/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include "../version.h" #include "Constants.hpp" #include "Node.hpp" #include "RuntimeEnvironment.hpp" #include "NetworkController.hpp" #include "Switch.hpp" #include "Multicaster.hpp" #include "AntiRecursion.hpp" #include "Topology.hpp" #include "Buffer.hpp" #include "Packet.hpp" #include "Address.hpp" #include "Identity.hpp" #include "SelfAwareness.hpp" #include "Defaults.hpp" namespace ZeroTier { /****************************************************************************/ /* Public Node interface (C++, exposed via CAPI bindings) */ /****************************************************************************/ Node::Node( uint64_t now, void *uptr, ZT1_DataStoreGetFunction dataStoreGetFunction, ZT1_DataStorePutFunction dataStorePutFunction, ZT1_WirePacketSendFunction wirePacketSendFunction, ZT1_VirtualNetworkFrameFunction virtualNetworkFrameFunction, ZT1_VirtualNetworkConfigFunction virtualNetworkConfigFunction, ZT1_EventCallback eventCallback, const char *overrideRootTopology) : _RR(this), RR(&_RR), _uPtr(uptr), _dataStoreGetFunction(dataStoreGetFunction), _dataStorePutFunction(dataStorePutFunction), _wirePacketSendFunction(wirePacketSendFunction), _virtualNetworkFrameFunction(virtualNetworkFrameFunction), _virtualNetworkConfigFunction(virtualNetworkConfigFunction), _eventCallback(eventCallback), _networks(), _networks_m(), _prngStreamPtr(0), _now(now), _lastPingCheck(0), _lastHousekeepingRun(0) { _newestVersionSeen[0] = ZEROTIER_ONE_VERSION_MAJOR; _newestVersionSeen[1] = ZEROTIER_ONE_VERSION_MINOR; _newestVersionSeen[2] = ZEROTIER_ONE_VERSION_REVISION; _online = false; // Use Salsa20 alone as a high-quality non-crypto PRNG { char foo[32]; Utils::getSecureRandom(foo,32); _prng.init(foo,256,foo,8); memset(_prngStream,0,sizeof(_prngStream)); _prng.encrypt(_prngStream,_prngStream,sizeof(_prngStream)); } std::string idtmp(dataStoreGet("identity.secret")); if ((!idtmp.length())||(!RR->identity.fromString(idtmp))||(!RR->identity.hasPrivate())) { TRACE("identity.secret not found, generating..."); RR->identity.generate(); idtmp = RR->identity.toString(true); if (!dataStorePut("identity.secret",idtmp,true)) throw std::runtime_error("unable to write identity.secret"); } RR->publicIdentityStr = RR->identity.toString(false); RR->secretIdentityStr = RR->identity.toString(true); idtmp = dataStoreGet("identity.public"); if (idtmp != RR->publicIdentityStr) { if (!dataStorePut("identity.public",RR->publicIdentityStr,false)) throw std::runtime_error("unable to write identity.public"); } try { RR->sw = new Switch(RR); RR->mc = new Multicaster(RR); RR->antiRec = new AntiRecursion(); RR->topology = new Topology(RR); RR->sa = new SelfAwareness(RR); } catch ( ... ) { delete RR->sa; delete RR->topology; delete RR->antiRec; delete RR->mc; delete RR->sw; throw; } Dictionary rt; if (overrideRootTopology) { rt.fromString(std::string(overrideRootTopology)); } else { std::string rttmp(dataStoreGet("root-topology")); if (rttmp.length() > 0) { rt.fromString(rttmp); if (!Topology::authenticateRootTopology(rt)) rt.clear(); } if (!rt.size()) rt.fromString(ZT_DEFAULTS.defaultRootTopology); } RR->topology->setRootServers(Dictionary(rt.get("rootservers",""))); postEvent(ZT1_EVENT_UP); } Node::~Node() { Mutex::Lock _l(_networks_m); _networks.clear(); // ensure that networks are destroyed before shutdown delete RR->sa; delete RR->topology; delete RR->antiRec; delete RR->mc; delete RR->sw; } ZT1_ResultCode Node::processWirePacket( uint64_t now, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile uint64_t *nextBackgroundTaskDeadline) { _now = now; RR->sw->onRemotePacket(*(reinterpret_cast(remoteAddress)),packetData,packetLength); return ZT1_RESULT_OK; } ZT1_ResultCode Node::processVirtualNetworkFrame( uint64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile uint64_t *nextBackgroundTaskDeadline) { _now = now; SharedPtr nw(this->network(nwid)); if (nw) { RR->sw->onLocalEthernet(nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength); return ZT1_RESULT_OK; } else return ZT1_RESULT_ERROR_NETWORK_NOT_FOUND; } class _PingPeersThatNeedPing { public: _PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now,const std::vector< std::pair > &relays) : lastReceiveFromUpstream(0), RR(renv), _now(now), _relays(relays), _rootAddresses(RR->topology->rootAddresses()) { } uint64_t lastReceiveFromUpstream; inline void operator()(Topology &t,const SharedPtr &p) { bool isRelay = false; for(std::vector< std::pair >::const_iterator r(_relays.begin());r!=_relays.end();++r) { if (r->first == p->address()) { isRelay = true; break; } } if ((isRelay)||(std::find(_rootAddresses.begin(),_rootAddresses.end(),p->address()) != _rootAddresses.end())) { p->doPingAndKeepalive(RR,_now); if (p->lastReceive() > lastReceiveFromUpstream) lastReceiveFromUpstream = p->lastReceive(); } else { if (p->alive(_now)) p->doPingAndKeepalive(RR,_now); } } private: const RuntimeEnvironment *RR; uint64_t _now; const std::vector< std::pair > &_relays; std::vector
_rootAddresses; }; ZT1_ResultCode Node::processBackgroundTasks(uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline) { _now = now; Mutex::Lock bl(_backgroundTasksLock); if ((now - _lastPingCheck) >= ZT_PING_CHECK_INVERVAL) { try { _lastPingCheck = now; // Get relays and networks that need config without leaving the mutex locked std::vector< std::pair > networkRelays; std::vector< SharedPtr > needConfig; { Mutex::Lock _l(_networks_m); for(std::vector< std::pair< uint64_t,SharedPtr > >::const_iterator n(_networks.begin());n!=_networks.end();++n) { SharedPtr nc(n->second->config2()); if (((now - n->second->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!nc)) needConfig.push_back(n->second); if (nc) networkRelays.insert(networkRelays.end(),nc->relays().begin(),nc->relays().end()); } } // Request updated configuration for networks that need it for(std::vector< SharedPtr >::const_iterator n(needConfig.begin());n!=needConfig.end();++n) (*n)->requestConfiguration(); // Attempt to contact network preferred relays that we don't have direct links to std::sort(networkRelays.begin(),networkRelays.end()); networkRelays.erase(std::unique(networkRelays.begin(),networkRelays.end()),networkRelays.end()); for(std::vector< std::pair >::const_iterator nr(networkRelays.begin());nr!=networkRelays.end();++nr) { if (nr->second) { SharedPtr rp(RR->topology->getPeer(nr->first)); if ((rp)&&(!rp->hasActiveDirectPath(now))) rp->attemptToContactAt(RR,nr->second,now); } } // Ping living or root server/relay peers _PingPeersThatNeedPing pfunc(RR,now,networkRelays); RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc); // Update online status, post status change as event bool oldOnline = _online; _online = ((now - pfunc.lastReceiveFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT); if (oldOnline != _online) postEvent(_online ? ZT1_EVENT_ONLINE : ZT1_EVENT_OFFLINE); } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) { try { _lastHousekeepingRun = now; RR->topology->clean(now); RR->sa->clean(now); RR->mc->clean(now); } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } try { *nextBackgroundTaskDeadline = now + (uint64_t)std::max(std::min((unsigned long)ZT_PING_CHECK_INVERVAL,RR->sw->doTimerTasks(now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY); } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } return ZT1_RESULT_OK; } ZT1_ResultCode Node::join(uint64_t nwid) { Mutex::Lock _l(_networks_m); SharedPtr nw = _network(nwid); if(!nw) _networks.push_back(std::pair< uint64_t,SharedPtr >(nwid,SharedPtr(new Network(RR,nwid)))); std::sort(_networks.begin(),_networks.end()); // will sort by nwid since it's the first in a pair<> return ZT1_RESULT_OK; } ZT1_ResultCode Node::leave(uint64_t nwid) { std::vector< std::pair< uint64_t,SharedPtr > > newn; Mutex::Lock _l(_networks_m); for(std::vector< std::pair< uint64_t,SharedPtr > >::const_iterator n(_networks.begin());n!=_networks.end();++n) { if (n->first != nwid) newn.push_back(*n); else n->second->destroy(); } _networks.swap(newn); return ZT1_RESULT_OK; } ZT1_ResultCode Node::multicastSubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastSubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT1_RESULT_OK; } else return ZT1_RESULT_ERROR_NETWORK_NOT_FOUND; } ZT1_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT1_RESULT_OK; } else return ZT1_RESULT_ERROR_NETWORK_NOT_FOUND; } uint64_t Node::address() const { return RR->identity.address().toInt(); } void Node::status(ZT1_NodeStatus *status) const { status->address = RR->identity.address().toInt(); status->publicIdentity = RR->publicIdentityStr.c_str(); status->secretIdentity = RR->secretIdentityStr.c_str(); status->online = _online ? 1 : 0; } ZT1_PeerList *Node::peers() const { std::map< Address,SharedPtr > peers(RR->topology->allPeers()); char *buf = (char *)::malloc(sizeof(ZT1_PeerList) + (sizeof(ZT1_Peer) * peers.size())); if (!buf) return (ZT1_PeerList *)0; ZT1_PeerList *pl = (ZT1_PeerList *)buf; pl->peers = (ZT1_Peer *)(buf + sizeof(ZT1_PeerList)); pl->peerCount = 0; for(std::map< Address,SharedPtr >::iterator pi(peers.begin());pi!=peers.end();++pi) { ZT1_Peer *p = &(pl->peers[pl->peerCount++]); p->address = pi->second->address().toInt(); p->lastUnicastFrame = pi->second->lastUnicastFrame(); p->lastMulticastFrame = pi->second->lastMulticastFrame(); if (pi->second->remoteVersionKnown()) { p->versionMajor = pi->second->remoteVersionMajor(); p->versionMinor = pi->second->remoteVersionMinor(); p->versionRev = pi->second->remoteVersionRevision(); } else { p->versionMajor = -1; p->versionMinor = -1; p->versionRev = -1; } p->latency = pi->second->latency(); p->role = RR->topology->isRoot(pi->second->identity()) ? ZT1_PEER_ROLE_ROOT : ZT1_PEER_ROLE_LEAF; std::vector paths(pi->second->paths()); RemotePath *bestPath = pi->second->getBestPath(_now); p->pathCount = 0; for(std::vector::iterator path(paths.begin());path!=paths.end();++path) { memcpy(&(p->paths[p->pathCount].address),&(path->address()),sizeof(struct sockaddr_storage)); p->paths[p->pathCount].lastSend = path->lastSend(); p->paths[p->pathCount].lastReceive = path->lastReceived(); p->paths[p->pathCount].fixed = path->fixed() ? 1 : 0; p->paths[p->pathCount].active = path->active(_now) ? 1 : 0; p->paths[p->pathCount].preferred = ((bestPath)&&(*path == *bestPath)) ? 1 : 0; ++p->pathCount; } } return pl; } ZT1_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const { Mutex::Lock _l(_networks_m); SharedPtr nw = _network(nwid); if(nw) { ZT1_VirtualNetworkConfig *nc = (ZT1_VirtualNetworkConfig *)::malloc(sizeof(ZT1_VirtualNetworkConfig)); nw->externalConfig(nc); return nc; } return (ZT1_VirtualNetworkConfig *)0; } ZT1_VirtualNetworkList *Node::networks() const { Mutex::Lock _l(_networks_m); char *buf = (char *)::malloc(sizeof(ZT1_VirtualNetworkList) + (sizeof(ZT1_VirtualNetworkConfig) * _networks.size())); if (!buf) return (ZT1_VirtualNetworkList *)0; ZT1_VirtualNetworkList *nl = (ZT1_VirtualNetworkList *)buf; nl->networks = (ZT1_VirtualNetworkConfig *)(buf + sizeof(ZT1_VirtualNetworkList)); nl->networkCount = 0; for(std::vector< std::pair< uint64_t,SharedPtr > >::const_iterator n(_networks.begin());n!=_networks.end();++n) n->second->externalConfig(&(nl->networks[nl->networkCount++])); return nl; } void Node::freeQueryResult(void *qr) { if (qr) ::free(qr); } int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr,int metric,ZT1_LocalInterfaceAddressTrust trust) { if (Path::isAddressValidForPath(*(reinterpret_cast(addr)))) { Mutex::Lock _l(_directPaths_m); _directPaths.push_back(Path(*(reinterpret_cast(addr)),metric,(Path::Trust)trust)); std::sort(_directPaths.begin(),_directPaths.end()); _directPaths.erase(std::unique(_directPaths.begin(),_directPaths.end()),_directPaths.end()); return 1; } return 0; } void Node::clearLocalInterfaceAddresses() { Mutex::Lock _l(_directPaths_m); _directPaths.clear(); } void Node::setNetconfMaster(void *networkControllerInstance) { RR->localNetworkController = reinterpret_cast(networkControllerInstance); } /****************************************************************************/ /* Node methods used only within node/ */ /****************************************************************************/ std::string Node::dataStoreGet(const char *name) { char buf[16384]; std::string r; unsigned long olen = 0; do { long n = _dataStoreGetFunction(reinterpret_cast(this),_uPtr,name,buf,sizeof(buf),(unsigned long)r.length(),&olen); if (n <= 0) return std::string(); r.append(buf,n); } while (r.length() < olen); return r; } void Node::postNewerVersionIfNewer(unsigned int major,unsigned int minor,unsigned int rev) { if (Utils::compareVersion(major,minor,rev,_newestVersionSeen[0],_newestVersionSeen[1],_newestVersionSeen[2]) > 0) { _newestVersionSeen[0] = major; _newestVersionSeen[1] = minor; _newestVersionSeen[2] = rev; this->postEvent(ZT1_EVENT_SAW_MORE_RECENT_VERSION,(const void *)_newestVersionSeen); } } #ifdef ZT_TRACE void Node::postTrace(const char *module,unsigned int line,const char *fmt,...) { static Mutex traceLock; va_list ap; char tmp1[1024],tmp2[1024],tmp3[256]; Mutex::Lock _l(traceLock); time_t now = (time_t)(_now / 1000ULL); #ifdef __WINDOWS__ ctime_s(tmp3,sizeof(tmp3),&now); char *nowstr = tmp3; #else char *nowstr = ctime_r(&now,tmp3); #endif unsigned long nowstrlen = (unsigned long)strlen(nowstr); if (nowstr[nowstrlen-1] == '\n') nowstr[--nowstrlen] = (char)0; if (nowstr[nowstrlen-1] == '\r') nowstr[--nowstrlen] = (char)0; va_start(ap,fmt); vsnprintf(tmp2,sizeof(tmp2),fmt,ap); va_end(ap); tmp2[sizeof(tmp2)-1] = (char)0; Utils::snprintf(tmp1,sizeof(tmp1),"[%s] %s:%u %s",nowstr,module,line,tmp2); postEvent(ZT1_EVENT_TRACE,tmp1); } #endif // ZT_TRACE uint64_t Node::prng() { unsigned int p = (++_prngStreamPtr % (sizeof(_prngStream) / sizeof(uint64_t))); if (!p) _prng.encrypt(_prngStream,_prngStream,sizeof(_prngStream)); return _prngStream[p]; } } // namespace ZeroTier /****************************************************************************/ /* CAPI bindings */ /****************************************************************************/ extern "C" { enum ZT1_ResultCode ZT1_Node_new( ZT1_Node **node, void *uptr, uint64_t now, ZT1_DataStoreGetFunction dataStoreGetFunction, ZT1_DataStorePutFunction dataStorePutFunction, ZT1_WirePacketSendFunction wirePacketSendFunction, ZT1_VirtualNetworkFrameFunction virtualNetworkFrameFunction, ZT1_VirtualNetworkConfigFunction virtualNetworkConfigFunction, ZT1_EventCallback eventCallback, const char *overrideRootTopology) { *node = (ZT1_Node *)0; try { *node = reinterpret_cast(new ZeroTier::Node(now,uptr,dataStoreGetFunction,dataStorePutFunction,wirePacketSendFunction,virtualNetworkFrameFunction,virtualNetworkConfigFunction,eventCallback,overrideRootTopology)); return ZT1_RESULT_OK; } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (std::runtime_error &exc) { return ZT1_RESULT_FATAL_ERROR_DATA_STORE_FAILED; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } void ZT1_Node_delete(ZT1_Node *node) { try { delete (reinterpret_cast(node)); } catch ( ... ) {} } enum ZT1_ResultCode ZT1_Node_processWirePacket( ZT1_Node *node, uint64_t now, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile uint64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processWirePacket(now,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { reinterpret_cast(node)->postEvent(ZT1_EVENT_INVALID_PACKET,(const void *)remoteAddress); return ZT1_RESULT_OK; } } enum ZT1_ResultCode ZT1_Node_processVirtualNetworkFrame( ZT1_Node *node, uint64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile uint64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processVirtualNetworkFrame(now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT1_ResultCode ZT1_Node_processBackgroundTasks(ZT1_Node *node,uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processBackgroundTasks(now,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT1_ResultCode ZT1_Node_join(ZT1_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->join(nwid); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT1_ResultCode ZT1_Node_leave(ZT1_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->leave(nwid); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT1_ResultCode ZT1_Node_multicastSubscribe(ZT1_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastSubscribe(nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT1_ResultCode ZT1_Node_multicastUnsubscribe(ZT1_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT1_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT1_RESULT_FATAL_ERROR_INTERNAL; } } uint64_t ZT1_Node_address(ZT1_Node *node) { return reinterpret_cast(node)->address(); } void ZT1_Node_status(ZT1_Node *node,ZT1_NodeStatus *status) { try { reinterpret_cast(node)->status(status); } catch ( ... ) {} } ZT1_PeerList *ZT1_Node_peers(ZT1_Node *node) { try { return reinterpret_cast(node)->peers(); } catch ( ... ) { return (ZT1_PeerList *)0; } } ZT1_VirtualNetworkConfig *ZT1_Node_networkConfig(ZT1_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->networkConfig(nwid); } catch ( ... ) { return (ZT1_VirtualNetworkConfig *)0; } } ZT1_VirtualNetworkList *ZT1_Node_networks(ZT1_Node *node) { try { return reinterpret_cast(node)->networks(); } catch ( ... ) { return (ZT1_VirtualNetworkList *)0; } } void ZT1_Node_freeQueryResult(ZT1_Node *node,void *qr) { try { reinterpret_cast(node)->freeQueryResult(qr); } catch ( ... ) {} } void ZT1_Node_setNetconfMaster(ZT1_Node *node,void *networkControllerInstance) { try { reinterpret_cast(node)->setNetconfMaster(networkControllerInstance); } catch ( ... ) {} } int ZT1_Node_addLocalInterfaceAddress(ZT1_Node *node,const struct sockaddr_storage *addr,int metric,ZT1_LocalInterfaceAddressTrust trust) { try { return reinterpret_cast(node)->addLocalInterfaceAddress(addr,metric,trust); } catch ( ... ) { return 0; } } void ZT1_Node_clearLocalInterfaceAddresses(ZT1_Node *node) { try { reinterpret_cast(node)->clearLocalInterfaceAddresses(); } catch ( ... ) {} } void ZT1_version(int *major,int *minor,int *revision,unsigned long *featureFlags) { if (major) *major = ZEROTIER_ONE_VERSION_MAJOR; if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR; if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION; if (featureFlags) { *featureFlags = ( ZT1_FEATURE_FLAG_THREAD_SAFE ); } } } // extern "C"