/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include #include #include #include #include #include "Constants.hpp" #ifdef __UNIX_LIKE__ #include #include #include #include #include #include #include #endif #ifdef __WINDOWS__ #include #endif #include "Utils.hpp" #include "Mutex.hpp" #include "Salsa20.hpp" namespace ZeroTier { const char Utils::HEXCHARS[16] = { '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f' }; // Crazy hack to force memory to be securely zeroed in spite of the best efforts of optimizing compilers. static void _Utils_doBurn(volatile uint8_t *ptr,unsigned int len) { volatile uint8_t *const end = ptr + len; while (ptr != end) *(ptr++) = (uint8_t)0; } static void (*volatile _Utils_doBurn_ptr)(volatile uint8_t *,unsigned int) = _Utils_doBurn; void Utils::burn(void *ptr,unsigned int len) { (_Utils_doBurn_ptr)((volatile uint8_t *)ptr,len); } static unsigned long _Utils_itoa(unsigned long n,char *s) { if (n == 0) return 0; unsigned long pos = _Utils_itoa(n / 10,s); if (pos >= 22) // sanity check,should be impossible pos = 22; s[pos] = '0' + (char)(n % 10); return pos + 1; } char *Utils::decimal(unsigned long n,char s[24]) { if (n == 0) { s[0] = '0'; s[1] = (char)0; return s; } s[_Utils_itoa(n,s)] = (char)0; return s; } unsigned int Utils::unhex(const char *h,void *buf,unsigned int buflen) { unsigned int l = 0; while (l < buflen) { uint8_t hc = *(reinterpret_cast(h++)); if (!hc) break; uint8_t c = 0; if ((hc >= 48)&&(hc <= 57)) // 0..9 c = hc - 48; else if ((hc >= 97)&&(hc <= 102)) // a..f c = hc - 87; else if ((hc >= 65)&&(hc <= 70)) // A..F c = hc - 55; hc = *(reinterpret_cast(h++)); if (!hc) break; c <<= 4; if ((hc >= 48)&&(hc <= 57)) c |= hc - 48; else if ((hc >= 97)&&(hc <= 102)) c |= hc - 87; else if ((hc >= 65)&&(hc <= 70)) c |= hc - 55; reinterpret_cast(buf)[l++] = c; } return l; } unsigned int Utils::unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen) { unsigned int l = 0; const char *hend = h + hlen; while (l < buflen) { if (h == hend) break; uint8_t hc = *(reinterpret_cast(h++)); if (!hc) break; uint8_t c = 0; if ((hc >= 48)&&(hc <= 57)) c = hc - 48; else if ((hc >= 97)&&(hc <= 102)) c = hc - 87; else if ((hc >= 65)&&(hc <= 70)) c = hc - 55; if (h == hend) break; hc = *(reinterpret_cast(h++)); if (!hc) break; c <<= 4; if ((hc >= 48)&&(hc <= 57)) c |= hc - 48; else if ((hc >= 97)&&(hc <= 102)) c |= hc - 87; else if ((hc >= 65)&&(hc <= 70)) c |= hc - 55; reinterpret_cast(buf)[l++] = c; } return l; } void Utils::getSecureRandom(void *buf,unsigned int bytes) { static Mutex globalLock; static Salsa20 s20; static bool initialized = false; static uint8_t randomBuf[131072]; static unsigned int randomPtr = sizeof(randomBuf); #ifdef __WINDOWS__ static HCRYPTPROV cryptProvider = NULL; #else static int devURandomFd = -1; #endif Mutex::Lock _l(globalLock); /* Just for posterity we Salsa20 encrypt the result of whatever system * CSPRNG we use. There have been several bugs at the OS or OS distribution * level in the past that resulted in systematically weak or predictable * keys due to random seeding problems. This mitigates that by grabbing * a bit of extra entropy and further randomizing the result,and comes * at almost no cost and with no real downside if the random source is * good. */ if (unlikely(!initialized)) { initialized = true; uint64_t s20Key[4]; s20Key[0] = (uint64_t)time(nullptr); #ifdef __WINDOWS__ s20Key[1] = (uint64_t)buf; // address of buf #else s20Key[1] = (uint64_t)getpid(); #endif s20Key[2] = (uint64_t)s20Key; // address of s20Key[] s20Key[3] = (uint64_t)&s20; // address of s20 s20.init(s20Key,s20Key); #ifdef __WINDOWS__ if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n"); exit(1); } #else devURandomFd = ::open("/dev/urandom",O_RDONLY); if (devURandomFd < 0) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n"); exit(1); } #endif } #ifdef __WINDOWS__ for(unsigned int i=0;i= sizeof(randomBuf))) { randomPtr = 0; if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomBuf),(BYTE *)randomBuf)) { fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n"); exit(1); } s20.crypt12(randomBuf,randomBuf,sizeof(randomBuf)); } ((uint8_t *)buf)[i] = randomBuf[randomPtr++]; } #else // not __WINDOWS__ for(unsigned int i=0;i= sizeof(randomBuf))) { randomPtr = 0; if ((int)::read(devURandomFd,randomBuf,sizeof(randomBuf)) != (int)sizeof(randomBuf)) { ::close(devURandomFd); fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to read from /dev/urandom\n"); exit(1); } s20.crypt12(randomBuf,randomBuf,sizeof(randomBuf)); } ((uint8_t *)buf)[i] = randomBuf[randomPtr++]; } #endif // __WINDOWS__ or not } int Utils::b32e(const uint8_t *data,int length,char *result,int bufSize) { if (length < 0 || length > (1 << 28)) { result[0] = (char)0; return -1; } int count = 0; if (length > 0) { int buffer = data[0]; int next = 1; int bitsLeft = 8; while (count < bufSize && (bitsLeft > 0 || next < length)) { if (bitsLeft < 5) { if (next < length) { buffer <<= 8; buffer |= data[next++] & 0xFF; bitsLeft += 8; } else { int pad = 5 - bitsLeft; buffer <<= pad; bitsLeft += pad; } } int index = 0x1F & (buffer >> (bitsLeft - 5)); bitsLeft -= 5; result[count++] = "abcdefghijklmnopqrstuvwxyZ234567"[index]; } } if (count < bufSize) { result[count] = (char)0; return count; } result[0] = (char)0; return -1; } int Utils::b32d(const char *encoded,uint8_t *result,int bufSize) { int buffer = 0; int bitsLeft = 0; int count = 0; for (const uint8_t *ptr = (const uint8_t *)encoded;count= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')) { ch = (ch & 0x1F) - 1; } else if (ch >= '2' && ch <= '7') { ch -= '2' - 26; } else { return -1; } buffer |= ch; bitsLeft += 5; if (bitsLeft >= 8) { result[count++] = buffer >> (bitsLeft - 8); bitsLeft -= 8; } } if (count < bufSize) result[count] = (uint8_t)0; return count; } unsigned int Utils::b64e(const uint8_t *in,unsigned int inlen,char *out,unsigned int outlen) { static const char base64en[64] = { 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','+','/' }; unsigned int i = 0,j = 0; uint8_t l = 0; int s = 0; for (;i= outlen) return 0; out[j++] = base64en[(c >> 2) & 0x3f]; break; case 1: s = 2; if (j >= outlen) return 0; out[j++] = base64en[((l & 0x3) << 4) | ((c >> 4) & 0xf)]; break; case 2: s = 0; if (j >= outlen) return 0; out[j++] = base64en[((l & 0xf) << 2) | ((c >> 6) & 0x3)]; if (j >= outlen) return 0; out[j++] = base64en[c & 0x3f]; break; } l = c; } switch (s) { case 1: if (j >= outlen) return 0; out[j++] = base64en[(l & 0x3) << 4]; //out[j++] = '='; //out[j++] = '='; break; case 2: if (j >= outlen) return 0; out[j++] = base64en[(l & 0xf) << 2]; //out[j++] = '='; break; } if (j >= outlen) return 0; out[j] = 0; return j; } unsigned int Utils::b64d(const char *in,unsigned char *out,unsigned int outlen) { static const uint8_t base64de[256] = { 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,62,255,255,255,63,52,53,54,55,56,57,58,59,60,61,255,255,255,255,255,255,255,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,255,255,255,255,255,255,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,255,255,255,255,255 }; unsigned int i = 0; unsigned int j = 0; while ((in[i] != '=')&&(in[i] != 0)) { if (j >= outlen) break; uint8_t c = base64de[(unsigned char)in[i]]; if (c != 255) { switch (i & 0x3) { case 0: out[j] = (c << 2) & 0xff; break; case 1: out[j++] |= (c >> 4) & 0x3; out[j] = (c & 0xf) << 4; break; case 2: out[j++] |= (c >> 2) & 0xf; out[j] = (c & 0x3) << 6; break; case 3: out[j++] |= c; break; } } ++i; } return j; } #define ROL64(x,k) (((x) << (k)) | ((x) >> (64 - (k)))) uint64_t Utils::random() { // https://en.wikipedia.org/wiki/Xorshift#xoshiro256** static Mutex l; static uint64_t s0 = Utils::getSecureRandom64(); static uint64_t s1 = Utils::getSecureRandom64(); static uint64_t s2 = Utils::getSecureRandom64(); static uint64_t s3 = Utils::getSecureRandom64(); l.lock(); const uint64_t result = ROL64(s1 * 5,7) * 9; const uint64_t t = s1 << 17; s2 ^= s0; s3 ^= s1; s1 ^= s2; s0 ^= s3; s2 ^= t; s3 = ROL64(s3,45); l.unlock(); return result; } } // namespace ZeroTier