/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2011-2014 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include "Peer.hpp" #include "Switch.hpp" #include "AntiRecursion.hpp" #include namespace ZeroTier { Peer::Peer() : _lastUsed(0), _lastUnicastFrame(0), _lastMulticastFrame(0), _lastAnnouncedTo(0), _vMajor(0), _vMinor(0), _vRevision(0), _latency(0) {} Peer::Peer(const Identity &myIdentity,const Identity &peerIdentity) throw(std::runtime_error) : _id(peerIdentity), _lastUsed(0), _lastUnicastFrame(0), _lastMulticastFrame(0), _lastAnnouncedTo(0), _vMajor(0), _vMinor(0), _vRevision(0), _latency(0) { if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH)) throw std::runtime_error("new peer identity key agreement failed"); } void Peer::receive( const RuntimeEnvironment *_r, const SharedPtr &fromSock, const InetAddress &remoteAddr, unsigned int hops, uint64_t packetId, Packet::Verb verb, uint64_t inRePacketId, Packet::Verb inReVerb, uint64_t now) { // Update system-wide last packet receive time *((const_cast(&(_r->timeOfLastPacketReceived)))) = now; // Learn paths from direct packets (hops == 0) if (!hops) { { Mutex::Lock _l(_lock); bool havePath = false; for(std::vector::iterator p(_paths.begin());p!=_paths.end();++p) { if ((p->address() == remoteAddr)&&(p->tcp() == fromSock->tcp())) { p->received(now); havePath = true; break; } } if (!havePath) { Path::Type pt = Path::PATH_TYPE_UDP; switch(fromSock->type()) { case Socket::ZT_SOCKET_TYPE_TCP_IN: pt = Path::PATH_TYPE_TCP_IN; break; case Socket::ZT_SOCKET_TYPE_TCP_OUT: pt = Path::PATH_TYPE_TCP_OUT; break; default: break; } _paths.push_back(Path(remoteAddr,pt,false)); _paths.back().received(now); } } // Announce multicast LIKEs to peers to whom we have a direct link // Lock can't be locked here or it'll recurse and deadlock. if ((now - _lastAnnouncedTo) >= ((ZT_MULTICAST_LIKE_EXPIRE / 2) - 1000)) { _lastAnnouncedTo = now; _r->sw->announceMulticastGroups(SharedPtr(this)); } } if ((verb == Packet::VERB_FRAME)||(verb == Packet::VERB_EXT_FRAME)) _lastUnicastFrame = now; else if (verb == Packet::VERB_MULTICAST_FRAME) _lastMulticastFrame = now; } Path::Type Peer::send(const RuntimeEnvironment *_r,const void *data,unsigned int len,uint64_t now) { Mutex::Lock _l(_lock); /* For sending ordinary packets, paths are divided into two categories: * "normal" and "TCP out." Normal includes UDP and incoming TCP. We want * to treat outbound TCP differently since if we use it it may end up * overriding UDP and UDP performs much better. We only want to initiate * TCP if it looks like UDP isn't available. */ Path *bestNormalPath = (Path *)0; Path *bestTcpOutPath = (Path *)0; uint64_t bestNormalPathLastReceived = 0; uint64_t bestTcpOutPathLastReceived = 0; for(std::vector::iterator p(_paths.begin());p!=_paths.end();++p) { uint64_t lr = p->lastReceived(); if (p->type() == Path::PATH_TYPE_TCP_OUT) { if (lr >= bestTcpOutPathLastReceived) { bestTcpOutPathLastReceived = lr; bestTcpOutPath = &(*p); } } else { if (lr >= bestNormalPathLastReceived) { bestNormalPathLastReceived = lr; bestNormalPath = &(*p); } } } Path *bestPath = (Path *)0; if (bestTcpOutPath) { // we have a TCP out path if (bestNormalPath) { // we have both paths, decide which to use if (_r->tcpTunnelingEnabled) { // TCP tunneling is enabled, so use normal path only if it looks alive if ((bestNormalPathLastReceived > _r->timeOfLastResynchronize)&&((now - bestNormalPathLastReceived) < ZT_PEER_PATH_ACTIVITY_TIMEOUT)) bestPath = bestNormalPath; else bestPath = bestTcpOutPath; } else { // TCP tunneling is disabled, use normal path bestPath = bestNormalPath; } } else { // we only have a TCP_OUT path, so use it regardless bestPath = bestTcpOutPath; } } else { // we only have a normal path (or none at all, that case is caught below) bestPath = bestNormalPath; } if (!bestPath) return Path::PATH_TYPE_NULL; _r->antiRec->logOutgoingZT(data,len); if (_r->sm->send(bestPath->address(),bestPath->tcp(),bestPath->type() == Path::PATH_TYPE_TCP_OUT,data,len)) { bestPath->sent(now); return bestPath->type(); } return Path::PATH_TYPE_NULL; } bool Peer::sendFirewallOpener(const RuntimeEnvironment *_r,uint64_t now) { bool sent = false; Mutex::Lock _l(_lock); for(std::vector::iterator p(_paths.begin());p!=_paths.end();++p) { if (p->type() == Path::PATH_TYPE_UDP) { for(unsigned int h=1;h<=ZT_FIREWALL_OPENER_HOPS;++h) sent |= _r->sm->sendFirewallOpener(p->address(),h); } } return sent; } bool Peer::sendPing(const RuntimeEnvironment *_r,uint64_t now) { bool sent = false; SharedPtr self(this); Mutex::Lock _l(_lock); /* Ping (and thus open) outbound TCP connections if we have no other options * or if the TCP tunneling master switch is enabled and pings have been * unanswered for ZT_TCP_TUNNEL_FAILOVER_TIMEOUT ms over normal channels. */ uint64_t lastNormalPingSent = 0; uint64_t lastNormalReceive = 0; bool haveNormal = false; for(std::vector::const_iterator p(_paths.begin());p!=_paths.end();++p) { if (p->type() != Path::PATH_TYPE_TCP_OUT) { lastNormalPingSent = std::max(lastNormalPingSent,p->lastPing()); lastNormalReceive = std::max(lastNormalReceive,p->lastReceived()); haveNormal = true; } } const bool useTcpOut = ( (!haveNormal) || ( (_r->tcpTunnelingEnabled) && (lastNormalPingSent > _r->timeOfLastResynchronize) && (lastNormalPingSent > lastNormalReceive) && ((lastNormalPingSent - lastNormalReceive) >= ZT_TCP_TUNNEL_FAILOVER_TIMEOUT) ) ); TRACE("PING %s (useTcpOut==%d)",_id.address().toString().c_str(),(int)useTcpOut); for(std::vector::iterator p(_paths.begin());p!=_paths.end();++p) { if ((useTcpOut)||(p->type() != Path::PATH_TYPE_TCP_OUT)) { p->pinged(now); // attempts to ping are logged whether they look successful or not if (_r->sw->sendHELLO(self,*p)) { p->sent(now); sent = true; } } } return sent; } void Peer::clean(uint64_t now) { Mutex::Lock _l(_lock); unsigned long i = 0,o = 0,l = (unsigned long)_paths.size(); while (i != l) { if (_paths[i].active(now)) // active includes fixed _paths[o++] = _paths[i]; ++i; } _paths.resize(o); } void Peer::getBestActiveUdpPathAddresses(uint64_t now,InetAddress &v4,InetAddress &v6) const { uint64_t bestV4 = 0,bestV6 = 0; Mutex::Lock _l(_lock); for(std::vector::const_iterator p(_paths.begin());p!=_paths.end();++p) { if ((p->type() == Path::PATH_TYPE_UDP)&&(p->active(now))) { uint64_t lr = p->lastReceived(); if (lr) { if (p->address().isV4()) { if (lr >= bestV4) { bestV4 = lr; v4 = p->address(); } } else if (p->address().isV6()) { if (lr >= bestV6) { bestV6 = lr; v6 = p->address(); } } } } } } } // namespace ZeroTier