/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include "Constants.hpp" #include "Topology.hpp" #include "RuntimeEnvironment.hpp" #include "Defaults.hpp" #include "Dictionary.hpp" #include "Node.hpp" namespace ZeroTier { Topology::Topology(const RuntimeEnvironment *renv) : RR(renv), _amRoot(false) { } Topology::~Topology() { } void Topology::setRootServers(const std::map< Identity,std::vector > &sn) { Mutex::Lock _l(_lock); if (_roots == sn) return; // no change _roots = sn; _rootAddresses.clear(); _rootPeers.clear(); const uint64_t now = RR->node->now(); for(std::map< Identity,std::vector >::const_iterator i(sn.begin());i!=sn.end();++i) { if (i->first != RR->identity) { // do not add self as a peer SharedPtr &p = _activePeers[i->first.address()]; if (!p) p = SharedPtr(new Peer(RR->identity,i->first)); for(std::vector::const_iterator j(i->second.begin());j!=i->second.end();++j) p->addPath(RemotePath(*j,true)); p->use(now); _rootPeers.push_back(p); } _rootAddresses.push_back(i->first.address()); } std::sort(_rootAddresses.begin(),_rootAddresses.end()); _amRoot = (_roots.find(RR->identity) != _roots.end()); } void Topology::setRootServers(const Dictionary &sn) { std::map< Identity,std::vector > m; for(Dictionary::const_iterator d(sn.begin());d!=sn.end();++d) { if ((d->first.length() == ZT_ADDRESS_LENGTH_HEX)&&(d->second.length() > 0)) { try { Dictionary snspec(d->second); std::vector &a = m[Identity(snspec.get("id"))]; std::string udp(snspec.get("udp",std::string())); if (udp.length() > 0) a.push_back(InetAddress(udp)); } catch ( ... ) { TRACE("root server list contained invalid entry for: %s",d->first.c_str()); } } } this->setRootServers(m); } SharedPtr Topology::addPeer(const SharedPtr &peer) { if (peer->address() == RR->identity.address()) { TRACE("BUG: addNewPeer() caught and ignored attempt to add peer for self"); throw std::logic_error("cannot add peer for self"); } const uint64_t now = RR->node->now(); Mutex::Lock _l(_lock); SharedPtr p(_activePeers.insert(std::pair< Address,SharedPtr >(peer->address(),peer)).first->second); p->use(now); _saveIdentity(p->identity()); return p; } SharedPtr Topology::getPeer(const Address &zta) { if (zta == RR->identity.address()) { TRACE("BUG: ignored attempt to getPeer() for self, returned NULL"); return SharedPtr(); } const uint64_t now = RR->node->now(); Mutex::Lock _l(_lock); SharedPtr &ap = _activePeers[zta]; if (ap) { ap->use(now); return ap; } Identity id(_getIdentity(zta)); if (id) { try { ap = SharedPtr(new Peer(RR->identity,id)); ap->use(now); return ap; } catch ( ... ) {} // invalid identity? } _activePeers.erase(zta); return SharedPtr(); } SharedPtr Topology::getBestRoot(const Address *avoid,unsigned int avoidCount,bool strictAvoid) { SharedPtr bestRoot; const uint64_t now = RR->node->now(); Mutex::Lock _l(_lock); if (_amRoot) { /* If I am a root server, the "best" root server is the one whose address * is numerically greater than mine (with wrap at top of list). This * causes packets searching for a route to pretty much literally * circumnavigate the globe rather than bouncing between just two. */ if (_rootAddresses.size() > 1) { // gotta be one other than me for this to work std::vector
::const_iterator sna(std::find(_rootAddresses.begin(),_rootAddresses.end(),RR->identity.address())); if (sna != _rootAddresses.end()) { // sanity check -- _amRoot should've been false in this case for(;;) { if (++sna == _rootAddresses.end()) sna = _rootAddresses.begin(); // wrap around at end if (*sna != RR->identity.address()) { // pick one other than us -- starting from me+1 in sorted set order std::map< Address,SharedPtr >::const_iterator p(_activePeers.find(*sna)); if ((p != _activePeers.end())&&(p->second->hasActiveDirectPath(now))) { bestRoot = p->second; break; } } } } } } else { /* If I am not a root server, the best root server is the active one with * the lowest latency. */ unsigned int l,bestLatency = 65536; uint64_t lds,ldr; // First look for a best root by comparing latencies, but exclude // root servers that have not responded to direct messages in order to // try to exclude any that are dead or unreachable. for(std::vector< SharedPtr >::const_iterator sn(_rootPeers.begin());sn!=_rootPeers.end();) { // Skip explicitly avoided relays for(unsigned int i=0;iaddress()) goto keep_searching_for_roots; } // Skip possibly comatose or unreachable relays lds = (*sn)->lastDirectSend(); ldr = (*sn)->lastDirectReceive(); if ((lds)&&(lds > ldr)&&((lds - ldr) > ZT_PEER_RELAY_CONVERSATION_LATENCY_THRESHOLD)) goto keep_searching_for_roots; if ((*sn)->hasActiveDirectPath(now)) { l = (*sn)->latency(); if (bestRoot) { if ((l)&&(l < bestLatency)) { bestLatency = l; bestRoot = *sn; } } else { if (l) bestLatency = l; bestRoot = *sn; } } keep_searching_for_roots: ++sn; } if (bestRoot) { bestRoot->use(now); return bestRoot; } else if (strictAvoid) return SharedPtr(); // If we have nothing from above, just pick one without avoidance criteria. for(std::vector< SharedPtr >::const_iterator sn=_rootPeers.begin();sn!=_rootPeers.end();++sn) { if ((*sn)->hasActiveDirectPath(now)) { unsigned int l = (*sn)->latency(); if (bestRoot) { if ((l)&&(l < bestLatency)) { bestLatency = l; bestRoot = *sn; } } else { if (l) bestLatency = l; bestRoot = *sn; } } } } if (bestRoot) bestRoot->use(now); return bestRoot; } bool Topology::isRoot(const Identity &id) const throw() { Mutex::Lock _l(_lock); return (_roots.count(id) != 0); } void Topology::clean(uint64_t now) { Mutex::Lock _l(_lock); for(std::map< Address,SharedPtr >::iterator p(_activePeers.begin());p!=_activePeers.end();) { if (((now - p->second->lastUsed()) >= ZT_PEER_IN_MEMORY_EXPIRATION)&&(std::find(_rootAddresses.begin(),_rootAddresses.end(),p->first) == _rootAddresses.end())) { _activePeers.erase(p++); } else ++p; } } bool Topology::authenticateRootTopology(const Dictionary &rt) { try { std::string signer(rt.signingIdentity()); if (!signer.length()) return false; Identity signerId(signer); std::map< Address,Identity >::const_iterator authority(ZT_DEFAULTS.rootTopologyAuthorities.find(signerId.address())); if (authority == ZT_DEFAULTS.rootTopologyAuthorities.end()) return false; if (signerId != authority->second) return false; return rt.verify(authority->second); } catch ( ... ) { return false; } } Identity Topology::_getIdentity(const Address &zta) { char p[128]; Utils::snprintf(p,sizeof(p),"iddb.d/%.10llx",(unsigned long long)zta.toInt()); std::string ids(RR->node->dataStoreGet(p)); if (ids.length() > 0) { try { return Identity(ids); } catch ( ... ) {} // ignore invalid IDs } return Identity(); } void Topology::_saveIdentity(const Identity &id) { if (id) { char p[128]; Utils::snprintf(p,sizeof(p),"iddb.d/%.10llx",(unsigned long long)id.address().toInt()); RR->node->dataStorePut(p,id.toString(false),false); } } } // namespace ZeroTier