybits: u64) { let mut rng = get_rng(); let x = rng.gen_bigint(xbits); let y = rng.gen_bigint(ybits); b.iter(|| &x * &y); } fn divide_bench(b: &mut Bencher, xbits: u64, ybits: u64) { let mut rng = get_rng(); let x = rng.gen_bigint(xbits); let y = rng.gen_bigint(ybits); b.iter(|| &x / &y); } fn remainder_bench(b: &mut Bencher, xbits: u64, ybits: u64) { let mut rng = get_rng(); let x = rng.gen_bigint(xbits); let y = rng.gen_bigint(ybits); b.iter(|| &x % &y); } fn factorial(n: usize) -> BigUint { let mut f: BigUint = One::one(); for i in 1..=n { let bu: BigUint = FromPrimitive::from_usize(i).unwrap(); f *= bu; } f } /// Compute Fibonacci numbers fn fib(n: usize) -> BigUint { let mut f0: BigUint = Zero::zero(); let mut f1: BigUint = One::one(); for _ in 0..n { let f2 = f0 + &f1; f0 = replace(&mut f1, f2); } f0 } /// Compute Fibonacci numbers with two ops per iteration /// (add and subtract, like issue #200) fn fib2(n: usize) -> BigUint { let mut f0: BigUint = Zero::zero(); let mut f1: BigUint = One::one(); for _ in 0..n { f1 += &f0; f0 = &f1 - f0; } f0 } #[bench] fn multiply_0(b: &mut Bencher) { multiply_bench(b, 1 << 8, 1 << 8); } #[bench] fn multiply_1(b: &mut Bencher) { multiply_bench(b, 1 << 8, 1 << 16); } #[bench] fn multiply_2(b: &mut Bencher) { multiply_bench(b, 1 << 16, 1 << 16); } #[bench] fn multiply_3(b: &mut Bencher) { multiply_bench(b, 1 << 16, 1 << 17); } #[bench] fn divide_0(b: &mut Bencher) { divide_bench(b, 1 << 8, 1 << 6); } #[bench] fn divide_1(b: &mut Bencher) { divide_bench(b, 1 << 12, 1 << 8); } #[bench] fn divide_2(b: &mut Bencher) { divide_bench(b, 1 << 16, 1 << 12); } #[bench] fn divide_big_little(b: &mut Bencher) { divide_bench(b, 1 << 16, 1 << 4); } #[bench] fn remainder_0(b: &mut Bencher) { remainder_bench(b, 1 << 8, 1 << 6); } #[bench] fn remainder_1(b: &mut Bencher) { remainder_bench(b, 1 << 12, 1 << 8); } #[bench] fn remainder_2(b: &mut Bencher) { remainder_bench(b, 1 << 16, 1 << 12); } #[bench] fn remainder_big_little(b: &mut Bencher) { remainder_bench(b, 1 << 16, 1 << 4); } #[bench] fn factorial_100(b: &mut Bencher) { b.iter(|| factorial(100)); } #[bench] fn fib_100(b: &mut Bencher) { b.iter(|| fib(100)); } #[bench] fn fib_1000(b: &mut Bencher) { b.iter(|| fib(1000)); } #[bench] fn fib_10000(b: &mut Bencher) { b.iter(|| fib(10000)); } #[bench] fn fib2_100(b: &mut Bencher) { b.iter(|| fib2(100)); } #[bench] fn fib2_1000(b: &mut Bencher) { b.iter(|| fib2(1000)); } #[bench] fn fib2_10000(b: &mut Bencher) { b.iter(|| fib2(10000)); } #[bench] fn fac_to_string(b: &mut Bencher) { let fac = factorial(100); b.iter(|| fac.to_string()); } #[bench] fn fib_to_string(b: &mut Bencher) { let fib = fib(100); b.iter(|| fib.to_string()); } fn to_str_radix_bench(b: &mut Bencher, radix: u32, bits: u64) { let mut rng = get_rng(); let x = rng.gen_bigint(bits); b.iter(|| x.to_str_radix(radix)); } #[bench] fn to_str_radix_02(b: &mut Bencher) { to_str_radix_bench(b, 2, 1009); } #[bench] fn to_str_radix_08(b: &mut Bencher) { to_str_radix_bench(b, 8, 1009); } #[bench] fn to_str_radix_10(b: &mut Bencher) { to_str_radix_bench(b, 10, 1009); } #[bench] fn to_str_radix_10_2(b: &mut Bencher) { to_str_radix_bench(b, 10, 10009); } #[bench] fn to_str_radix_16(b: &mut Bencher) { to_str_radix_bench(b, 16, 1009); } #[bench] fn to_str_radix_36(b: &mut Bencher) { to_str_radix_bench(b, 36, 1009); } fn from_str_radix_bench(b: &mut Bencher, radix: u32) { let mut rng = get_rng(); let x = rng.gen_bigint(1009); let s = x.to_str_radix(radix); assert_eq!(x, BigInt::from_str_radix(&s, radix).unwrap()); b.iter(|| BigInt::from_str_radix(&s, radix)); } #[bench] fn from_str_radix_02(b: &mut Bencher) { from_str_radix_bench(b, 2); } #[bench] fn from_str_radix_08(b: &mut Bencher) { from_str_radix_bench(b, 8); } #[bench] fn from_str_radix_10(b: &mut Bencher) { from_str_radix_bench(b, 10); } #[bench] fn from_str_radix_16(b: &mut Bencher) { from_str_radix_bench(b, 16); } #[bench] fn from_str_radix_36(b: &mut Bencher) { from_str_radix_bench(b, 36); } fn rand_bench(b: &mut Bencher, bits: u64) { let mut rng = get_rng(); b.iter(|| rng.gen_bigint(bits)); } #[bench] fn rand_64(b: &mut Bencher) { rand_bench(b, 1 << 6); } #[bench] fn rand_256(b: &mut Bencher) { rand_bench(b, 1 << 8); } #[bench] fn rand_1009(b: &mut Bencher) { rand_bench(b, 1009); } #[bench] fn rand_2048(b: &mut Bencher) { rand_bench(b, 1 << 11); } #[bench] fn rand_4096(b: &mut Bencher) { rand_bench(b, 1 << 12); } #[bench] fn rand_8192(b: &mut Bencher) { rand_bench(b, 1 << 13); } #[bench] fn rand_65536(b: &mut Bencher) { rand_bench(b, 1 << 16); } #[bench] fn rand_131072(b: &mut Bencher) { rand_bench(b, 1 << 17); } #[bench] fn shl(b: &mut Bencher) { let n = BigUint::one() << 1000u32; let mut m = n.clone(); b.iter(|| { m.clone_from(&n); for i in 0..50 { m <<= i; } }) } #[bench] fn shr(b: &mut Bencher) { let n = BigUint::one() << 2000u32; let mut m = n.clone(); b.iter(|| { m.clone_from(&n); for i in 0..50 { m >>= i; } }) } #[bench] fn hash(b: &mut Bencher) { use std::collections::HashSet; let mut rng = get_rng(); let v: Vec = (1000..2000).map(|bits| rng.gen_bigint(bits)).collect(); b.iter(|| { let h: HashSet<&BigInt> = v.iter().collect(); assert_eq!(h.len(), v.len()); }); } #[bench] fn pow_bench(b: &mut Bencher) { b.iter(|| { let upper = 100_u32; let mut i_big = BigUint::from(1u32); for _i in 2..=upper { i_big += 1u32; for j in 2..=upper { i_big.pow(j); } } }); } #[bench] fn pow_bench_bigexp(b: &mut Bencher) { use num_traits::Pow; b.iter(|| { let upper = 100_u32; let mut i_big = BigUint::from(1u32); for _i in 2..=upper { i_big += 1u32; let mut j_big = BigUint::from(1u32); for _j in 2..=upper { j_big += 1u32; Pow::pow(&i_big, &j_big); } } }); } #[bench] fn pow_bench_1e1000(b: &mut Bencher) { b.iter(|| BigUint::from(10u32).pow(1_000)); } #[bench] fn pow_bench_1e10000(b: &mut Bencher) { b.iter(|| BigUint::from(10u32).pow(10_000)); } #[bench] fn pow_bench_1e100000(b: &mut Bencher) { b.iter(|| BigUint::from(10u32).pow(100_000)); } /// This modulus is the prime from the 2048-bit MODP DH group: /// https://tools.ietf.org/html/rfc3526#section-3 const RFC3526_2048BIT_MODP_GROUP: &str = "\ FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\ 29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\ EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\ E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\ EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\ C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\ 83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\ 670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\ E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\ DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\ 15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF"; #[bench] fn modpow(b: &mut Bencher) { let mut rng = get_rng(); let base = rng.gen_biguint(2048); let e = rng.gen_biguint(2048); let m = BigUint::from_str_radix(RFC3526_2048BIT_MODP_GROUP, 16).unwrap(); b.iter(|| base.modpow(&e, &m)); } #[bench] fn modpow_even(b: &mut Bencher) { let mut rng = get_rng(); let base = rng.gen_biguint(2048); let e = rng.gen_biguint(2048); // Make the modulus even, so monty (base-2^32) doesn't apply. let m = BigUint::from_str_radix(RFC3526_2048BIT_MODP_GROUP, 16).unwrap() - 1u32; b.iter(|| base.modpow(&e, &m)); } #[bench] fn to_u32_digits(b: &mut Bencher) { let mut rng = get_rng(); let n = rng.gen_biguint(2048); b.iter(|| n.to_u32_digits()); } #[bench] fn iter_u32_digits(b: &mut Bencher) { let mut rng = get_rng(); let n = rng.gen_biguint(2048); b.iter(|| n.iter_u32_digits().max()); } #[bench] fn to_u64_digits(b: &mut Bencher) { let mut rng = get_rng(); let n = rng.gen_biguint(2048); b.iter(|| n.to_u64_digits()); } #[bench] fn iter_u64_digits(b: &mut Bencher) { let mut rng = get_rng(); let n = rng.gen_biguint(2048); b.iter(|| n.iter_u64_digits().max()); }