/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_UTILS_HPP #define ZT_UTILS_HPP #include #include #include #include #include #include #include #include #include #include #if defined(__FreeBSD__) #include #endif #include "Constants.hpp" #if __BYTE_ORDER == __LITTLE_ENDIAN #define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)((uint16_t)((uint16_t)(x) << 8U) | (uint16_t)((uint16_t)(x) >> 8U))) #define ZT_CONST_TO_BE_UINT64(x) ( \ (((uint64_t)(x) & 0x00000000000000ffULL) << 56U) | \ (((uint64_t)(x) & 0x000000000000ff00ULL) << 40U) | \ (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24U) | \ (((uint64_t)(x) & 0x00000000ff000000ULL) << 8U) | \ (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8U) | \ (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24U) | \ (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40U) | \ (((uint64_t)(x) & 0xff00000000000000ULL) >> 56U)) #else #define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)(x)) #define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x)) #endif #define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r)))) #define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r)))) #define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r)))) #define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r)))) namespace ZeroTier { /** * Miscellaneous utility functions and global constants */ class Utils { public: static const uint64_t ZERO256[4]; #ifdef ZT_ARCH_ARM_HAS_NEON struct ARMCapabilities { ARMCapabilities() noexcept; bool aes; bool crc32; bool pmull; bool sha1; bool sha2; }; static const ARMCapabilities ARMCAP; #endif #ifdef ZT_ARCH_X64 struct CPUIDRegisters { CPUIDRegisters() noexcept; bool rdrand; bool aes; bool avx; bool vaes; // implies AVX bool vpclmulqdq; // implies AVX bool avx2; bool avx512f; bool sha; bool fsrm; }; static const CPUIDRegisters CPUID; #endif /** * Compute the log2 (most significant bit set) of a 32-bit integer * * @param v Integer to compute * @return log2 or 0 if v is 0 */ static inline unsigned int log2(uint32_t v) { uint32_t r = (v > 0xffff) << 4; v >>= r; uint32_t shift = (v > 0xff) << 3; v >>= shift; r |= shift; shift = (v > 0xf) << 2; v >>= shift; r |= shift; shift = (v > 0x3) << 1; v >>= shift; r |= shift; r |= (v >> 1); return (unsigned int)r; } /** * Perform a time-invariant binary comparison * * @param a First binary string * @param b Second binary string * @param len Length of strings * @return True if strings are equal */ static inline bool secureEq(const void *a,const void *b,unsigned int len) { uint8_t diff = 0; for(unsigned int i=0;i(a))[i] ^ (reinterpret_cast(b))[i] ); } return (diff == 0); } /** * Securely zero memory, avoiding compiler optimizations and such */ static void burn(void *ptr,unsigned int len); /** * @param n Number to convert * @param s Buffer, at least 24 bytes in size * @return String containing 'n' in base 10 form */ static char *decimal(unsigned long n,char s[24]); static inline char *hex(uint64_t i,char s[17]) { s[0] = HEXCHARS[(i >> 60) & 0xf]; s[1] = HEXCHARS[(i >> 56) & 0xf]; s[2] = HEXCHARS[(i >> 52) & 0xf]; s[3] = HEXCHARS[(i >> 48) & 0xf]; s[4] = HEXCHARS[(i >> 44) & 0xf]; s[5] = HEXCHARS[(i >> 40) & 0xf]; s[6] = HEXCHARS[(i >> 36) & 0xf]; s[7] = HEXCHARS[(i >> 32) & 0xf]; s[8] = HEXCHARS[(i >> 28) & 0xf]; s[9] = HEXCHARS[(i >> 24) & 0xf]; s[10] = HEXCHARS[(i >> 20) & 0xf]; s[11] = HEXCHARS[(i >> 16) & 0xf]; s[12] = HEXCHARS[(i >> 12) & 0xf]; s[13] = HEXCHARS[(i >> 8) & 0xf]; s[14] = HEXCHARS[(i >> 4) & 0xf]; s[15] = HEXCHARS[i & 0xf]; s[16] = (char)0; return s; } static inline char *hex10(uint64_t i,char s[11]) { s[0] = HEXCHARS[(i >> 36) & 0xf]; s[1] = HEXCHARS[(i >> 32) & 0xf]; s[2] = HEXCHARS[(i >> 28) & 0xf]; s[3] = HEXCHARS[(i >> 24) & 0xf]; s[4] = HEXCHARS[(i >> 20) & 0xf]; s[5] = HEXCHARS[(i >> 16) & 0xf]; s[6] = HEXCHARS[(i >> 12) & 0xf]; s[7] = HEXCHARS[(i >> 8) & 0xf]; s[8] = HEXCHARS[(i >> 4) & 0xf]; s[9] = HEXCHARS[i & 0xf]; s[10] = (char)0; return s; } static inline char *hex(uint32_t i,char s[9]) { s[0] = HEXCHARS[(i >> 28) & 0xf]; s[1] = HEXCHARS[(i >> 24) & 0xf]; s[2] = HEXCHARS[(i >> 20) & 0xf]; s[3] = HEXCHARS[(i >> 16) & 0xf]; s[4] = HEXCHARS[(i >> 12) & 0xf]; s[5] = HEXCHARS[(i >> 8) & 0xf]; s[6] = HEXCHARS[(i >> 4) & 0xf]; s[7] = HEXCHARS[i & 0xf]; s[8] = (char)0; return s; } static inline char *hex(uint16_t i,char s[5]) { s[0] = HEXCHARS[(i >> 12) & 0xf]; s[1] = HEXCHARS[(i >> 8) & 0xf]; s[2] = HEXCHARS[(i >> 4) & 0xf]; s[3] = HEXCHARS[i & 0xf]; s[4] = (char)0; return s; } static inline char *hex(uint8_t i,char s[3]) { s[0] = HEXCHARS[(i >> 4) & 0xf]; s[1] = HEXCHARS[i & 0xf]; s[2] = (char)0; return s; } static inline char *hex(const void *d,unsigned int l,char *s) { char *const save = s; for(unsigned int i=0;i(d)[i]; *(s++) = HEXCHARS[b >> 4]; *(s++) = HEXCHARS[b & 0xf]; } *s = (char)0; return save; } static inline unsigned int unhex(const char *h,void *buf,unsigned int buflen) { unsigned int l = 0; while (l < buflen) { uint8_t hc = *(reinterpret_cast(h++)); if (!hc) { break; } uint8_t c = 0; if ((hc >= 48)&&(hc <= 57)) { // 0..9 c = hc - 48; } else if ((hc >= 97)&&(hc <= 102)) { // a..f c = hc - 87; } else if ((hc >= 65)&&(hc <= 70)) { // A..F c = hc - 55; } hc = *(reinterpret_cast(h++)); if (!hc) { break; } c <<= 4; if ((hc >= 48)&&(hc <= 57)) { c |= hc - 48; } else if ((hc >= 97)&&(hc <= 102)) { c |= hc - 87; } else if ((hc >= 65)&&(hc <= 70)) { c |= hc - 55; } reinterpret_cast(buf)[l++] = c; } return l; } static inline unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen) { unsigned int l = 0; const char *hend = h + hlen; while (l < buflen) { if (h == hend) { break; } uint8_t hc = *(reinterpret_cast(h++)); if (!hc) { break; } uint8_t c = 0; if ((hc >= 48)&&(hc <= 57)) { c = hc - 48; } else if ((hc >= 97)&&(hc <= 102)) { c = hc - 87; } else if ((hc >= 65)&&(hc <= 70)) { c = hc - 55; } if (h == hend) { break; } hc = *(reinterpret_cast(h++)); if (!hc) { break; } c <<= 4; if ((hc >= 48)&&(hc <= 57)) { c |= hc - 48; } else if ((hc >= 97)&&(hc <= 102)) { c |= hc - 87; } else if ((hc >= 65)&&(hc <= 70)) { c |= hc - 55; } reinterpret_cast(buf)[l++] = c; } return l; } static inline float normalize(float value, float bigMin, float bigMax, float targetMin, float targetMax) { float bigSpan = bigMax - bigMin; float smallSpan = targetMax - targetMin; float valueScaled = (value - bigMin) / bigSpan; return targetMin + valueScaled * smallSpan; } /** * Generate secure random bytes * * This will try to use whatever OS sources of entropy are available. It's * guarded by an internal mutex so it's thread-safe. * * @param buf Buffer to fill * @param bytes Number of random bytes to generate */ static void getSecureRandom(void *buf,unsigned int bytes); /** * Tokenize a string (alias for strtok_r or strtok_s depending on platform) * * @param str String to split * @param delim Delimiters * @param saveptr Pointer to a char * for temporary reentrant storage */ static inline char *stok(char *str,const char *delim,char **saveptr) { #ifdef __WINDOWS__ return strtok_s(str,delim,saveptr); #else return strtok_r(str,delim,saveptr); #endif } static inline unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,10); } static inline int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); } static inline unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); } static inline long strToLong(const char *s) { return strtol(s,(char **)0,10); } static inline double strToDouble(const char *s) { return strtod(s,NULL); } static inline unsigned long long strToU64(const char *s) { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,(char **)0,10); #else return strtoull(s,(char **)0,10); #endif } static inline long long strTo64(const char *s) { #ifdef __WINDOWS__ return (long long)_strtoi64(s,(char **)0,10); #else return strtoll(s,(char **)0,10); #endif } static inline unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); } static inline int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); } static inline unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); } static inline long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); } static inline unsigned long long hexStrToU64(const char *s) { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,(char **)0,16); #else return strtoull(s,(char **)0,16); #endif } static inline long long hexStrTo64(const char *s) { #ifdef __WINDOWS__ return (long long)_strtoi64(s,(char **)0,16); #else return strtoll(s,(char **)0,16); #endif } /** * Perform a safe C string copy, ALWAYS null-terminating the result * * This will never ever EVER result in dest[] not being null-terminated * regardless of any input parameter (other than len==0 which is invalid). * * @param dest Destination buffer (must not be NULL) * @param len Length of dest[] (if zero, false is returned and nothing happens) * @param src Source string (if NULL, dest will receive a zero-length string and true is returned) * @return True on success, false on overflow (buffer will still be 0-terminated) */ static inline bool scopy(char *dest,unsigned int len,const char *src) { if (!len) { return false; // sanity check } if (!src) { *dest = (char)0; return true; } char *end = dest + len; while ((*dest++ = *src++)) { if (dest == end) { *(--dest) = (char)0; return false; } } return true; } /** * Count the number of bits set in an integer * * @param v 32-bit integer * @return Number of bits set in this integer (0-32) */ static inline uint32_t countBits(uint32_t v) { v = v - ((v >> 1) & (uint32_t)0x55555555); v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333); return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24); } /** * Count the number of bits set in an integer * * @param v 64-bit integer * @return Number of bits set in this integer (0-64) */ static inline uint64_t countBits(uint64_t v) { v = v - ((v >> 1) & (uint64_t)~(uint64_t)0/3); v = (v & (uint64_t)~(uint64_t)0/15*3) + ((v >> 2) & (uint64_t)~(uint64_t)0/15*3); v = (v + (v >> 4)) & (uint64_t)~(uint64_t)0/255*15; return (uint64_t)(v * ((uint64_t)~(uint64_t)0/255)) >> 56; } /** * Check if a memory buffer is all-zero * * @param p Memory to scan * @param len Length of memory * @return True if memory is all zero */ static inline bool isZero(const void *p,unsigned int len) { for(unsigned int i=0;i> 8) | ((n & 0x0000ff0000000000ULL) >> 24) | ((n & 0x00ff000000000000ULL) >> 40) | ((n & 0xff00000000000000ULL) >> 56) ); #endif #endif } /** * Unconditionally swap bytes regardless of host byte order * * @param n Integer to swap * @return Integer with bytes reversed */ static ZT_INLINE uint32_t swapBytes(const uint32_t n) noexcept { #if defined(__GNUC__) return __builtin_bswap32(n); #else #ifdef _MSC_VER return (uint32_t)_byteswap_ulong((unsigned long)n); #else return htonl(n); #endif #endif } /** * Unconditionally swap bytes regardless of host byte order * * @param n Integer to swap * @return Integer with bytes reversed */ static ZT_INLINE uint16_t swapBytes(const uint16_t n) noexcept { #if defined(__GNUC__) return __builtin_bswap16(n); #else #ifdef _MSC_VER return (uint16_t)_byteswap_ushort((unsigned short)n); #else return htons(n); #endif #endif } // These are helper adapters to load and swap integer types special cased by size // to work with all typedef'd variants, signed/unsigned, etc. template< typename I, unsigned int S > class _swap_bytes_bysize; template< typename I > class _swap_bytes_bysize< I, 1 > { public: static ZT_INLINE I s(const I n) noexcept { return n; } }; template< typename I > class _swap_bytes_bysize< I, 2 > { public: static ZT_INLINE I s(const I n) noexcept { return (I)swapBytes((uint16_t)n); } }; template< typename I > class _swap_bytes_bysize< I, 4 > { public: static ZT_INLINE I s(const I n) noexcept { return (I)swapBytes((uint32_t)n); } }; template< typename I > class _swap_bytes_bysize< I, 8 > { public: static ZT_INLINE I s(const I n) noexcept { return (I)swapBytes((uint64_t)n); } }; template< typename I, unsigned int S > class _load_be_bysize; template< typename I > class _load_be_bysize< I, 1 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return p[0]; } }; template< typename I > class _load_be_bysize< I, 2 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)(((unsigned int)p[0] << 8U) | (unsigned int)p[1]); } }; template< typename I > class _load_be_bysize< I, 4 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)(((uint32_t)p[0] << 24U) | ((uint32_t)p[1] << 16U) | ((uint32_t)p[2] << 8U) | (uint32_t)p[3]); } }; template< typename I > class _load_be_bysize< I, 8 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)(((uint64_t)p[0] << 56U) | ((uint64_t)p[1] << 48U) | ((uint64_t)p[2] << 40U) | ((uint64_t)p[3] << 32U) | ((uint64_t)p[4] << 24U) | ((uint64_t)p[5] << 16U) | ((uint64_t)p[6] << 8U) | (uint64_t)p[7]); } }; template< typename I, unsigned int S > class _load_le_bysize; template< typename I > class _load_le_bysize< I, 1 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return p[0]; } }; template< typename I > class _load_le_bysize< I, 2 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)((unsigned int)p[0] | ((unsigned int)p[1] << 8U)); } }; template< typename I > class _load_le_bysize< I, 4 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)((uint32_t)p[0] | ((uint32_t)p[1] << 8U) | ((uint32_t)p[2] << 16U) | ((uint32_t)p[3] << 24U)); } }; template< typename I > class _load_le_bysize< I, 8 > { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)((uint64_t)p[0] | ((uint64_t)p[1] << 8U) | ((uint64_t)p[2] << 16U) | ((uint64_t)p[3] << 24U) | ((uint64_t)p[4] << 32U) | ((uint64_t)p[5] << 40U) | ((uint64_t)p[6] << 48U) | ((uint64_t)p[7]) << 56U); } }; /** * Convert any signed or unsigned integer type to big-endian ("network") byte order * * @tparam I Integer type (usually inferred) * @param n Value to convert * @return Value in big-endian order */ template< typename I > static ZT_INLINE I hton(const I n) noexcept { #if __BYTE_ORDER == __LITTLE_ENDIAN return _swap_bytes_bysize< I, sizeof(I) >::s(n); #else return n; #endif } /** * Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order * * @tparam I Integer type (usually inferred) * @param n Value to convert * @return Value in host byte order */ template< typename I > static ZT_INLINE I ntoh(const I n) noexcept { #if __BYTE_ORDER == __LITTLE_ENDIAN return _swap_bytes_bysize< I, sizeof(I) >::s(n); #else return n; #endif } /** * Copy bits from memory into an integer type without modifying their order * * @tparam I Type to load * @param p Byte stream, must be at least sizeof(I) in size * @return Loaded raw integer */ template< typename I > static ZT_INLINE I loadMachineEndian(const void *const p) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS I tmp; for(int i=0;i<(int)sizeof(I);++i) { reinterpret_cast(&tmp)[i] = reinterpret_cast(p)[i]; } return tmp; #else return *reinterpret_cast(p); #endif } /** * Copy bits from memory into an integer type without modifying their order * * @tparam I Type to store * @param p Byte array (must be at least sizeof(I)) * @param i Integer to store */ template< typename I > static ZT_INLINE void storeMachineEndian(void *const p, const I i) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS for(unsigned int k=0;k(p)[k] = reinterpret_cast(&i)[k]; } #else *reinterpret_cast(p) = i; #endif } /** * Decode a big-endian value from a byte stream * * @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t) * @param p Byte stream, must be at least sizeof(I) in size * @return Decoded integer */ template< typename I > static ZT_INLINE I loadBigEndian(const void *const p) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS return _load_be_bysize::l(reinterpret_cast(p)); #else return ntoh(*reinterpret_cast(p)); #endif } /** * Save an integer in big-endian format * * @tparam I Integer type to store (usually inferred) * @param p Byte stream to write (must be at least sizeof(I)) * #param i Integer to write */ template< typename I > static ZT_INLINE void storeBigEndian(void *const p, I i) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS storeMachineEndian(p,hton(i)); #else *reinterpret_cast(p) = hton(i); #endif } /** * Decode a little-endian value from a byte stream * * @tparam I Type to decode * @param p Byte stream, must be at least sizeof(I) in size * @return Decoded integer */ template< typename I > static ZT_INLINE I loadLittleEndian(const void *const p) noexcept { #if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS) return _load_le_bysize::l(reinterpret_cast(p)); #else return *reinterpret_cast(p); #endif } /** * Save an integer in little-endian format * * @tparam I Integer type to store (usually inferred) * @param p Byte stream to write (must be at least sizeof(I)) * #param i Integer to write */ template< typename I > static ZT_INLINE void storeLittleEndian(void *const p, const I i) noexcept { #if __BYTE_ORDER == __BIG_ENDIAN storeMachineEndian(p,_swap_bytes_bysize::s(i)); #else #ifdef ZT_NO_UNALIGNED_ACCESS storeMachineEndian(p,i); #else *reinterpret_cast(p) = i; #endif #endif } /** * Copy memory block whose size is known at compile time. * * @tparam L Size of memory * @param dest Destination memory * @param src Source memory */ template< unsigned long L > static ZT_INLINE void copy(void *dest, const void *src) noexcept { #if defined(ZT_ARCH_X64) && defined(__GNUC__) uintptr_t l = L; __asm__ __volatile__ ("cld ; rep movsb" : "+c"(l), "+S"(src), "+D"(dest) :: "memory"); #else memcpy(dest, src, L); #endif } /** * Copy memory block whose size is known at run time * * @param dest Destination memory * @param src Source memory * @param len Bytes to copy */ static ZT_INLINE void copy(void *dest, const void *src, unsigned long len) noexcept { #if defined(ZT_ARCH_X64) && defined(__GNUC__) __asm__ __volatile__ ("cld ; rep movsb" : "+c"(len), "+S"(src), "+D"(dest) :: "memory"); #else memcpy(dest, src, len); #endif } /** * Zero memory block whose size is known at compile time * * @tparam L Size in bytes * @param dest Memory to zero */ template< unsigned long L > static ZT_INLINE void zero(void *dest) noexcept { #if defined(ZT_ARCH_X64) && defined(__GNUC__) uintptr_t l = L; __asm__ __volatile__ ("cld ; rep stosb" :"+c" (l), "+D" (dest) : "a" (0) : "memory"); #else memset(dest, 0, L); #endif } /** * Zero memory block whose size is known at run time * * @param dest Memory to zero * @param len Size in bytes */ static ZT_INLINE void zero(void *dest, unsigned long len) noexcept { #if defined(ZT_ARCH_X64) && defined(__GNUC__) __asm__ __volatile__ ("cld ; rep stosb" :"+c" (len), "+D" (dest) : "a" (0) : "memory"); #else memset(dest, 0, len); #endif } /** * Hexadecimal characters 0-f */ static const char HEXCHARS[16]; /* * Remove `-` and `:` from a MAC address (in-place). * * @param mac The MAC address */ static inline void cleanMac(std::string& mac) { auto start = mac.begin(); auto end = mac.end(); auto new_end = std::remove_if(start, end, [](char c) { return c == 45 || c == 58; }); mac.erase(new_end, end); } }; } // namespace ZeroTier #endif