/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef ZT_NETWORKCONFIG_HPP #define ZT_NETWORKCONFIG_HPP #include #include #include #include #include #include "../include/ZeroTierOne.h" #include "Constants.hpp" #include "Buffer.hpp" #include "InetAddress.hpp" #include "MulticastGroup.hpp" #include "Address.hpp" #include "CertificateOfMembership.hpp" #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF #include "Dictionary.hpp" #include #endif /** * First byte of V2 binary-serialized network configs * * This will never begin a Dictionary, so it serves to distinguish. */ #define ZT_NETWORKCONFIG_V2_MARKER_BYTE 0x00 /** * Flag: allow passive bridging (experimental) */ #define ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING 0x0001 /** * Flag: enable broadcast */ #define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0002 /** * Device is a network preferred relay */ #define ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY 0x0000010000000000ULL /** * Device is an active bridge */ #define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE 0x0000020000000000ULL /** * This device is allowed to send packets from any Ethernet MAC, including ZeroTier-reserved ones */ #define ZT_NETWORKCONFIG_SPECIALIST_TYPE_IMPOSTOR 0x0000040000000000ULL namespace ZeroTier { #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF // Fields for meta-data sent with network config requests #define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION "majv" #define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION "minv" #define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION "revv" // These dictionary keys are short so they don't take up much room in // netconf response packets. // integer(hex)[,integer(hex),...] #define ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES "et" // network ID #define ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID "nwid" // integer(hex) #define ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP "ts" // integer(hex) #define ZT_NETWORKCONFIG_DICT_KEY_REVISION "r" // address of member #define ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO "id" // integer(hex) #define ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT "ml" // 0/1 #define ZT_NETWORKCONFIG_DICT_KEY_PRIVATE "p" // text #define ZT_NETWORKCONFIG_DICT_KEY_NAME "n" // text #define ZT_NETWORKCONFIG_DICT_KEY_DESC "d" // IP/bits[,IP/bits,...] // Note that IPs that end in all zeroes are routes with no assignment in them. #define ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC "v4s" // IP/bits[,IP/bits,...] // Note that IPs that end in all zeroes are routes with no assignment in them. #define ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC "v6s" // serialized CertificateOfMembership #define ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP "com" // 0/1 #define ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST "eb" // 0/1 #define ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING "pb" // node[,node,...] #define ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES "ab" // node;IP/port[,node;IP/port] #define ZT_NETWORKCONFIG_DICT_KEY_RELAYS "rl" // IP/metric[,IP/metric,...] #define ZT_NETWORKCONFIG_DICT_KEY_GATEWAYS "gw" #endif // ZT_SUPPORT_OLD_STYLE_NETCONF /** * Network configuration received from network controller nodes * * This is a memcpy()'able structure and is safe (in a crash sense) to modify * without locks. */ class NetworkConfig { public: /** * Network preferred relay with optional physical endpoint addresses */ struct Relay { Address address; InetAddress phy4,phy6; }; /** * Create an instance of a NetworkConfig for the test network ID * * The test network ID is defined as ZT_TEST_NETWORK_ID. This is a * "fake" network with no real controller and default options. * * @param self This node's ZT address * @return Configuration for test network ID */ static inline NetworkConfig createTestNetworkConfig(const Address &self) { NetworkConfig nc; nc._nwid = ZT_TEST_NETWORK_ID; nc._timestamp = 1; nc._revision = 1; nc._issuedTo = self; nc._multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT; nc._flags = ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST; nc._type = ZT_NETWORK_TYPE_PUBLIC; nc._rules[nc._ruleCount].t = ZT_NETWORK_RULE_ACTION_ACCEPT; nc._ruleCount = 1; Utils::snprintf(nc._name,sizeof(nc._name),"ZT_TEST_NETWORK"); // Make up a V4 IP from 'self' in the 10.0.0.0/8 range -- no // guarantee of uniqueness but collisions are unlikely. uint32_t ip = (uint32_t)((self.toInt() & 0x00ffffff) | 0x0a000000); // 10.x.x.x if ((ip & 0x000000ff) == 0x000000ff) ip ^= 0x00000001; // but not ending in .255 if ((ip & 0x000000ff) == 0x00000000) ip ^= 0x00000001; // or .0 nc._staticIps[0] = InetAddress(Utils::hton(ip),8); // Assign an RFC4193-compliant IPv6 address -- will never collide nc._staticIps[1] = InetAddress::makeIpv6rfc4193(ZT_TEST_NETWORK_ID,self.toInt()); nc._staticIpCount = 2; return nc; } NetworkConfig() { memset(this,0,sizeof(NetworkConfig)); } NetworkConfig(const NetworkConfig &nc) { memcpy(this,&nc,sizeof(NetworkConfig)); } inline NetworkConfig &operator=(const NetworkConfig &nc) { memcpy(this,&nc,sizeof(NetworkConfig)); return *this; } /** * @param etherType Ethernet frame type to check * @return True if allowed on this network */ inline bool permitsEtherType(unsigned int etherType) const { unsigned int et = 0; for(unsigned int i=0;i<_ruleCount;++i) { ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f); if (rt == ZT_NETWORK_RULE_MATCH_ETHERTYPE) { et = _rules[i].v.etherType; } else if (rt == ZT_NETWORK_RULE_ACTION_ACCEPT) { if ((!et)||(et == etherType)) return true; et = 0; } } return false; } /** * @return Network ID that this config applies to */ inline uint64_t networkId() const throw() { return _nwid; } /** * @return Timestamp of this config (controller-side) */ inline uint64_t timestamp() const throw() { return _timestamp; } /** * @return Config revision number */ inline uint64_t revision() const throw() { return _revision; } /** * @return ZeroTier address of device to which this config was issued */ inline const Address &issuedTo() const throw() { return _issuedTo; } /** * @return Maximum number of multicast recipients or 0 to disable multicast */ inline unsigned int multicastLimit() const throw() { return _multicastLimit; } /** * @return True if passive bridging is allowed (experimental) */ inline bool allowPassiveBridging() const throw() { return ((_flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0); } /** * @return True if broadcast (ff:ff:ff:ff:ff:ff) address should work on this network */ inline bool enableBroadcast() const throw() { return ((_flags & ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST) != 0); } /** * @return Type of network (currently public or private) */ inline ZT_VirtualNetworkType type() const throw() { return _type; } /** * @return Network type is public (no access control) */ inline bool isPublic() const throw() { return (_type == ZT_NETWORK_TYPE_PUBLIC); } /** * @return Network type is private (certificate access control) */ inline bool isPrivate() const throw() { return (_type == ZT_NETWORK_TYPE_PRIVATE); } /** * @return Short network name */ inline const char *name() const throw() { return _name; } /** * @return Network certificate of membership or NULL COM object if none (public network) */ inline const CertificateOfMembership &com() const throw() { return _com; } /** * @return Network/netmask routes that are considered local to this virtual LAN interface */ inline std::vector localRoutes() const { std::vector r; for(unsigned int i=0;i<_localRouteCount;++i) r.push_back(_localRoutes[i]); return r; } /** * @return ZeroTier-managed static IPs assigned to this device on this network */ inline std::vector staticIps() const { std::vector r; for(unsigned int i=0;i<_staticIpCount;++i) r.push_back(_staticIps[i]); return r; } /** * @return ZeroTier-managed default gateways (for full tunnel) available on this network */ inline std::vector gateways() const { std::vector r; for(unsigned int i=0;i<_gatewayCount;++i) r.push_back(_gateways[i]); return r; } /** * @return ZeroTier addresses of devices on this network designated as active bridges */ inline std::vector
activeBridges() const { std::vector
r; for(unsigned int i=0;i<_specialistCount;++i) { if ((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0) r.push_back(Address(_specialists[i])); } return r; } /** * Look up a static physical address for a given ZeroTier address * * @param zt ZeroTier address * @param af Address family (e.g. AF_INET) or 0 for the first we find of any type * @return Physical address, if any */ inline InetAddress staticPhysicalAddress(const Address &zt,unsigned int af) const { for(unsigned int i=0;i<_staticCount;++i) { if (_static[i].zt == zt) { if ((af == 0)||((unsigned int)_static[i].phy.ss_family == af)) return _static[i].phy; } } return InetAddress(); } /** * @return Network-preferred relays for this network (if none, only roots will be used) */ inline std::vector relays() const { std::vector r; for(unsigned int i=0;i<_specialistCount;++i) { if ((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) { r.push_back(Relay()); r.back().address = _specialists[i]; r.back().phy4 = staticPhysicalAddress(r.back().address,AF_INET); r.back().phy6 = staticPhysicalAddress(r.back().address,AF_INET6); } } return r; } /** * @param fromPeer Peer attempting to bridge other Ethernet peers onto network * @return True if this network allows bridging */ inline bool permitsBridging(const Address &fromPeer) const { if ((_flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0) return true; for(unsigned int i=0;i<_specialistCount;++i) { if ((fromPeer == _specialists[i])&&((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)) return true; } return false; } /** * Iterate through relays efficiently * * @param ptr Value-result parameter -- start by initializing with zero, then call until return is null * @return Address of relay or NULL if no more */ Address nextRelay(unsigned int &ptr) const { while (ptr < _specialistCount) { if ((_specialists[ptr] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) { return Address(_specialists[ptr]); } ++ptr; } return Address(); } /** * @param zt ZeroTier address * @return True if this address is a relay */ bool isRelay(const Address &zt) const { for(unsigned int i=0;i<_specialistCount;++i) { if ((zt == _specialists[i])&&((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0)) return true; } return false; } /** * @return True if this network config is non-NULL */ inline operator bool() const throw() { return (_nwid != 0); } inline bool operator==(const NetworkConfig &nc) const { return (memcmp(this,&nc,sizeof(NetworkConfig)) == 0); } inline bool operator!=(const NetworkConfig &nc) const { return (!(*this == nc)); } template inline void serialize(Buffer &b) const { b.append((uint8_t)ZT_NETWORKCONFIG_V2_MARKER_BYTE); b.append((uint16_t)0); // version b.append((uint64_t)_nwid); b.append((uint64_t)_timestamp); b.append((uint64_t)_revision); _issuedTo.appendTo(b); b.append((uint32_t)_multicastLimit); b.append((uint32_t)_flags); b.append((uint8_t)_type); unsigned int nl = (unsigned int)strlen(_name); if (nl > 255) nl = 255; // sanity check b.append((uint8_t)nl); b.append((const void *)_name,nl); b.append((uint16_t)_specialistCount); for(unsigned int i=0;i<_specialistCount;++i) b.append((uint64_t)_specialists[i]); b.append((uint16_t)_localRouteCount); for(unsigned int i=0;i<_localRouteCount;++i) _localRoutes[i].serialize(b); b.append((uint16_t)_staticIpCount); for(unsigned int i=0;i<_staticIpCount;++i) _staticIps[i].serialize(b); b.append((uint16_t)_gatewayCount); for(unsigned int i=0;i<_gatewayCount;++i) _gateways[i].serialize(b); b.append((uint16_t)_staticCount); for(unsigned int i=0;i<_staticCount;++i) { _static[i].zt.appendTo(b); _static[i].phy.serialize(b); } b.append((uint16_t)_ruleCount); for(unsigned int i=0;i<_ruleCount;++i) { b.append((uint8_t)_rules[i].t); switch((ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f)) { //case ZT_NETWORK_RULE_ACTION_DROP: //case ZT_NETWORK_RULE_ACTION_ACCEPT: default: b.append((uint8_t)0); break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: b.append((uint8_t)5); Address(_rules[i].v.zt).appendTo(b); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: b.append((uint8_t)2); b.append((uint16_t)_rules[i].v.vlanId); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.vlanPcp); break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.vlanDei); break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: b.append((uint8_t)2); b.append((uint16_t)_rules[i].v.etherType); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: b.append((uint8_t)6); b.append(_rules[i].v.mac,6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: b.append((uint8_t)5); b.append(&(_rules[i].v.ipv4.ip),4); b.append((uint8_t)_rules[i].v.ipv4.mask); break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: b.append((uint8_t)17); b.append(_rules[i].v.ipv6.ip,16); b.append((uint8_t)_rules[i].v.ipv6.mask); break; case ZT_NETWORK_RULE_MATCH_IP_TOS: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.ipTos); break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.ipProtocol); break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: b.append((uint8_t)4); b.append((uint16_t)_rules[i].v.port[0]); b.append((uint16_t)_rules[i].v.port[1]); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: b.append((uint8_t)8); b.append((uint64_t)_rules[i].v.characteristics); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: b.append((uint8_t)4); b.append((uint16_t)_rules[i].v.frameSize[0]); b.append((uint16_t)_rules[i].v.frameSize[1]); break; } } b.append((uint16_t)0); // extended bytes, currently 0 since unused } template inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0) { memset(this,0,sizeof(NetworkConfig)); unsigned int p = startAt; if (b[p++] != ZT_NETWORKCONFIG_V2_MARKER_BYTE) throw std::invalid_argument("use fromDictionary() for old style netconf deserialization"); if (b.template at(p) != 0) throw std::invalid_argument("unrecognized version"); p += 2; _nwid = b.template at(p); p += 8; _timestamp = b.template at(p); p += 8; _revision = b.template at(p); p += 8; _issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; _multicastLimit = (unsigned int)b.template at(p); p += 4; _flags = (unsigned int)b.template at(p); p += 4; _type = (ZT_VirtualNetworkType)b[p++]; unsigned int nl = (unsigned int)b[p++]; if (nl > ZT_MAX_NETWORK_SHORT_NAME_LENGTH) nl = ZT_MAX_NETWORK_SHORT_NAME_LENGTH; memcpy(_name,b.field(p,nl),nl); // _name will always be null terminated since field size is ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1 _specialistCount = (unsigned int)b.template at(p); p += 2; if (_specialistCount > ZT_MAX_NETWORK_SPECIALISTS) throw std::invalid_argument("overflow (specialists)"); for(unsigned int i=0;i<_specialistCount;++i) { _specialists[i] = b.template at(p); p += 8; } _localRouteCount = (unsigned int)b.template at(p); p += 2; if (_localRouteCount > ZT_MAX_NETWORK_LOCAL_ROUTES) throw std::invalid_argument("overflow (local routes)"); for(unsigned int i=0;i<_localRouteCount;++i) { p += _localRoutes[i].deserialize(b,p); } _staticIpCount = (unsigned int)b.template at(p); p += 2; if (_staticIpCount > ZT_MAX_ZT_ASSIGNED_ADDRESSES) throw std::invalid_argument("overflow (static IPs)"); for(unsigned int i=0;i<_staticIpCount;++i) { p += _staticIps[i].deserialize(b,p); } _gatewayCount = (unsigned int)b.template at(p); p += 2; if (_gatewayCount > ZT_MAX_NETWORK_GATEWAYS) throw std::invalid_argument("overflow (gateways)"); for(unsigned int i=0;i<_gatewayCount;++i) { p += _gateways[i].deserialize(b,p); } _staticCount = (unsigned int)b.template at(p); p += 2; if (_staticCount > ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES) throw std::invalid_argument("overflow (static addresses)"); for(unsigned int i=0;i<_staticCount;++i) { } _ruleCount = (unsigned int)b.template at(p); p += 2; if (_ruleCount > ZT_MAX_NETWORK_RULES) throw std::invalid_argument("overflow (rules)"); for(unsigned int i=0;i<_ruleCount;++i) { _rules[i].t = (uint8_t)b[p++]; unsigned int rlen = (unsigned int)b[p++]; switch((ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f)) { //case ZT_NETWORK_RULE_ACTION_DROP: //case ZT_NETWORK_RULE_ACTION_ACCEPT: default: break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: { Address tmp; tmp.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); _rules[i].v.zt = tmp.toInt(); } break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: _rules[i].v.vlanId = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: _rules[i].v.vlanPcp = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: _rules[i].v.vlanDei = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: _rules[i].v.etherType = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: memcpy(_rules[i].v.mac,b.field(p,6),6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: memcpy(&(_rules[i].v.ipv4.ip),b.field(p,4),4); _rules[i].v.ipv4.mask = (uint8_t)b[p+4]; break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: memcpy(_rules[i].v.ipv6.ip,b.field(p,16),16); _rules[i].v.ipv6.mask = (uint8_t)b[p+16]; break; case ZT_NETWORK_RULE_MATCH_IP_TOS: _rules[i].v.ipTos = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: _rules[i].v.ipProtocol = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: _rules[i].v.port[0] = b.template at(p); _rules[i].v.port[1] = b.template at(p+2); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: _rules[i].v.characteristics = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: _rules[i].v.frameSize[0] = b.template at(p); _rules[i].v.frameSize[1] = b.template at(p+2); break; } p += rlen; } p += b.template at(p) + 2; return (p - startAt); } #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF void fromDictionary(const char *ds,unsigned int dslen); #endif protected: // protected so that a subclass can fill this out in network controller code uint64_t _nwid; uint64_t _timestamp; uint64_t _revision; Address _issuedTo; unsigned int _multicastLimit; unsigned int _flags; ZT_VirtualNetworkType _type; char _name[ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1]; // Special ZeroTier addresses -- most significant 40 bits are address, least 24 are specialist type flags uint64_t _specialists[ZT_MAX_NETWORK_SPECIALISTS]; // ZeroTier-managed IPs and routing table entries and stuff InetAddress _localRoutes[ZT_MAX_NETWORK_LOCAL_ROUTES]; InetAddress _staticIps[ZT_MAX_ZT_ASSIGNED_ADDRESSES]; InetAddress _gateways[ZT_MAX_NETWORK_GATEWAYS]; // ZeroTier to physical static mappings struct { Address zt; InetAddress phy; } _static[ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES]; // Network rules (only Ethernet type filtering is currently supported) ZT_VirtualNetworkRule _rules[ZT_MAX_NETWORK_RULES]; unsigned int _specialistCount; unsigned int _localRouteCount; unsigned int _staticIpCount; unsigned int _gatewayCount; unsigned int _staticCount; unsigned int _ruleCount; CertificateOfMembership _com; }; } // namespace ZeroTier #endif