/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include "NetconEthernetTap.hpp" #include "../node/Utils.hpp" #include "../osdep/OSUtils.hpp" #include "../osdep/Phy.hpp" #include "Intercept.h" #include "LWIPStack.hpp" #include "lwip/tcp_impl.h" #include "netif/etharp.h" #include "lwip/api.h" #include "lwip/ip.h" #include "lwip/ip_addr.h" #include "lwip/ip_frag.h" #include "lwip/tcp.h" #include "common.inc.c" #define APPLICATION_POLL_FREQ 20 #define ZT_LWIP_TCP_TIMER_INTERVAL 5 #define STATUS_TMR_INTERVAL 3000 // How often we check connection statuses namespace ZeroTier { // --------------------------------------------------------------------------- /* static void clearscreen(){ fprintf(stderr, "\033[2J"); } static void gotoxy(int x,int y) { fprintf(stderr, "%c[%d;%df",0x1B,y,x); } */ // Gets the process/path name associated with a pid static void get_path_from_pid(char* dest, int pid) { char ppath[80]; sprintf(ppath, "/proc/%d/exe", pid); if (readlink (ppath, dest, 80) != -1){ } } // Gets the process/path name associated with a fd /* static void get_path_from_fd(char* dest, int pid, int fd) { char ppfd[80]; sprintf(ppfd, "/proc/%d/fd/%d", pid, fd); if (readlink (ppfd, dest, 80) != -1){ } } */ static err_t tapif_init(struct netif *netif) { // Actual init functionality is in addIp() of tap return ERR_OK; } static err_t low_level_output(struct netif *netif, struct pbuf *p) { struct pbuf *q; char buf[ZT_MAX_MTU+32]; char *bufptr; int tot_len = 0; ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state; /* initiate transfer(); */ bufptr = buf; for(q = p; q != NULL; q = q->next) { /* Send the data from the pbuf to the interface, one pbuf at a time. The size of the data in each pbuf is kept in the ->len variable. */ /* send data from(q->payload, q->len); */ memcpy(bufptr, q->payload, q->len); bufptr += q->len; tot_len += q->len; } // [Send packet to network] // Split ethernet header and feed into handler struct eth_hdr *ethhdr; ethhdr = (struct eth_hdr *)buf; ZeroTier::MAC src_mac; ZeroTier::MAC dest_mac; src_mac.setTo(ethhdr->src.addr, 6); dest_mac.setTo(ethhdr->dest.addr, 6); tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),tot_len - sizeof(struct eth_hdr)); return ERR_OK; } /* * TCP connection administered by service */ class TcpConnection { public: int perceived_fd; int their_fd; bool pending; bool listening; int pid; unsigned long written; unsigned long acked; PhySocket *rpcSock; PhySocket *dataSock; struct tcp_pcb *pcb; unsigned char buf[DEFAULT_READ_BUFFER_SIZE]; int idx; }; /* * A helper class for passing a reference to _phy to LWIP callbacks as a "state" */ class Larg { public: NetconEthernetTap *tap; TcpConnection *conn; Larg(NetconEthernetTap *_tap, TcpConnection *conn) : tap(_tap), conn(conn) {} }; // --------------------------------------------------------------------------- NetconEthernetTap::NetconEthernetTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int), void *arg) : _nwid(nwid), _handler(handler), _arg(arg), _phy(this,false,true), _unixListenSocket((PhySocket *)0), _mac(mac), _homePath(homePath), _mtu(mtu), _enabled(true), _run(true) { char sockPath[4096],lwipPath[4096]; rpc_counter = -1; Utils::snprintf(sockPath,sizeof(sockPath),"/tmp/.ztnc_%.16llx",_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid); _dev = sockPath; // in netcon mode, set device to be just the network ID Utils::snprintf(lwipPath,sizeof(lwipPath),"%s%sliblwip.so",homePath,ZT_PATH_SEPARATOR_S); lwipstack = new LWIPStack(lwipPath); if(!lwipstack) throw std::runtime_error("unable to dynamically load a new instance of liblwip.so (searched ZeroTier home path)"); lwipstack->lwip_init(); _unixListenSocket = _phy.unixListen(sockPath,(void *)this); dwr(MSG_INFO, " NetconEthernetTap initialized!\n", _phy.getDescriptor(_unixListenSocket)); if (!_unixListenSocket) throw std::runtime_error(std::string("unable to bind to ")+sockPath); _thread = Thread::start(this); } NetconEthernetTap::~NetconEthernetTap() { _run = false; _phy.whack(); _phy.whack(); Thread::join(_thread); _phy.close(_unixListenSocket,false); delete lwipstack; } void NetconEthernetTap::setEnabled(bool en) { _enabled = en; } bool NetconEthernetTap::enabled() const { return _enabled; } bool NetconEthernetTap::addIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) { _ips.push_back(ip); std::sort(_ips.begin(),_ips.end()); if (ip.isV4()) { // Set IP static ip_addr_t ipaddr, netmask, gw; IP4_ADDR(&gw,192,168,0,1); ipaddr.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); // Set up the lwip-netif for LWIP's sake lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input); interface.state = this; interface.output = lwipstack->_etharp_output; _mac.copyTo(interface.hwaddr, 6); interface.mtu = _mtu; interface.name[0] = 't'; interface.name[1] = 'p'; interface.linkoutput = low_level_output; interface.hwaddr_len = 6; interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP; lwipstack->netif_set_default(&interface); lwipstack->netif_set_up(&interface); } } return true; } bool NetconEthernetTap::removeIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip)); if (i == _ips.end()) return false; _ips.erase(i); if (ip.isV4()) { // TODO: dealloc from LWIP } return true; } std::vector NetconEthernetTap::ips() const { Mutex::Lock _l(_ips_m); return _ips; } void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { struct pbuf *p,*q; if (!_enabled) return; struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); // We allocate a pbuf chain of pbufs from the pool. p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL); if (p != NULL) { const char *dataptr = reinterpret_cast(data); // First pbuf gets ethernet header at start q = p; if (q->len < sizeof(ethhdr)) { dwr(MSG_ERROR, "_put(): Dropped packet: first pbuf smaller than ethernet header\n"); return; } memcpy(q->payload,ðhdr,sizeof(ethhdr)); memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr)); dataptr += q->len - sizeof(ethhdr); // Remaining pbufs (if any) get rest of data while ((q = q->next)) { memcpy(q->payload,dataptr,q->len); dataptr += q->len; } } else { dwr(MSG_ERROR, "put(): Dropped packet: no pbufs available\n"); return; } { Mutex::Lock _l2(lwipstack->_lock); if(interface.input(p, &interface) != ERR_OK) { dwr(MSG_ERROR, "put(): Error while RXing packet (netif->input)\n"); } } } std::string NetconEthernetTap::deviceName() const { return _dev; } void NetconEthernetTap::setFriendlyName(const char *friendlyName) { } void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed) { std::vector newGroups; Mutex::Lock _l(_multicastGroups_m); // TODO: get multicast subscriptions from LWIP std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } TcpConnection *NetconEthernetTap::getConnectionByTheirFD(PhySocket *sock, int fd) { for(size_t i=0; iperceived_fd == fd && tcp_connections[i]->rpcSock == sock) return tcp_connections[i]; } return NULL; } /* * Dumps service state in 80x25 when debug mode is off */ void NetconEthernetTap::compact_dump() { /* clearscreen(); gotoxy(0,0); fprintf(stderr, "ZeroTier - Network Containers Service [State Dump]\n\r"); fprintf(stderr, " RPC Sockets = %d\n\r", rpc_sockets.size()); fprintf(stderr, " TCP Connections = %d\n\r", tcp_connections.size()); for(size_t i=0; ipid); if(tcp_connections[j]->rpcSock==rpc_sockets[i]) { fprintf(stderr, "\t\tpath\t\t= %s\n", buf); } } } */ for(size_t i=0; irpcSock) == _phy.getDescriptor(rpc_sockets[i])) fprintf(stderr, "\t(%d) ----> (%d)\n\n", _phy.getDescriptor(tcp_connections[j]->dataSock), tcp_connections[j]->perceived_fd); } } } /* * Dumps service state */ void NetconEthernetTap::dump() { fprintf(stderr, "\n\n---\n\ndie(): BEGIN SERVICE STATE DUMP\n"); fprintf(stderr, "*** IF YOU SEE THIS, EMAIL THE DUMP TEXT TO joseph.henry@zerotier.com ***\n"); fprintf(stderr, " tcp_conns = %lu, rpc_socks = %lu\n", tcp_connections.size(), rpc_sockets.size()); // TODO: Add logic to detect bad mapping conditions for(size_t i=0; ipid); if(tcp_connections[j]->rpcSock==rpc_sockets[i]){ fprintf(stderr, " |\n"); fprintf(stderr, " |-Connection(0x%p):\n", tcp_connections[j]); fprintf(stderr, " | path\t\t\t= %s\n", buf); fprintf(stderr, " | perceived_fd\t\t= %d\t(fd)\n", tcp_connections[j]->perceived_fd); fprintf(stderr, " | their_fd\t\t= %d\t(fd)\n", tcp_connections[j]->their_fd); fprintf(stderr, " | dataSock(0x%p)\t= %d\t(fd)\n", tcp_connections[j]->dataSock, _phy.getDescriptor(tcp_connections[j]->dataSock)); fprintf(stderr, " | rpcSock(0x%p)\t= %d\t(fd)\n", tcp_connections[j]->rpcSock, _phy.getDescriptor(tcp_connections[j]->rpcSock)); fprintf(stderr, " | pending\t\t= %d\n", tcp_connections[j]->pending); fprintf(stderr, " | listening\t\t= %d\n", tcp_connections[j]->listening); fprintf(stderr, " \\------pcb(0x%p)->state\t= %d\n", tcp_connections[j]->pcb, tcp_connections[j]->pcb->state); } } } fprintf(stderr, "\n\ndie(): END SERVICE STATE DUMP\n\n---\n\n"); } /* * Dumps service state and then exits */ void NetconEthernetTap::die(int exret) { dump(); exit(exret); } /* * Closes a TcpConnection and associated LWIP PCB strcuture. */ void NetconEthernetTap::closeConnection(TcpConnection *conn) { if(!conn) return; dwr(MSG_DEBUG, " closeConnection(%x, %d)\n", conn->pcb, _phy.getDescriptor(conn->dataSock)); //lwipstack->_tcp_sent(conn->pcb, NULL); //lwipstack->_tcp_recv(conn->pcb, NULL); //lwipstack->_tcp_err(conn->pcb, NULL); //lwipstack->_tcp_poll(conn->pcb, NULL, 0); //lwipstack->_tcp_arg(conn->pcb, NULL); if(lwipstack->_tcp_close(conn->pcb) != ERR_OK) { dwr(MSG_ERROR, " closeConnection(): Error while calling tcp_close()\n"); exit(0); } else { if(conn->dataSock) { close(_phy.getDescriptor(conn->dataSock)); _phy.close(conn->dataSock,false); } /* Eventually we might want to use a map here instead */ for(int i=0; i void NetconEthernetTap::threadMain() throw() { uint64_t prev_tcp_time = 0; uint64_t prev_status_time = 0; uint64_t prev_etharp_time = 0; /* fprintf(stderr, "- MEM_SIZE = %dM\n", MEM_SIZE / (1024*1024)); fprintf(stderr, "- PBUF_POOL_SIZE = %d\n", PBUF_POOL_SIZE); fprintf(stderr, "- PBUF_POOL_BUFSIZE = %d\n", PBUF_POOL_BUFSIZE); fprintf(stderr, "- MEMP_NUM_PBUF = %d\n", MEMP_NUM_PBUF); fprintf(stderr, "- MEMP_NUM_TCP_PCB = %d\n", MEMP_NUM_TCP_PCB); fprintf(stderr, "- MEMP_NUM_TCP_PCB_LISTEN = %d\n", MEMP_NUM_TCP_PCB_LISTEN); fprintf(stderr, "- MEMP_NUM_TCP_SEG = %d\n\n", MEMP_NUM_TCP_SEG); fprintf(stderr, "- TCP_SND_BUF = %dK\n", TCP_SND_BUF / 1024); fprintf(stderr, "- TCP_SND_QUEUELEN = %d\n\n", TCP_SND_QUEUELEN); fprintf(stderr, "- TCP_WND = %d\n", TCP_WND); fprintf(stderr, "- TCP_MSS = %d\n", TCP_MSS); fprintf(stderr, "- TCP_MAXRTX = %d\n", TCP_MAXRTX); fprintf(stderr, "- IP_REASSEMBLY = %d\n\n", IP_REASSEMBLY); fprintf(stderr, "- ARP_TMR_INTERVAL = %d\n", ARP_TMR_INTERVAL); fprintf(stderr, "- TCP_TMR_INTERVAL = %d\n", TCP_TMR_INTERVAL); fprintf(stderr, "- IP_TMR_INTERVAL = %d\n", IP_TMR_INTERVAL); */ // Main timer loop while (_run) { uint64_t now = OSUtils::now(); uint64_t since_tcp = now - prev_tcp_time; uint64_t since_etharp = now - prev_etharp_time; uint64_t since_status = now - prev_status_time; uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL; uint64_t etharp_remaining = ARP_TMR_INTERVAL; uint64_t status_remaining = STATUS_TMR_INTERVAL; // Connection prunning if (since_status >= STATUS_TMR_INTERVAL) { //compact_dump(); prev_status_time = now; status_remaining = STATUS_TMR_INTERVAL - since_status; if(rpc_sockets.size() || tcp_connections.size()) { // dump(); // Here we will periodically check the list of rpc_sockets for those that // do not currently have any data connection associated with them. If they are // unused, then we will try to read from them, if they fail, we can safely assume // that the client has closed their end and we can close ours for(size_t i = 0; ilistening) { char c; if (read(_phy.getDescriptor(tcp_connections[i]->dataSock), &c, 1) < 0) { // Still in listening state } else { // Here we should handle the case there there is incoming data (?) dwr(MSG_DEBUG, " tap_thread(): Listening socketpair closed. Removing RPC connection (%d)\n", _phy.getDescriptor(tcp_connections[i]->dataSock)); closeConnection(tcp_connections[i]); } } } } //dwr(4, " tap_thread(): tcp_conns = %d, rpc_socks = %d\n", tcp_connections.size(), rpc_sockets.size()); for(size_t i=0, associated = 0; irpcSock == rpc_sockets[i]) associated++; } if(!associated){ // No TCP connections are associated, this is a candidate for removal int fd = _phy.getDescriptor(rpc_sockets[i]); fcntl(fd, F_SETFL, O_NONBLOCK); unsigned char tmpbuf[BUF_SZ]; int n; if((n = read(fd,&tmpbuf,BUF_SZ)) < 0) { dwr(MSG_DEBUG, " tap_thread(): closing RPC (%d)\n", _phy.getDescriptor(rpc_sockets[i])); closeClient(rpc_sockets[i]); } // < 0 is failure // 0 nothing to read, RPC still active // > 0 RPC data read, handle it else if (n > 0) { // Handle RPC call, this is rare dwr(MSG_DEBUG, " tap_thread(): RPC read during connection check (%d bytes)\n", n); phyOnUnixData(rpc_sockets[i],_phy.getuptr(rpc_sockets[i]),&tmpbuf,BUF_SZ); } } } } // Main TCP/ETHARP timer section if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) { prev_tcp_time = now; lwipstack->tcp_tmr(); } else { tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp; } if (since_etharp >= ARP_TMR_INTERVAL) { prev_etharp_time = now; lwipstack->etharp_tmr(); } else { etharp_remaining = ARP_TMR_INTERVAL - since_etharp; } _phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining)); } closeAll(); dlclose(lwipstack->_libref); } // Unused -- no UDP or TCP from this thread/Phy<> void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {} void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {} void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {} void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {} void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {} void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) { dwr(MSG_DEBUG, " phyOnUnixClose(sock=0x%x, uptr=0x%x): fd = %d\n", sock, uptr, _phy.getDescriptor(sock)); TcpConnection *conn = (TcpConnection*)*uptr; closeConnection(conn); } /* * Handles data on a client's data buffer. Data is sent to LWIP to be enqueued. */ void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) { if(readable) { TcpConnection *conn = (TcpConnection*)*uptr; if(conn->dataSock) { // Sometimes a connection may be closed via nc_recved, check first lwipstack->_lock.lock(); handle_write(conn); lwipstack->_lock.unlock(); } } else { dwr(MSG_ERROR, "phyOnFileDescriptorActivity(): PhySocket not readable\n"); } } /* * Add a new PhySocket for the client connections */ void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) { dwr(MSG_DEBUG, " phyOnUnixAccept(): accepting new connection\n"); if(find(rpc_sockets.begin(), rpc_sockets.end(), sockN) != rpc_sockets.end()){ dwr(MSG_ERROR, " phyOnUnixAccept(): SockN (0x%x) already exists!\n", sockN); return; } rpc_sockets.push_back(sockN); } /* * Processes incoming data on a client-specific RPC connection */ void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) { pid_t pid, tid; int rpc_count; char cmd, timestamp[20]; void *payload; unload_rpc(data, pid, tid, rpc_count, timestamp, cmd, payload); dwr(MSG_DEBUG, "\n\nRPC: (pid=%d, tid=%d, rpc_count=%d, timestamp=%s, cmd=%d\n", pid, tid, rpc_count, timestamp, cmd); unsigned char *buf = (unsigned char*)data; switch(cmd) { case RPC_SOCKET: dwr(MSG_DEBUG, "RPC_SOCKET\n"); struct socket_st socket_rpc; memcpy(&socket_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct socket_st)); if(rpc_count==rpc_counter) { dwr(MSG_ERROR, "Detected repeat RPC.\n"); //return; } else { rpc_counter = rpc_count; } TcpConnection * new_conn; if((new_conn = handle_socket(sock, uptr, &socket_rpc))) { pidmap[sock] = pid; new_conn->pid = pid; } break; case RPC_LISTEN: dwr(MSG_DEBUG, "RPC_LISTEN\n"); struct listen_st listen_rpc; memcpy(&listen_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct listen_st)); handle_listen(sock, uptr, &listen_rpc); break; case RPC_BIND: dwr(MSG_DEBUG, "RPC_BIND\n"); struct bind_st bind_rpc; memcpy(&bind_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct bind_st)); handle_bind(sock, uptr, &bind_rpc); break; case RPC_CONNECT: dwr(MSG_DEBUG, "RPC_CONNECT\n"); struct connect_st connect_rpc; memcpy(&connect_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct connect_st)); handle_connect(sock, uptr, &connect_rpc); break; case RPC_MAP: dwr(MSG_DEBUG, "RPC_MAP (len = %d)\n", len); int newfd; memcpy(&newfd, &buf[IDX_PAYLOAD+1], sizeof(int)); handle_retval(sock, uptr, rpc_count, newfd); break; case RPC_MAP_REQ: dwr(MSG_DEBUG, "RPC_MAP_REQ\n"); handle_map_request(sock, uptr, buf); break; default: break; } } /* * Send a 'retval' and 'errno' to the client for an RPC over connection->rpcSock */ int NetconEthernetTap::send_return_value(TcpConnection *conn, int retval, int _errno = 0) { if(conn) { int n = send_return_value(_phy.getDescriptor(conn->rpcSock), retval, _errno); if(n > 0) conn->pending = false; else { dwr(MSG_ERROR, " Unable to send return value to the intercept. Closing connection\n"); closeConnection(conn); } return n; } return -1; } int NetconEthernetTap::send_return_value(int fd, int retval, int _errno = 0) { dwr(MSG_DEBUG, " send_return_value(): fd = %d, retval = %d, errno = %d\n", fd, retval, _errno); int sz = sizeof(char) + sizeof(retval) + sizeof(errno); char retmsg[sz]; memset(&retmsg, '\0', sizeof(retmsg)); retmsg[0]=RPC_RETVAL; memcpy(&retmsg[1], &retval, sizeof(retval)); memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno)); return write(fd, &retmsg, sz); } /*------------------------------------------------------------------------------ --------------------------------- LWIP callbacks ------------------------------- ------------------------------------------------------------------------------*/ // NOTE: these are called from within LWIP, meaning that lwipstack->_lock is ALREADY // locked in this case! /* * Callback from LWIP for when a connection has been accepted and the PCB has been * put into an ACCEPT state. * * A socketpair is created, one end is kept and wrapped into a PhySocket object * for use in the main ZT I/O loop, and one end is sent to the client. The client * is then required to tell the service what new file descriptor it has allocated * for this connection. After the mapping is complete, the accepted socket can be * used. * * @param associated service state object * @param newly allocated PCB * @param error code * @return ERR_OK if everything is ok, -1 otherwise i := should be implemented in intercept lib I := is implemented in intercept lib X := is implemented in service ? := required treatment Unknown - := Not needed [ ] EAGAIN or EWOULDBLOCK - The socket is marked nonblocking and no connections are present to be accepted. POSIX.1-2001 allows either error to be returned for this case, and does not require these constants to have the same value, so a portable application should check for both possibilities. [I] EBADF - The descriptor is invalid. [I] ECONNABORTED - A connection has been aborted. [i] EFAULT - The addr argument is not in a writable part of the user address space. [-] EINTR - The system call was interrupted by a signal that was caught before a valid connection arrived; see signal(7). [I] EINVAL - Socket is not listening for connections, or addrlen is invalid (e.g., is negative). [I] EINVAL - (accept4()) invalid value in flags. [I] EMFILE - The per-process limit of open file descriptors has been reached. [ ] ENFILE - The system limit on the total number of open files has been reached. [ ] ENOBUFS, ENOMEM - Not enough free memory. This often means that the memory allocation is limited by the socket buffer limits, not by the system memory. [I] ENOTSOCK - The descriptor references a file, not a socket. [I] EOPNOTSUPP - The referenced socket is not of type SOCK_STREAM. [ ] EPROTO - Protocol error. * */ err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newpcb, err_t err) { dwr(MSG_DEBUG, " nc_accept()\n"); Larg *l = (Larg*)arg; TcpConnection *conn = l->conn; NetconEthernetTap *tap = l->tap; int listening_fd = tap->_phy.getDescriptor(conn->dataSock); if(conn) { ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { l->tap->send_return_value(conn, -1, errno); dwr(MSG_ERROR, " nc_accept(): unable to create socketpair\n"); return ERR_MEM; } } TcpConnection *new_tcp_conn = new TcpConnection(); new_tcp_conn->dataSock = tap->_phy.wrapSocket(fds[0], new_tcp_conn); new_tcp_conn->rpcSock = conn->rpcSock; new_tcp_conn->pcb = newpcb; new_tcp_conn->their_fd = fds[1]; tap->tcp_connections.push_back(new_tcp_conn); dwr(MSG_DEBUG, " nc_accept(): socketpair = {%d, %d}\n", fds[0], fds[1]); int n, send_fd = tap->_phy.getDescriptor(conn->rpcSock); if((n = send(listening_fd, "z", 1, MSG_NOSIGNAL)) < 0) { dwr(MSG_ERROR, " nc_accept(): Error: [send(listening_fd,...) = MSG_NOSIGNAL].\n"); return -1; } else if(n > 0) { if(sock_fd_write(send_fd, fds[1]) > 0) { close(fds[1]); // close other end of socketpair new_tcp_conn->pending = true; } else { dwr(MSG_ERROR, " nc_accept(%d): unable to send fd to client\n", listening_fd); } } else { dwr(MSG_ERROR, " nc_accept(%d): error writing signal byte (send_fd = %d, perceived_fd = %d)\n", listening_fd, send_fd, fds[1]); return -1; } tap->lwipstack->_tcp_arg(newpcb, new Larg(tap, new_tcp_conn)); tap->lwipstack->_tcp_recv(newpcb, nc_recved); tap->lwipstack->_tcp_err(newpcb, nc_err); tap->lwipstack->_tcp_sent(newpcb, nc_sent); tap->lwipstack->_tcp_poll(newpcb, nc_poll, 1); tcp_accepted(conn->pcb); // Let lwIP know that it can queue additional incoming connections return ERR_OK; } else { dwr(MSG_ERROR, " nc_accept(%d): can't locate Connection object for PCB.\n", listening_fd); } return -1; } /* * Callback from LWIP for when data is available to be read from the network. * * Data is in the form of a linked list of struct pbufs, it is then recombined and * send to the client over the associated unix socket. * * @param associated service state object * @param allocated PCB * @param chain of pbufs * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err) { dwr(MSG_DEBUG, " nc_recved()\n"); Larg *l = (Larg*)arg; int n; struct pbuf* q = p; if(!l->conn) { dwr(MSG_ERROR, " nc_recved(): no connection object\n"); return ERR_OK; // ? } if(p == NULL) { if(l->conn) { dwr(MSG_INFO, " nc_recved(): closing connection\n"); l->tap->closeConnection(l->conn); return ERR_ABRT; } else { dwr(MSG_ERROR, " nc_recved(): can't locate connection via (arg)\n"); } return err; } q = p; while(p != NULL) { // Cycle through pbufs and write them to the socket if(p->len <= 0) break; // ? if((n = l->tap->_phy.streamSend(l->conn->dataSock,p->payload, p->len)) > 0) { if(n < p->len) { dwr(MSG_INFO, " nc_recved(): unable to write entire pbuf to buffer\n"); } l->tap->lwipstack->_tcp_recved(tpcb, n); // TODO: would it be more efficient to call this once at the end? dwr(MSG_DEBUG, " nc_recved(): wrote %d bytes to (%d)\n", n, l->tap->_phy.getDescriptor(l->conn->dataSock)); } else { dwr(MSG_INFO, " nc_recved(): No data written to intercept buffer (%d)\n", l->tap->_phy.getDescriptor(l->conn->dataSock)); } p = p->next; } l->tap->lwipstack->_pbuf_free(q); // free pbufs return ERR_OK; } /* * Callback from LWIP when an internal error is associtated with the given (arg) * * Since the PCB related to this error might no longer exist, only its perviously * associated (arg) is provided to us. * * @param associated service state object * @param error code * */ void NetconEthernetTap::nc_err(void *arg, err_t err) { dwr(MSG_DEBUG, "nc_err()\n"); Larg *l = (Larg*)arg; if(!l->conn) dwr(MSG_ERROR, "nc_err(): Connection is NULL!\n"); switch(err) { case ERR_MEM: dwr(MSG_ERROR, "nc_err(): ERR_MEM->ENOMEM\n"); l->tap->send_return_value(l->conn, -1, ENOMEM); break; case ERR_BUF: dwr(MSG_ERROR, "nc_err(): ERR_BUF->ENOBUFS\n"); l->tap->send_return_value(l->conn, -1, ENOBUFS); break; case ERR_TIMEOUT: dwr(MSG_ERROR, "nc_err(): ERR_TIMEOUT->ETIMEDOUT\n"); l->tap->send_return_value(l->conn, -1, ETIMEDOUT); break; case ERR_RTE: dwr(MSG_ERROR, "nc_err(): ERR_RTE->ENETUNREACH\n"); l->tap->send_return_value(l->conn, -1, ENETUNREACH); break; case ERR_INPROGRESS: dwr(MSG_ERROR, "nc_err(): ERR_INPROGRESS->EINPROGRESS\n"); l->tap->send_return_value(l->conn, -1, EINPROGRESS); break; case ERR_VAL: dwr(MSG_ERROR, "nc_err(): ERR_VAL->EINVAL\n"); l->tap->send_return_value(l->conn, -1, EINVAL); break; case ERR_WOULDBLOCK: dwr(MSG_ERROR, "nc_err(): ERR_WOULDBLOCK->EWOULDBLOCK\n"); l->tap->send_return_value(l->conn, -1, EWOULDBLOCK); break; case ERR_USE: dwr(MSG_ERROR, "nc_err(): ERR_USE->EADDRINUSE\n"); l->tap->send_return_value(l->conn, -1, EADDRINUSE); break; case ERR_ISCONN: dwr(MSG_ERROR, "nc_err(): ERR_ISCONN->EISCONN\n"); l->tap->send_return_value(l->conn, -1, EISCONN); break; case ERR_ABRT: dwr(MSG_ERROR, "nc_err(): ERR_ABRT->ECONNREFUSED\n"); l->tap->send_return_value(l->conn, -1, ECONNREFUSED); break; // FIXME: Below are errors which don't have a standard errno correlate case ERR_RST: l->tap->send_return_value(l->conn, -1, -1); break; case ERR_CLSD: l->tap->send_return_value(l->conn, -1, -1); break; case ERR_CONN: l->tap->send_return_value(l->conn, -1, -1); break; case ERR_ARG: l->tap->send_return_value(l->conn, -1, -1); break; case ERR_IF: l->tap->send_return_value(l->conn, -1, -1); break; default: break; } dwr(MSG_ERROR, "nc_err(): closing connection\n"); l->tap->closeConnection(l->conn); } /* * Callback from LWIP to do whatever work we might need to do. * * @param associated service state object * @param PCB we're polling on * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *tpcb) { //Larg *l = (Larg*)arg; /* Larg *l = (Larg*)arg; TcpConnection *conn = l->conn; NetconEthernetTap *tap = l->tap; if(conn && conn->idx) // if valid connection and non-zero index (indicating data present) tap->handle_write(conn); */ return ERR_OK; } /* * Callback from LWIP to signal that 'len' bytes have successfully been sent. * As a result, we should put our socket back into a notify-on-readability state * since there is now room on the PCB buffer to write to. * * NOTE: This could be used to track the amount of data sent by a connection. * * @param associated service state object * @param relevant PCB * @param length of data sent * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *tpcb, u16_t len) { //dwr(5, " nc_sent()\n"); Larg *l = (Larg*)arg; if(len) { l->conn->acked+=len; //dwr("W = %d, A = %d\n", l->conn->written, l->conn->acked); //dwr("ACK = %d\n", len); l->tap->_phy.setNotifyReadable(l->conn->dataSock, true); l->tap->_phy.whack(); } return ERR_OK; } /* * Callback from LWIP which sends a return value to the client to signal that * a connection was established for this PCB * * @param associated service state object * @param relevant PCB * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *tpcb, err_t err) { dwr(MSG_DEBUG, " nc_connected()\n"); Larg *l = (Larg*)arg; l->tap->send_return_value(l->conn, ERR_OK); return ERR_OK; } /*------------------------------------------------------------------------------ ----------------------------- RPC Handler functions ---------------------------- ------------------------------------------------------------------------------*/ /* Unpacks the buffer from an RPC command */ void NetconEthernetTap::unload_rpc(void *data, pid_t &pid, pid_t &tid, int &rpc_count, char (timestamp[20]), char &cmd, void* &payload) { unsigned char *buf = (unsigned char*)data; memcpy(&pid, &buf[IDX_PID], sizeof(pid_t)); memcpy(&tid, &buf[IDX_TID], sizeof(pid_t)); memcpy(&rpc_count, &buf[IDX_COUNT], sizeof(int)); memcpy(timestamp, &buf[IDX_TIME], 20); memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char)); } /* Responds to a request from the [intercept] to determine whether a local socket is mapped to this service. In other words, how do the intercept's overridden calls tell the difference between regular AF_LOCAL sockets and one of our socketpairs that is used to communicate over the network? */ void NetconEthernetTap::handle_map_request(PhySocket *sock, void **uptr, unsigned char* buf) { dwr(4, " handle_map_request()\n"); TcpConnection *conn = (TcpConnection*)*uptr; int req_fd; memcpy(&req_fd, &buf[IDX_PAYLOAD+1], sizeof(req_fd)); for(size_t i=0; irpcSock == conn->rpcSock && tcp_connections[i]->perceived_fd == req_fd){ send_return_value(conn, 1, ERR_OK); // True dwr(MSG_DEBUG, " handle_map_request(their=%d): MAPPED (to %d)\n", req_fd, _phy.getDescriptor(tcp_connections[i]->dataSock)); return; } } send_return_value(conn, 0, ERR_OK); // False dwr(MSG_DEBUG, " handle_map_request(their=%d): NOT MAPPED\n", req_fd); } /** * Handles a return value (client's perceived fd) and completes a mapping * so that we know what connection an RPC call should be associated with. * * @param PhySocket associated with this RPC connection * @param structure containing the data and parameters for this client's RPC * */ void NetconEthernetTap::handle_retval(PhySocket *sock, void **uptr, int rpc_count, int newfd) { dwr(MSG_DEBUG, " handle_retval()\n"); TcpConnection *conn = (TcpConnection*)*uptr; if(!conn->pending) return; conn->pending = false; conn->perceived_fd = newfd; if(rpc_count==rpc_counter) { dwr(MSG_ERROR, " handle_retval(): Detected repeat RPC.\n"); //return; } else rpc_counter = rpc_count; dwr(MSG_DEBUG, " handle_retval(): CONN:%x - Mapping [our=%d -> their=%d]\n",conn, _phy.getDescriptor(conn->dataSock), conn->perceived_fd); /* Check for pre-existing connection for this socket --- This block is in response to interesting behaviour from redis-server. A socket is created, setsockopt is called and the socket is set to IPV6 but fails (for now), then it is closed and re-opened and consequently remapped. With two pipes mapped to the same socket, makes it possible that we write to the wrong pipe and fail. So this block merely searches for a possible duplicate mapping and erases it */ for(size_t i=0; irpcSock == conn->rpcSock) { if(tcp_connections[i]->perceived_fd == conn->perceived_fd) { int n; if((n = send(_phy.getDescriptor(tcp_connections[i]->dataSock), "z", 1, MSG_NOSIGNAL)) < 0) { dwr(MSG_DEBUG, " handle_retval(): CONN:%x - Socket (%d) already mapped (originally CONN:%x)\n", conn, tcp_connections[i]->perceived_fd, tcp_connections[i]); closeConnection(tcp_connections[i]); } else { dwr(MSG_ERROR, " handle_retval(): CONN:%x - This socket is mapped to two different pipes (?). Exiting.\n", conn); //die(0); // FIXME: Print service mapping state and exit } } } } } /* * Handles an RPC to bind an LWIP PCB to a given address and port * * @param PhySocket associated with this RPC connection * @param structure containing the data and parameters for this client's RPC * i := should be implemented in intercept lib I := is implemented in intercept lib X := is implemented in service ? := required treatment Unknown - := Not needed [ ] EACCES - The address is protected, and the user is not the superuser. [X] EADDRINUSE - The given address is already in use. [I] EBADF - sockfd is not a valid descriptor. [X] EINVAL - The socket is already bound to an address. [I] ENOTSOCK - sockfd is a descriptor for a file, not a socket. [X] ENOMEM - Insufficient kernel memory was available. - The following errors are specific to UNIX domain (AF_UNIX) sockets: [-] EACCES - Search permission is denied on a component of the path prefix. (See also path_resolution(7).) [-] EADDRNOTAVAIL - A nonexistent interface was requested or the requested address was not local. [-] EFAULT - addr points outside the user's accessible address space. [-] EINVAL - The addrlen is wrong, or the socket was not in the AF_UNIX family. [-] ELOOP - Too many symbolic links were encountered in resolving addr. [-] ENAMETOOLONG - s addr is too long. [-] ENOENT - The file does not exist. [-] ENOTDIR - A component of the path prefix is not a directory. [-] EROFS - The socket inode would reside on a read-only file system. */ void NetconEthernetTap::handle_bind(PhySocket *sock, void **uptr, struct bind_st *bind_rpc) { struct sockaddr_in *connaddr; connaddr = (struct sockaddr_in *) &bind_rpc->addr; int conn_port = lwipstack->ntohs(connaddr->sin_port); ip_addr_t conn_addr; conn_addr.addr = *((u32_t *)_ips[0].rawIpData()); TcpConnection *conn = getConnectionByTheirFD(sock, bind_rpc->sockfd); dwr(MSG_DEBUG, " handle_bind(%d)\n", bind_rpc->sockfd); if(conn) { if(conn->pcb->state == CLOSED){ int err = lwipstack->tcp_bind(conn->pcb, &conn_addr, conn_port); if(err != ERR_OK) { int ip = connaddr->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; dwr(MSG_ERROR, " handle_bind(): error binding to %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], conn_port); dwr(MSG_ERROR, " handle_bind(): err = %d\n", err); if(err == ERR_USE) send_return_value(conn, -1, EADDRINUSE); if(err == ERR_MEM) send_return_value(conn, -1, ENOMEM); if(err == ERR_BUF) send_return_value(conn, -1, ENOMEM); // FIXME: Closest match } else send_return_value(conn, ERR_OK, ERR_OK); // Success } else { dwr(MSG_ERROR, " handle_bind(): PCB (%x) not in CLOSED state. Ignoring BIND request.\n", conn->pcb); send_return_value(conn, -1, EINVAL); } } else { dwr(MSG_ERROR, " handle_bind(): can't locate connection for PCB\n"); send_return_value(conn, -1, EBADF); } } /* * Handles an RPC to put an LWIP PCB into LISTEN mode * * @param PhySocket associated with this RPC connection * @param structure containing the data and parameters for this client's RPC * i := should be implemented in intercept lib I := is implemented in intercept lib X := is implemented in service ? := required treatment Unknown - := Not needed [?] EADDRINUSE - Another socket is already listening on the same port. [IX] EBADF - The argument sockfd is not a valid descriptor. [I] ENOTSOCK - The argument sockfd is not a socket. [I] EOPNOTSUPP - The socket is not of a type that supports the listen() operation. */ void NetconEthernetTap::handle_listen(PhySocket *sock, void **uptr, struct listen_st *listen_rpc) { dwr(3, " handle_listen(their=%d):\n", listen_rpc->sockfd); TcpConnection *conn = getConnectionByTheirFD(sock, listen_rpc->sockfd); if(!conn){ dwr(MSG_ERROR, " handle_listen(): unable to locate connection object\n"); // ? send_return_value(conn, -1, EBADF); return; } dwr(3, " handle_listen(our=%d -> their=%d)\n", _phy.getDescriptor(conn->dataSock), conn->perceived_fd); if(conn->pcb->state == LISTEN) { dwr(MSG_ERROR, " handle_listen(): PCB is already in listening state.\n"); return; } struct tcp_pcb* listening_pcb; #ifdef TCP_LISTEN_BACKLOG listening_pcb = lwipstack->tcp_listen_with_backlog(conn->pcb, listen_rpc->backlog); #else listening_pcb = lwipstack->tcp_listen(conn->pcb); #endif if(listening_pcb != NULL) { conn->pcb = listening_pcb; lwipstack->tcp_accept(listening_pcb, nc_accept); lwipstack->tcp_arg(listening_pcb, new Larg(this, conn)); /* we need to wait for the client to send us the fd allocated on their end for this listening socket */ fcntl(_phy.getDescriptor(conn->dataSock), F_SETFL, O_NONBLOCK); conn->listening = true; conn->pending = true; send_return_value(conn, ERR_OK, ERR_OK); } else { /* dwr"handle_listen(): unable to allocate memory for new listening PCB\n"); // FIXME: This does not have an equivalent errno value // lwip will reclaim space with a tcp_listen call since a PCB in a LISTEN // state takes up less space. If something goes wrong during the creation of a // new listening socket we should return an error that implies we can't use this // socket, even if the reason isn't describing what really happened internally. // See: http://lwip.wikia.com/wiki/Raw/TCP send_return_value(conn, -1, EBADF); */ } } /* * Handles an RPC to create a socket (LWIP PCB and associated socketpair) * * A socketpair is created, one end is kept and wrapped into a PhySocket object * for use in the main ZT I/O loop, and one end is sent to the client. The client * is then required to tell the service what new file descriptor it has allocated * for this connection. After the mapping is complete, the socket can be used. * * @param PhySocket associated with this RPC connection * @param structure containing the data and parameters for this client's RPC * i := should be implemented in intercept lib I := is implemented in intercept lib X := is implemented in service ? := required treatment Unknown - := Not needed [-] EACCES - Permission to create a socket of the specified type and/or protocol is denied. [I] EAFNOSUPPORT - The implementation does not support the specified address family. [I] EINVAL - Unknown protocol, or protocol family not available. [I] EINVAL - Invalid flags in type. [I] EMFILE - Process file table overflow. [?] ENFILE - The system limit on the total number of open files has been reached. [X] ENOBUFS or ENOMEM - Insufficient memory is available. The socket cannot be created until sufficient resources are freed. [?] EPROTONOSUPPORT - The protocol type or the specified protocol is not supported within this domain. */ TcpConnection * NetconEthernetTap::handle_socket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { int rpc_fd = _phy.getDescriptor(sock); struct tcp_pcb *newpcb = lwipstack->tcp_new(); dwr(MSG_DEBUG, " handle_socket(): pcb=%x\n", newpcb); if(newpcb != NULL) { ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { send_return_value(rpc_fd, -1, errno); return NULL; } } dwr(MSG_DEBUG, " handle_socket(): socketpair = {%d, %d}\n", fds[0], fds[1]); TcpConnection *new_conn = new TcpConnection(); new_conn->dataSock = _phy.wrapSocket(fds[0], new_conn); *uptr = new_conn; new_conn->rpcSock = sock; new_conn->pcb = newpcb; new_conn->their_fd = fds[1]; tcp_connections.push_back(new_conn); sock_fd_write(_phy.getDescriptor(sock), fds[1]); close(fds[1]); // close other end of socketpair // Once the client tells us what its fd is on the other end, we can then complete the mapping new_conn->pending = true; return new_conn; } else { sock_fd_write(rpc_fd, -1); // Send a bad fd, to signal error dwr(MSG_ERROR, " handle_socket(): Memory not available for new PCB\n"); send_return_value(rpc_fd, -1, ENOMEM); return NULL; } } /* * Handles an RPC to connect to a given address and port * * @param PhySocket associated with this RPC connection * @param structure containing the data and parameters for this client's RPC --- Error handling in this method will only catch problems which are immedately apprent. Some errors will need to be caught in the nc_connected(0 callback i := should be implemented in intercept lib I := is implemented in intercept lib X := is implemented in service ? := required treatment Unknown - := Not needed [-] EACCES - For UNIX domain sockets, which are identified by pathname: Write permission is denied ... [?] EACCES, EPERM - The user tried to connect to a broadcast address without having the socket broadcast flag enabled ... [X] EADDRINUSE - Local address is already in use. [I] EAFNOSUPPORT - The passed address didn't have the correct address family in its sa_family field. [X] EAGAIN - No more free local ports or insufficient entries in the routing cache. [ ] EALREADY - The socket is nonblocking and a previous connection attempt has not yet been completed. [IX] EBADF - The file descriptor is not a valid index in the descriptor table. [ ] ECONNREFUSED - No-one listening on the remote address. [i] EFAULT - The socket structure address is outside the user's address space. [ ] EINPROGRESS - The socket is nonblocking and the connection cannot be completed immediately. [-] EINTR - The system call was interrupted by a signal that was caught. [X] EISCONN - The socket is already connected. [X] ENETUNREACH - Network is unreachable. [I] ENOTSOCK - The file descriptor is not associated with a socket. [X] ETIMEDOUT - Timeout while attempting connection. [X] EINVAL - Invalid argument, SVr4, generally makes sense to set this * */ void NetconEthernetTap::handle_connect(PhySocket *sock, void **uptr, struct connect_st* connect_rpc) { dwr(MSG_DEBUG, " handle_connect()\n"); TcpConnection *conn = (TcpConnection*)*uptr; struct sockaddr_in *connaddr; connaddr = (struct sockaddr_in *) &connect_rpc->__addr; int conn_port = lwipstack->ntohs(connaddr->sin_port); ip_addr_t conn_addr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr); if(conn != NULL) { lwipstack->tcp_sent(conn->pcb, nc_sent); lwipstack->tcp_recv(conn->pcb, nc_recved); lwipstack->tcp_err(conn->pcb, nc_err); lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ); lwipstack->tcp_arg(conn->pcb, new Larg(this, conn)); int err = 0; if((err = lwipstack->tcp_connect(conn->pcb,&conn_addr,conn_port, nc_connected)) < 0) { if(err == ERR_ISCONN) { send_return_value(conn, -1, EISCONN); // Already in connected state return; } if(err == ERR_USE) { send_return_value(conn, -1, EADDRINUSE); // Already in use return; } if(err == ERR_VAL) { send_return_value(conn, -1, EINVAL); // Invalid ipaddress parameter return; } if(err == ERR_RTE) { send_return_value(conn, -1, ENETUNREACH); // No route to host return; } if(err == ERR_BUF) { send_return_value(conn, -1, EAGAIN); // No more ports available return; } if(err == ERR_MEM) { /* Can occur for the following reasons: tcp_enqueue_flags() 1) tcp_enqueue_flags is always called with either SYN or FIN in flags. We need one available snd_buf byte to do that. This means we can't send FIN while snd_buf==0. A better fix would be to not include SYN and FIN sequence numbers in the snd_buf count. 2) Cannot allocate new pbuf 3) Cannot allocate new TCP segment */ send_return_value(conn, -1, EAGAIN); // FIXME: Doesn't describe the problem well, but closest match return; } // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! dwr(MSG_ERROR, " handle_connect(): unable to connect\n"); send_return_value(conn, -1, EAGAIN); } // Everything seems to be ok, but we don't have enough info to retval conn->pending=true; } else { dwr(MSG_ERROR, " handle_connect(): could not locate PCB based on their fd\n"); send_return_value(conn, -1, EBADF); } } void NetconEthernetTap::handle_write(TcpConnection *conn) { //dwr(MSG_DEBUG, " handle_write()\n"); float max = (float)TCP_SND_BUF; int r; if(!conn) { dwr(MSG_ERROR, " handle_write(): could not locate connection for this fd\n"); return; } if(conn->idx < max) { if(!conn->pcb) { dwr(MSG_ERROR, " handle_write(): conn->pcb == NULL. Failed to write.\n"); return; } int sndbuf = conn->pcb->snd_buf; // How much we are currently allowed to write to the connection /* PCB send buffer is full,turn off readability notifications for the corresponding PhySocket until nc_sent() is called and confirms that there is now space on the buffer */ if(sndbuf == 0) { _phy.setNotifyReadable(conn->dataSock, false); return; } if(!conn->listening) lwipstack->_tcp_output(conn->pcb); if(conn->dataSock) { int read_fd = _phy.getDescriptor(conn->dataSock); if((r = read(read_fd, (&conn->buf)+conn->idx, sndbuf)) > 0) { conn->idx += r; /* Writes data pulled from the client's socket buffer to LWIP. This merely sends the * data to LWIP to be enqueued and eventually sent to the network. */ if(r > 0) { int sz; // NOTE: this assumes that lwipstack->_lock is locked, either // because we are in a callback or have locked it manually. int err = lwipstack->_tcp_write(conn->pcb, &conn->buf, r, TCP_WRITE_FLAG_COPY); lwipstack->_tcp_output(conn->pcb); if(err != ERR_OK) { dwr(MSG_ERROR, " handle_write(): error while writing to PCB, (err = %d)\n", err); return; } else { sz = (conn->idx)-r; if(sz) { memmove(&conn->buf, (conn->buf+r), sz); } conn->idx -= r; conn->written+=r; return; } } else { dwr(MSG_INFO, " handle_write(): LWIP stack full\n"); return; } } } } } } // namespace ZeroTier