/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2011-2014 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include "Constants.hpp" #ifdef __WINDOWS__ #include #include #include #else #include #include #include #include #endif #include "../version.h" #include "Node.hpp" #include "RuntimeEnvironment.hpp" #include "Logger.hpp" #include "Utils.hpp" #include "Defaults.hpp" #include "Identity.hpp" #include "Topology.hpp" #include "SocketManager.hpp" #include "Packet.hpp" #include "Switch.hpp" #include "EthernetTap.hpp" #include "CMWC4096.hpp" #include "NodeConfig.hpp" #include "Network.hpp" #include "MulticastGroup.hpp" #include "Multicaster.hpp" #include "Mutex.hpp" #include "Service.hpp" #include "SoftwareUpdater.hpp" #include "Buffer.hpp" #include "AntiRecursion.hpp" #include "RoutingTable.hpp" #include "HttpClient.hpp" namespace ZeroTier { struct _NodeImpl { RuntimeEnvironment renv; std::string reasonForTerminationStr; volatile Node::ReasonForTermination reasonForTermination; volatile bool started; volatile bool running; volatile bool resynchronize; volatile bool disableRootTopologyUpdates; std::string overrideRootTopology; // This function performs final node tear-down inline Node::ReasonForTermination terminate() { RuntimeEnvironment *RR = &renv; LOG("terminating: %s",reasonForTerminationStr.c_str()); running = false; #ifndef __WINDOWS__ delete renv.netconfService; #endif delete renv.updater; renv.updater = (SoftwareUpdater *)0; delete renv.nc; renv.nc = (NodeConfig *)0; // shut down all networks, close taps, etc. delete renv.topology; renv.topology = (Topology *)0; // now we no longer need routing info delete renv.mc; renv.mc = (Multicaster *)0; delete renv.antiRec; renv.antiRec = (AntiRecursion *)0; delete renv.sw; renv.sw = (Switch *)0; // order matters less from here down delete renv.http; renv.http = (HttpClient *)0; delete renv.prng; renv.prng = (CMWC4096 *)0; delete renv.log; renv.log = (Logger *)0; // but stop logging last of all return reasonForTermination; } inline Node::ReasonForTermination terminateBecause(Node::ReasonForTermination r,const char *rstr) { reasonForTerminationStr = rstr; reasonForTermination = r; return terminate(); } }; #ifndef __WINDOWS__ // "services" are not supported on Windows static void _netconfServiceMessageHandler(void *renv,Service &svc,const Dictionary &msg) { if (!renv) return; // sanity check const RuntimeEnvironment *RR = (const RuntimeEnvironment *)renv; try { //TRACE("from netconf:\n%s",msg.toString().c_str()); const std::string &type = msg.get("type"); if (type == "ready") { LOG("received 'ready' from netconf.service, sending netconf-init with identity information..."); Dictionary initMessage; initMessage["type"] = "netconf-init"; initMessage["netconfId"] = RR->identity.toString(true); RR->netconfService->send(initMessage); } else if (type == "netconf-response") { uint64_t inRePacketId = strtoull(msg.get("requestId").c_str(),(char **)0,16); uint64_t nwid = strtoull(msg.get("nwid").c_str(),(char **)0,16); Address peerAddress(msg.get("peer").c_str()); if (peerAddress) { if (msg.contains("error")) { Packet::ErrorCode errCode = Packet::ERROR_INVALID_REQUEST; const std::string &err = msg.get("error"); if (err == "OBJ_NOT_FOUND") errCode = Packet::ERROR_OBJ_NOT_FOUND; else if (err == "ACCESS_DENIED") errCode = Packet::ERROR_NETWORK_ACCESS_DENIED_; Packet outp(peerAddress,RR->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(inRePacketId); outp.append((unsigned char)errCode); outp.append(nwid); RR->sw->send(outp,true); } else if (msg.contains("netconf")) { const std::string &netconf = msg.get("netconf"); if (netconf.length() < 2048) { // sanity check Packet outp(peerAddress,RR->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(inRePacketId); outp.append(nwid); outp.append((uint16_t)netconf.length()); outp.append(netconf.data(),netconf.length()); outp.compress(); RR->sw->send(outp,true); } } } } else if (type == "netconf-push") { if (msg.contains("to")) { Dictionary to(msg.get("to")); // key: peer address, value: comma-delimited network list for(Dictionary::iterator t(to.begin());t!=to.end();++t) { Address ztaddr(t->first); if (ztaddr) { Packet outp(ztaddr,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REFRESH); char *saveptr = (char *)0; // Note: this loop trashes t->second, which is quasi-legal C++ but // shouldn't break anything as long as we don't try to use 'to' // for anything interesting after doing this. for(char *p=Utils::stok(const_cast(t->second.c_str()),",",&saveptr);(p);p=Utils::stok((char *)0,",",&saveptr)) { uint64_t nwid = Utils::hexStrToU64(p); if (nwid) { if ((outp.size() + sizeof(uint64_t)) >= ZT_UDP_DEFAULT_PAYLOAD_MTU) { RR->sw->send(outp,true); outp.reset(ztaddr,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REFRESH); } outp.append(nwid); } } if (outp.payloadLength()) RR->sw->send(outp,true); } } } } } catch (std::exception &exc) { LOG("unexpected exception parsing response from netconf service: %s",exc.what()); } catch ( ... ) { LOG("unexpected exception parsing response from netconf service: unknown exception"); } } #endif // !__WINDOWS__ Node::Node( const char *hp, EthernetTapFactory *tf, RoutingTable *rt, SocketManager *sm, bool resetIdentity, const char *overrideRootTopology) throw() : _impl(new _NodeImpl) { _NodeImpl *impl = (_NodeImpl *)_impl; if ((hp)&&(hp[0])) impl->renv.homePath = hp; else impl->renv.homePath = ZT_DEFAULTS.defaultHomePath; impl->renv.tapFactory = tf; impl->renv.routingTable = rt; impl->renv.sm = sm; if (resetIdentity) { // Forget identity and peer database, peer keys, etc. Utils::rm((impl->renv.homePath + ZT_PATH_SEPARATOR_S + "identity.public").c_str()); Utils::rm((impl->renv.homePath + ZT_PATH_SEPARATOR_S + "identity.secret").c_str()); Utils::rm((impl->renv.homePath + ZT_PATH_SEPARATOR_S + "peers.persist").c_str()); // Truncate network config information in networks.d but leave the files since we // still want to remember any networks we have joined. This will force those networks // to be reconfigured with our newly regenerated identity after startup. std::string networksDotD(impl->renv.homePath + ZT_PATH_SEPARATOR_S + "networks.d"); std::map< std::string,bool > nwfiles(Utils::listDirectory(networksDotD.c_str())); for(std::map::iterator nwf(nwfiles.begin());nwf!=nwfiles.end();++nwf) { FILE *trun = fopen((networksDotD + ZT_PATH_SEPARATOR_S + nwf->first).c_str(),"w"); if (trun) fclose(trun); } } impl->reasonForTermination = Node::NODE_RUNNING; impl->started = false; impl->running = false; impl->resynchronize = false; if (overrideRootTopology) { impl->disableRootTopologyUpdates = true; impl->overrideRootTopology = overrideRootTopology; } else { impl->disableRootTopologyUpdates = false; } } Node::~Node() { delete (_NodeImpl *)_impl; } static void _CBztTraffic(const SharedPtr &fromSock,void *arg,const InetAddress &from,Buffer &data) { ((const RuntimeEnvironment *)arg)->sw->onRemotePacket(fromSock,from,data); } static void _cbHandleGetRootTopology(void *arg,int code,const std::string &url,const std::string &body) { RuntimeEnvironment *RR = (RuntimeEnvironment *)arg; if ((code != 200)||(body.length() == 0)) { TRACE("failed to retrieve %s",url.c_str()); return; } try { Dictionary rt(body); if (!Topology::authenticateRootTopology(rt)) { LOG("discarded invalid root topology update from %s (signature check failed)",url.c_str()); return; } { std::string rootTopologyPath(RR->homePath + ZT_PATH_SEPARATOR_S + "root-topology"); std::string rootTopology; if (Utils::readFile(rootTopologyPath.c_str(),rootTopology)) { Dictionary alreadyHave(rootTopology); if (alreadyHave == rt) { TRACE("retrieved root topology from %s but no change (same as on disk)",url.c_str()); return; } else if (alreadyHave.signatureTimestamp() > rt.signatureTimestamp()) { TRACE("retrieved root topology from %s but no change (ours is newer)",url.c_str()); return; } } Utils::writeFile(rootTopologyPath.c_str(),body); } RR->topology->setSupernodes(Dictionary(rt.get("supernodes"))); } catch ( ... ) { LOG("discarded invalid root topology update from %s (format invalid)",url.c_str()); return; } } Node::ReasonForTermination Node::run() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); impl->started = true; impl->running = true; try { #ifdef ZT_LOG_STDOUT RR->log = new Logger((const char *)0,(const char *)0,0); #else RR->log = new Logger((RR->homePath + ZT_PATH_SEPARATOR_S + "node.log").c_str(),(const char *)0,131072); #endif LOG("starting version %s",versionString()); // Create non-crypto PRNG right away in case other code in init wants to use it RR->prng = new CMWC4096(); // Read identity public and secret, generating if not present { bool gotId = false; std::string identitySecretPath(RR->homePath + ZT_PATH_SEPARATOR_S + "identity.secret"); std::string identityPublicPath(RR->homePath + ZT_PATH_SEPARATOR_S + "identity.public"); std::string idser; if (Utils::readFile(identitySecretPath.c_str(),idser)) gotId = RR->identity.fromString(idser); if ((gotId)&&(!RR->identity.locallyValidate())) gotId = false; if (gotId) { // Make sure identity.public matches identity.secret idser = std::string(); Utils::readFile(identityPublicPath.c_str(),idser); std::string pubid(RR->identity.toString(false)); if (idser != pubid) { if (!Utils::writeFile(identityPublicPath.c_str(),pubid)) return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"could not write identity.public (home path not writable?)"); } } else { LOG("no identity found or identity invalid, generating one... this might take a few seconds..."); RR->identity.generate(); LOG("generated new identity: %s",RR->identity.address().toString().c_str()); idser = RR->identity.toString(true); if (!Utils::writeFile(identitySecretPath.c_str(),idser)) return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"could not write identity.secret (home path not writable?)"); idser = RR->identity.toString(false); if (!Utils::writeFile(identityPublicPath.c_str(),idser)) return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"could not write identity.public (home path not writable?)"); } Utils::lockDownFile(identitySecretPath.c_str(),false); } // Make sure networks.d exists (used by NodeConfig to remember networks) { std::string networksDotD(RR->homePath + ZT_PATH_SEPARATOR_S + "networks.d"); #ifdef __WINDOWS__ CreateDirectoryA(networksDotD.c_str(),NULL); #else mkdir(networksDotD.c_str(),0700); #endif } // Make sure iddb.d exists (used by Topology to remember identities) { std::string iddbDotD(RR->homePath + ZT_PATH_SEPARATOR_S + "iddb.d"); #ifdef __WINDOWS__ CreateDirectoryA(iddbDotD.c_str(),NULL); #else mkdir(iddbDotD.c_str(),0700); #endif } RR->http = new HttpClient(); RR->sw = new Switch(RR); RR->mc = new Multicaster(RR); RR->antiRec = new AntiRecursion(); RR->topology = new Topology(RR); try { RR->nc = new NodeConfig(RR); } catch (std::exception &exc) { return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"unable to initialize IPC socket: is ZeroTier One already running?"); } RR->node = this; #ifdef ZT_AUTO_UPDATE if (ZT_DEFAULTS.updateLatestNfoURL.length()) { RR->updater = new SoftwareUpdater(RR); RR->updater->cleanOldUpdates(); // clean out updates.d on startup } else { LOG("WARNING: unable to enable software updates: latest .nfo URL from ZT_DEFAULTS is empty (does this platform actually support software updates?)"); } #endif // Initialize root topology from defaults or root-toplogy file in home path on disk if (impl->overrideRootTopology.length() == 0) { std::string rootTopologyPath(RR->homePath + ZT_PATH_SEPARATOR_S + "root-topology"); std::string rootTopology; if (!Utils::readFile(rootTopologyPath.c_str(),rootTopology)) rootTopology = ZT_DEFAULTS.defaultRootTopology; try { Dictionary rt(rootTopology); if (Topology::authenticateRootTopology(rt)) { // Set supernodes if root topology signature is valid RR->topology->setSupernodes(Dictionary(rt.get("supernodes",""))); // set supernodes from root-topology // If root-topology contains noupdate=1, disable further updates and only use what was on disk impl->disableRootTopologyUpdates = (Utils::strToInt(rt.get("noupdate","0").c_str()) > 0); } else { // Revert to built-in defaults if root topology fails signature check LOG("%s failed signature check, using built-in defaults instead",rootTopologyPath.c_str()); Utils::rm(rootTopologyPath.c_str()); RR->topology->setSupernodes(Dictionary(Dictionary(ZT_DEFAULTS.defaultRootTopology).get("supernodes",""))); impl->disableRootTopologyUpdates = false; } } catch ( ... ) { return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"invalid root-topology format"); } } else { try { Dictionary rt(impl->overrideRootTopology); RR->topology->setSupernodes(Dictionary(rt.get("supernodes",""))); impl->disableRootTopologyUpdates = true; } catch ( ... ) { return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"invalid root-topology format"); } } // Delete peers.persist if it exists -- legacy file, just takes up space Utils::rm(std::string(RR->homePath + ZT_PATH_SEPARATOR_S + "peers.persist").c_str()); } catch (std::bad_alloc &exc) { return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"memory allocation failure"); } catch (std::runtime_error &exc) { return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,exc.what()); } catch ( ... ) { return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"unknown exception during initialization"); } // Start external service subprocesses, which is only used by special nodes // right now and isn't available on Windows. #ifndef __WINDOWS__ try { std::string netconfServicePath(RR->homePath + ZT_PATH_SEPARATOR_S + "services.d" + ZT_PATH_SEPARATOR_S + "netconf.service"); if (Utils::fileExists(netconfServicePath.c_str())) { LOG("netconf.d/netconf.service appears to exist, starting..."); RR->netconfService = new Service(RR,"netconf",netconfServicePath.c_str(),&_netconfServiceMessageHandler,RR); Dictionary initMessage; initMessage["type"] = "netconf-init"; initMessage["netconfId"] = RR->identity.toString(true); RR->netconfService->send(initMessage); } } catch ( ... ) { LOG("unexpected exception attempting to start services"); } #endif // Core I/O loop try { /* Shut down if this file exists but fails to open. This is used on Mac to * shut down automatically on .app deletion by symlinking this to the * Info.plist file inside the ZeroTier One application. This causes the * service to die when the user throws away the app, allowing uninstallation * in the natural Mac way. */ std::string shutdownIfUnreadablePath(RR->homePath + ZT_PATH_SEPARATOR_S + "shutdownIfUnreadable"); uint64_t lastNetworkAutoconfCheck = Utils::now() - 5000ULL; // check autoconf again after 5s for startup uint64_t lastPingCheck = 0; uint64_t lastClean = Utils::now(); // don't need to do this immediately uint64_t lastNetworkFingerprintCheck = 0; uint64_t lastMulticastCheck = 0; uint64_t lastSupernodePingCheck = 0; uint64_t lastBeacon = 0; uint64_t lastRootTopologyFetch = 0; uint64_t lastShutdownIfUnreadableCheck = 0; long lastDelayDelta = 0; uint64_t networkConfigurationFingerprint = 0; RR->timeOfLastResynchronize = Utils::now(); // We are up and running RR->initialized = true; while (impl->reasonForTermination == NODE_RUNNING) { uint64_t now = Utils::now(); bool resynchronize = false; /* This is how the service automatically shuts down when the OSX .app is * thrown in the trash. It's not used on any other platform for now but * could do similar things. It's disabled on Windows since it doesn't really * work there. */ #ifdef __UNIX_LIKE__ if ((now - lastShutdownIfUnreadableCheck) > 10000) { lastShutdownIfUnreadableCheck = now; if (Utils::fileExists(shutdownIfUnreadablePath.c_str(),false)) { int tmpfd = ::open(shutdownIfUnreadablePath.c_str(),O_RDONLY,0); if (tmpfd < 0) { return impl->terminateBecause(Node::NODE_NORMAL_TERMINATION,"shutdownIfUnreadable exists but is not readable"); } else ::close(tmpfd); } } #endif // If it looks like the computer slept and woke, resynchronize. if (lastDelayDelta >= ZT_SLEEP_WAKE_DETECTION_THRESHOLD) { resynchronize = true; LOG("probable suspend/resume detected, pausing a moment for things to settle..."); Thread::sleep(ZT_SLEEP_WAKE_SETTLE_TIME); } // If our network environment looks like it changed, resynchronize. if ((resynchronize)||((now - lastNetworkFingerprintCheck) >= ZT_NETWORK_FINGERPRINT_CHECK_DELAY)) { lastNetworkFingerprintCheck = now; uint64_t fp = RR->routingTable->networkEnvironmentFingerprint(RR->nc->networkTapDeviceNames()); if (fp != networkConfigurationFingerprint) { LOG("netconf fingerprint change: %.16llx != %.16llx, resyncing with network",networkConfigurationFingerprint,fp); networkConfigurationFingerprint = fp; resynchronize = true; } } // Supernodes do not resynchronize unless explicitly ordered via SIGHUP. if ((resynchronize)&&(RR->topology->amSupernode())) resynchronize = false; // Check for SIGHUP / force resync. if (impl->resynchronize) { impl->resynchronize = false; resynchronize = true; LOG("resynchronize forced by user, syncing with network"); } if (resynchronize) { RR->tcpTunnelingEnabled = false; // turn off TCP tunneling master switch at first, will be reenabled on persistent UDP failure RR->timeOfLastResynchronize = now; } /* Supernodes are pinged separately and more aggressively. The * ZT_STARTUP_AGGRO parameter sets a limit on how rapidly they are * tried, while PingSupernodesThatNeedPing contains the logic for * determining if they need PING. */ if ((now - lastSupernodePingCheck) >= ZT_STARTUP_AGGRO) { lastSupernodePingCheck = now; uint64_t lastReceiveFromAnySupernode = 0; // function object result paramter RR->topology->eachSupernodePeer(Topology::FindMostRecentDirectReceiveTimestamp(lastReceiveFromAnySupernode)); // Turn on TCP tunneling master switch if we haven't heard anything since before // the last resynchronize and we've been trying long enough. uint64_t tlr = RR->timeOfLastResynchronize; if ((lastReceiveFromAnySupernode < tlr)&&((now - tlr) >= ZT_TCP_TUNNEL_FAILOVER_TIMEOUT)) { TRACE("network still unreachable after %u ms, TCP TUNNELING ENABLED",(unsigned int)ZT_TCP_TUNNEL_FAILOVER_TIMEOUT); RR->tcpTunnelingEnabled = true; } RR->topology->eachSupernodePeer(Topology::PingSupernodesThatNeedPing(RR,now)); } if (resynchronize) { /* Send NOP to all peers on resynchronize, directly to supernodes and * indirectly to regular nodes (to trigger RENDEZVOUS). Also clear * learned paths since they're likely no longer valid, and close * TCP sockets since they're also likely invalid. */ RR->sm->closeTcpSockets(); RR->topology->eachPeer(Topology::ResetActivePeers(RR,now)); } else { /* Periodically check for changes in our local multicast subscriptions * and broadcast those changes to directly connected peers. */ if ((now - lastMulticastCheck) >= ZT_MULTICAST_LOCAL_POLL_PERIOD) { lastMulticastCheck = now; try { std::vector< SharedPtr > networks(RR->nc->networks()); for(std::vector< SharedPtr >::const_iterator nw(networks.begin());nw!=networks.end();++nw) (*nw)->rescanMulticastGroups(); } catch (std::exception &exc) { LOG("unexpected exception announcing multicast groups: %s",exc.what()); } catch ( ... ) { LOG("unexpected exception announcing multicast groups: (unknown)"); } } /* Periodically ping all our non-stale direct peers unless we're a supernode. * Supernodes only ping each other (which is done above). */ if ((!RR->topology->amSupernode())&&((now - lastPingCheck) >= ZT_PING_CHECK_DELAY)) { lastPingCheck = now; try { RR->topology->eachPeer(Topology::PingPeersThatNeedPing(RR,now)); } catch (std::exception &exc) { LOG("unexpected exception running ping check cycle: %s",exc.what()); } catch ( ... ) { LOG("unexpected exception running ping check cycle: (unkonwn)"); } } } // Update network configurations when needed. if ((resynchronize)||((now - lastNetworkAutoconfCheck) >= ZT_NETWORK_AUTOCONF_CHECK_DELAY)) { lastNetworkAutoconfCheck = now; std::vector< SharedPtr > nets(RR->nc->networks()); for(std::vector< SharedPtr >::iterator n(nets.begin());n!=nets.end();++n) { if ((now - (*n)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY) (*n)->requestConfiguration(); } } // Do periodic tasks in submodules. if ((now - lastClean) >= ZT_DB_CLEAN_PERIOD) { lastClean = now; RR->topology->clean(now); RR->mc->clean(now); RR->nc->clean(); if (RR->updater) RR->updater->checkIfMaxIntervalExceeded(now); } // Send beacons to physical local LANs if ((resynchronize)||((now - lastBeacon) >= ZT_BEACON_INTERVAL)) { lastBeacon = now; char bcn[ZT_PROTO_BEACON_LENGTH]; void *bcnptr = bcn; *((uint32_t *)(bcnptr)) = RR->prng->next32(); bcnptr = bcn + 4; *((uint32_t *)(bcnptr)) = RR->prng->next32(); RR->identity.address().copyTo(bcn + ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH); TRACE("sending LAN beacon to %s",ZT_DEFAULTS.v4Broadcast.toString().c_str()); RR->antiRec->logOutgoingZT(bcn,ZT_PROTO_BEACON_LENGTH); RR->sm->send(ZT_DEFAULTS.v4Broadcast,false,false,bcn,ZT_PROTO_BEACON_LENGTH); } // Check for updates to root topology (supernodes) periodically if ((now - lastRootTopologyFetch) >= ZT_UPDATE_ROOT_TOPOLOGY_CHECK_INTERVAL) { lastRootTopologyFetch = now; if (!impl->disableRootTopologyUpdates) { TRACE("fetching root topology from %s",ZT_DEFAULTS.rootTopologyUpdateURL.c_str()); RR->http->GET(ZT_DEFAULTS.rootTopologyUpdateURL,HttpClient::NO_HEADERS,60,&_cbHandleGetRootTopology,RR); } } // Sleep for loop interval or until something interesting happens. try { unsigned long delay = std::min((unsigned long)ZT_MAX_SERVICE_LOOP_INTERVAL,RR->sw->doTimerTasks()); uint64_t start = Utils::now(); RR->sm->poll(delay,&_CBztTraffic,RR); lastDelayDelta = (long)(Utils::now() - start) - (long)delay; // used to detect sleep/wake } catch (std::exception &exc) { LOG("unexpected exception running Switch doTimerTasks: %s",exc.what()); } catch ( ... ) { LOG("unexpected exception running Switch doTimerTasks: (unknown)"); } } } catch ( ... ) { LOG("FATAL: unexpected exception in core loop: unknown exception"); return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"unexpected exception during outer main I/O loop"); } return impl->terminate(); } const char *Node::terminationMessage() const throw() { if ((!((_NodeImpl *)_impl)->started)||(((_NodeImpl *)_impl)->running)) return (const char *)0; return ((_NodeImpl *)_impl)->reasonForTerminationStr.c_str(); } void Node::terminate(ReasonForTermination reason,const char *reasonText) throw() { ((_NodeImpl *)_impl)->reasonForTermination = reason; ((_NodeImpl *)_impl)->reasonForTerminationStr = ((reasonText) ? reasonText : ""); ((_NodeImpl *)_impl)->renv.sm->whack(); } void Node::resync() throw() { ((_NodeImpl *)_impl)->resynchronize = true; ((_NodeImpl *)_impl)->renv.sm->whack(); } bool Node::online() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((!RR)||(!RR->initialized)) return false; uint64_t now = Utils::now(); uint64_t since = RR->timeOfLastResynchronize; std::vector< SharedPtr > snp(RR->topology->supernodePeers()); for(std::vector< SharedPtr >::const_iterator sn(snp.begin());sn!=snp.end();++sn) { uint64_t lastRec = (*sn)->lastDirectReceive(); if ((lastRec)&&(lastRec > since)&&((now - lastRec) < ZT_PEER_PATH_ACTIVITY_TIMEOUT)) return true; } return false; } bool Node::started() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; return impl->started; } bool Node::running() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; return impl->running; } bool Node::initialized() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); return ((RR)&&(RR->initialized)); } uint64_t Node::address() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((!RR)||(!RR->initialized)) return 0; return RR->identity.address().toInt(); } void Node::join(uint64_t nwid) throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((RR)&&(RR->initialized)) RR->nc->join(nwid); } void Node::leave(uint64_t nwid) throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((RR)&&(RR->initialized)) RR->nc->leave(nwid); } struct GatherPeerStatistics { uint64_t now; ZT1_Node_Status *status; inline void operator()(Topology &t,const SharedPtr &p) { ++status->knownPeers; if (p->hasActiveDirectPath(now)) ++status->directlyConnectedPeers; if (p->alive(now)) ++status->alivePeers; } }; void Node::status(ZT1_Node_Status *status) throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); memset(status,0,sizeof(ZT1_Node_Status)); if ((!RR)||(!RR->initialized)) return; Utils::scopy(status->publicIdentity,sizeof(status->publicIdentity),RR->identity.toString(false).c_str()); RR->identity.address().toString(status->address,sizeof(status->address)); status->rawAddress = RR->identity.address().toInt(); status->knownPeers = 0; status->supernodes = RR->topology->numSupernodes(); status->directlyConnectedPeers = 0; status->alivePeers = 0; GatherPeerStatistics gps; gps.now = Utils::now(); gps.status = status; RR->topology->eachPeer(gps); if (status->alivePeers > 0) { double dlsr = (double)status->directlyConnectedPeers / (double)status->alivePeers; if (dlsr > 1.0) dlsr = 1.0; if (dlsr < 0.0) dlsr = 0.0; status->directLinkSuccessRate = (float)dlsr; } else status->directLinkSuccessRate = 1.0f; // no connections to no active peers == 100% success at nothing status->online = online(); status->running = impl->running; status->initialized = true; } struct CollectPeersAndPaths { std::vector< std::pair< SharedPtr,std::vector > > data; inline void operator()(Topology &t,const SharedPtr &p) { this->data.push_back(std::pair< SharedPtr,std::vector >(p,p->paths())); } }; struct SortPeersAndPathsInAscendingAddressOrder { inline bool operator()(const std::pair< SharedPtr,std::vector > &a,const std::pair< SharedPtr,std::vector > &b) const { return (a.first->address() < b.first->address()); } }; ZT1_Node_PeerList *Node::listPeers() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((!RR)||(!RR->initialized)) return (ZT1_Node_PeerList *)0; CollectPeersAndPaths pp; RR->topology->eachPeer(pp); std::sort(pp.data.begin(),pp.data.end(),SortPeersAndPathsInAscendingAddressOrder()); unsigned int returnBufSize = sizeof(ZT1_Node_PeerList); for(std::vector< std::pair< SharedPtr,std::vector > >::iterator p(pp.data.begin());p!=pp.data.end();++p) returnBufSize += sizeof(ZT1_Node_Peer) + (sizeof(ZT1_Node_PhysicalPath) * (unsigned int)p->second.size()); char *buf = (char *)::malloc(returnBufSize); if (!buf) return (ZT1_Node_PeerList *)0; memset(buf,0,returnBufSize); ZT1_Node_PeerList *pl = (ZT1_Node_PeerList *)buf; buf += sizeof(ZT1_Node_PeerList); pl->peers = (ZT1_Node_Peer *)buf; buf += (sizeof(ZT1_Node_Peer) * pp.data.size()); pl->numPeers = 0; uint64_t now = Utils::now(); for(std::vector< std::pair< SharedPtr,std::vector > >::iterator p(pp.data.begin());p!=pp.data.end();++p) { ZT1_Node_Peer *prec = &(pl->peers[pl->numPeers++]); if (p->first->remoteVersionKnown()) Utils::snprintf(prec->remoteVersion,sizeof(prec->remoteVersion),"%u.%u.%u",p->first->remoteVersionMajor(),p->first->remoteVersionMinor(),p->first->remoteVersionRevision()); p->first->address().toString(prec->address,sizeof(prec->address)); prec->rawAddress = p->first->address().toInt(); prec->latency = p->first->latency(); prec->role = RR->topology->isSupernode(p->first->address()) ? ZT1_Node_Peer_SUPERNODE : ZT1_Node_Peer_NODE; prec->paths = (ZT1_Node_PhysicalPath *)buf; buf += sizeof(ZT1_Node_PhysicalPath) * p->second.size(); prec->numPaths = 0; for(std::vector::iterator pi(p->second.begin());pi!=p->second.end();++pi) { ZT1_Node_PhysicalPath *path = &(prec->paths[prec->numPaths++]); path->type = (ZT1_Node_PhysicalPathType)pi->type(); if (pi->address().isV6()) { path->address.type = ZT1_Node_PhysicalAddress_TYPE_IPV6; memcpy(path->address.bits,pi->address().rawIpData(),16); // TODO: zoneIndex not supported yet, but should be once echo-location works w/V6 } else { path->address.type = ZT1_Node_PhysicalAddress_TYPE_IPV4; memcpy(path->address.bits,pi->address().rawIpData(),4); } path->address.port = pi->address().port(); Utils::scopy(path->address.ascii,sizeof(path->address.ascii),pi->address().toIpString().c_str()); path->lastSend = (pi->lastSend() > 0) ? ((long)(now - pi->lastSend())) : (long)-1; path->lastReceive = (pi->lastReceived() > 0) ? ((long)(now - pi->lastReceived())) : (long)-1; path->lastPing = (pi->lastPing() > 0) ? ((long)(now - pi->lastPing())) : (long)-1; path->active = pi->active(now); path->fixed = pi->fixed(); } } return pl; } // Fills out everything but ips[] and numIps, which must be done more manually static void _fillNetworkQueryResultBuffer(const SharedPtr &network,const SharedPtr &nconf,ZT1_Node_Network *nbuf) { nbuf->nwid = network->id(); Utils::snprintf(nbuf->nwidHex,sizeof(nbuf->nwidHex),"%.16llx",(unsigned long long)network->id()); if (nconf) { Utils::scopy(nbuf->name,sizeof(nbuf->name),nconf->name().c_str()); Utils::scopy(nbuf->description,sizeof(nbuf->description),nconf->description().c_str()); } Utils::scopy(nbuf->device,sizeof(nbuf->device),network->tapDeviceName().c_str()); Utils::scopy(nbuf->statusStr,sizeof(nbuf->statusStr),Network::statusString(network->status())); network->mac().toString(nbuf->macStr,sizeof(nbuf->macStr)); network->mac().copyTo(nbuf->mac,sizeof(nbuf->mac)); uint64_t lcu = network->lastConfigUpdate(); if (lcu > 0) nbuf->configAge = (long)(Utils::now() - lcu); else nbuf->configAge = -1; nbuf->status = (ZT1_Node_NetworkStatus)network->status(); nbuf->enabled = network->enabled(); nbuf->isPrivate = (nconf) ? nconf->isPrivate() : true; } ZT1_Node_Network *Node::getNetworkStatus(uint64_t nwid) throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((!RR)||(!RR->initialized)) return (ZT1_Node_Network *)0; SharedPtr network(RR->nc->network(nwid)); if (!network) return (ZT1_Node_Network *)0; SharedPtr nconf(network->config2()); std::set ips(network->ips()); char *buf = (char *)::malloc(sizeof(ZT1_Node_Network) + (sizeof(ZT1_Node_PhysicalAddress) * ips.size())); if (!buf) return (ZT1_Node_Network *)0; memset(buf,0,sizeof(ZT1_Node_Network) + (sizeof(ZT1_Node_PhysicalAddress) * ips.size())); ZT1_Node_Network *nbuf = (ZT1_Node_Network *)buf; buf += sizeof(ZT1_Node_Network); _fillNetworkQueryResultBuffer(network,nconf,nbuf); nbuf->ips = (ZT1_Node_PhysicalAddress *)buf; nbuf->numIps = 0; for(std::set::iterator ip(ips.begin());ip!=ips.end();++ip) { ZT1_Node_PhysicalAddress *ipb = &(nbuf->ips[nbuf->numIps++]); if (ip->isV6()) { ipb->type = ZT1_Node_PhysicalAddress_TYPE_IPV6; memcpy(ipb->bits,ip->rawIpData(),16); } else { ipb->type = ZT1_Node_PhysicalAddress_TYPE_IPV4; memcpy(ipb->bits,ip->rawIpData(),4); } ipb->port = ip->port(); Utils::scopy(ipb->ascii,sizeof(ipb->ascii),ip->toIpString().c_str()); } return nbuf; } ZT1_Node_NetworkList *Node::listNetworks() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if ((!RR)||(!RR->initialized)) return (ZT1_Node_NetworkList *)0; std::vector< SharedPtr > networks(RR->nc->networks()); std::vector< SharedPtr > nconfs(networks.size()); std::vector< std::set > ipsv(networks.size()); unsigned long returnBufSize = sizeof(ZT1_Node_NetworkList); for(unsigned long i=0;iconfig2(); ipsv[i] = networks[i]->ips(); returnBufSize += sizeof(ZT1_Node_Network) + (sizeof(ZT1_Node_PhysicalAddress) * (unsigned int)ipsv[i].size()); } char *buf = (char *)::malloc(returnBufSize); if (!buf) return (ZT1_Node_NetworkList *)0; memset(buf,0,returnBufSize); ZT1_Node_NetworkList *nl = (ZT1_Node_NetworkList *)buf; buf += sizeof(ZT1_Node_NetworkList); nl->networks = (ZT1_Node_Network *)buf; buf += sizeof(ZT1_Node_Network) * networks.size(); for(unsigned long i=0;inetworks[nl->numNetworks++]); _fillNetworkQueryResultBuffer(networks[i],nconfs[i],nbuf); nbuf->ips = (ZT1_Node_PhysicalAddress *)buf; buf += sizeof(ZT1_Node_PhysicalAddress); nbuf->numIps = 0; for(std::set::iterator ip(ipsv[i].begin());ip!=ipsv[i].end();++ip) { ZT1_Node_PhysicalAddress *ipb = &(nbuf->ips[nbuf->numIps++]); if (ip->isV6()) { ipb->type = ZT1_Node_PhysicalAddress_TYPE_IPV6; memcpy(ipb->bits,ip->rawIpData(),16); } else { ipb->type = ZT1_Node_PhysicalAddress_TYPE_IPV4; memcpy(ipb->bits,ip->rawIpData(),4); } ipb->port = ip->port(); Utils::scopy(ipb->ascii,sizeof(ipb->ascii),ip->toIpString().c_str()); } } return nl; } void Node::freeQueryResult(void *qr) throw() { if (qr) ::free(qr); } bool Node::updateCheck() throw() { _NodeImpl *impl = (_NodeImpl *)_impl; RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv); if (RR->updater) { RR->updater->checkNow(); return true; } return false; } class _VersionStringMaker { public: char vs[32]; _VersionStringMaker() { Utils::snprintf(vs,sizeof(vs),"%d.%d.%d",(int)ZEROTIER_ONE_VERSION_MAJOR,(int)ZEROTIER_ONE_VERSION_MINOR,(int)ZEROTIER_ONE_VERSION_REVISION); } ~_VersionStringMaker() {} }; static const _VersionStringMaker __versionString; const char *Node::versionString() throw() { return __versionString.vs; } unsigned int Node::versionMajor() throw() { return ZEROTIER_ONE_VERSION_MAJOR; } unsigned int Node::versionMinor() throw() { return ZEROTIER_ONE_VERSION_MINOR; } unsigned int Node::versionRevision() throw() { return ZEROTIER_ONE_VERSION_REVISION; } } // namespace ZeroTier