/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Multicaster.hpp" #include "Topology.hpp" #include "Switch.hpp" #include "Packet.hpp" #include "Peer.hpp" #include "C25519.hpp" #include "CertificateOfMembership.hpp" #include "Node.hpp" #include "Network.hpp" namespace ZeroTier { Multicaster::Multicaster(const RuntimeEnvironment *renv) : RR(renv), _groups(32) { } Multicaster::~Multicaster() { } void Multicaster::addMultiple(void *tPtr,int64_t now,uint64_t nwid,const MulticastGroup &mg,const void *addresses,unsigned int count,unsigned int totalKnown) { const unsigned char *p = (const unsigned char *)addresses; const unsigned char *e = p + (5 * count); Mutex::Lock _l(_groups_m); MulticastGroupStatus &gs = _groups[Multicaster::Key(nwid,mg)]; while (p != e) { _add(tPtr,now,nwid,mg,gs,Address(p,5)); p += 5; } } void Multicaster::remove(uint64_t nwid,const MulticastGroup &mg,const Address &member) { Mutex::Lock _l(_groups_m); MulticastGroupStatus *s = _groups.get(Multicaster::Key(nwid,mg)); if (s) { for(std::vector::iterator m(s->members.begin());m!=s->members.end();++m) { if (m->address == member) { s->members.erase(m); break; } } } } unsigned int Multicaster::gather(const Address &queryingPeer,uint64_t nwid,const MulticastGroup &mg,Buffer &appendTo,unsigned int limit) const { unsigned char *p; unsigned int added = 0,i,k,rptr,totalKnown = 0; uint64_t a,picked[(ZT_PROTO_MAX_PACKET_LENGTH / 5) + 2]; if (!limit) return 0; else if (limit > 0xffff) limit = 0xffff; const unsigned int totalAt = appendTo.size(); appendTo.addSize(4); // sizeof(uint32_t) const unsigned int addedAt = appendTo.size(); appendTo.addSize(2); // sizeof(uint16_t) { // Return myself if I am a member of this group SharedPtr network(RR->node->network(nwid)); if ((network)&&(network->subscribedToMulticastGroup(mg,true))) { RR->identity.address().appendTo(appendTo); ++totalKnown; ++added; } } Mutex::Lock _l(_groups_m); const MulticastGroupStatus *s = _groups.get(Multicaster::Key(nwid,mg)); if ((s)&&(!s->members.empty())) { totalKnown += (unsigned int)s->members.size(); // Members are returned in random order so that repeated gather queries // will return different subsets of a large multicast group. k = 0; while ((added < limit)&&(k < s->members.size())&&((appendTo.size() + ZT_ADDRESS_LENGTH) <= ZT_PROTO_MAX_PACKET_LENGTH)) { rptr = (unsigned int)RR->node->prng(); restart_member_scan: a = s->members[rptr % (unsigned int)s->members.size()].address.toInt(); for(i=0;i> 32) & 0xff); *(p++) = (unsigned char)((a >> 24) & 0xff); *(p++) = (unsigned char)((a >> 16) & 0xff); *(p++) = (unsigned char)((a >> 8) & 0xff); *p = (unsigned char)(a & 0xff); ++added; } } } appendTo.setAt(totalAt,(uint32_t)totalKnown); appendTo.setAt(addedAt,(uint16_t)added); return added; } std::vector
Multicaster::getMembers(uint64_t nwid,const MulticastGroup &mg,unsigned int limit) const { std::vector
ls; Mutex::Lock _l(_groups_m); const MulticastGroupStatus *s = _groups.get(Multicaster::Key(nwid,mg)); if (!s) return ls; for(std::vector::const_reverse_iterator m(s->members.rbegin());m!=s->members.rend();++m) { ls.push_back(m->address); if (ls.size() >= limit) break; } return ls; } void Multicaster::send( void *tPtr, int64_t now, const SharedPtr &network, const Address &origin, const MulticastGroup &mg, const MAC &src, unsigned int etherType, const void *data, unsigned int len) { unsigned long idxbuf[4096]; unsigned long *indexes = idxbuf; // If we're in hub-and-spoke designated multicast replication mode, see if we // have a multicast replicator active. If so, pick the best and send it // there. If we are a multicast replicator or if none are alive, fall back // to sender replication. Note that bridges do not do this since this would // break bridge route learning. This is sort of an edge case limitation of // the current protocol and could be fixed, but fixing it would add more // complexity than the fix is probably worth. Bridges are generally high // bandwidth nodes. if (!network->config().isActiveBridge(RR->identity.address())) { Address multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS]; const unsigned int multicastReplicatorCount = network->config().multicastReplicators(multicastReplicators); if (multicastReplicatorCount) { if (std::find(multicastReplicators,multicastReplicators + multicastReplicatorCount,RR->identity.address()) == (multicastReplicators + multicastReplicatorCount)) { SharedPtr bestMulticastReplicator; SharedPtr bestMulticastReplicatorPath; unsigned int bestMulticastReplicatorLatency = 0xffff; for(unsigned int i=0;i p(RR->topology->getPeerNoCache(multicastReplicators[i])); if ((p)&&(p->isAlive(now))) { const SharedPtr pp(p->getAppropriatePath(now,false)); if ((pp)&&(pp->latency() < bestMulticastReplicatorLatency)) { bestMulticastReplicatorLatency = pp->latency(); bestMulticastReplicatorPath = pp; bestMulticastReplicator = p; } } } if (bestMulticastReplicator) { Packet outp(bestMulticastReplicator->address(),RR->identity.address(),Packet::VERB_MULTICAST_FRAME); outp.append((uint64_t)network->id()); outp.append((uint8_t)0x0c); // includes source MAC | please replicate ((src) ? src : MAC(RR->identity.address(),network->id())).appendTo(outp); mg.mac().appendTo(outp); outp.append((uint32_t)mg.adi()); outp.append((uint16_t)etherType); outp.append(data,len); if (!network->config().disableCompression()) outp.compress(); outp.armor(bestMulticastReplicator->key(),true,bestMulticastReplicator->aesKeysIfSupported()); bestMulticastReplicatorPath->send(RR,tPtr,outp.data(),outp.size(),now); return; } } } } try { Mutex::Lock _l(_groups_m); MulticastGroupStatus &gs = _groups[Multicaster::Key(network->id(),mg)]; if (!gs.members.empty()) { // Allocate a memory buffer if group is monstrous if (gs.members.size() > (sizeof(idxbuf) / sizeof(unsigned long))) indexes = new unsigned long[gs.members.size()]; // Generate a random permutation of member indexes for(unsigned long i=0;i0;--i) { unsigned long j = (unsigned long)RR->node->prng() % (i + 1); unsigned long tmp = indexes[j]; indexes[j] = indexes[i]; indexes[i] = tmp; } } Address activeBridges[ZT_MAX_NETWORK_SPECIALISTS]; const unsigned int activeBridgeCount = network->config().activeBridges(activeBridges); const unsigned int limit = network->config().multicastLimit; if (gs.members.size() >= limit) { // Skip queue if we already have enough members to complete the send operation OutboundMulticast out; out.init( RR, now, network->id(), network->config().disableCompression(), limit, 1, // we'll still gather a little from peers to keep multicast list fresh src, mg, etherType, data, len); unsigned int count = 0; for(unsigned int i=0;iidentity.address())&&(activeBridges[i] != origin)) { out.sendOnly(RR,tPtr,activeBridges[i]); // optimization: don't use dedup log if it's a one-pass send if (++count >= limit) break; } } unsigned long idx = 0; while ((count < limit)&&(idx < gs.members.size())) { const Address ma(gs.members[indexes[idx++]].address); if ((std::find(activeBridges,activeBridges + activeBridgeCount,ma) == (activeBridges + activeBridgeCount))&&(ma != origin)) { out.sendOnly(RR,tPtr,ma); // optimization: don't use dedup log if it's a one-pass send ++count; } } } else { while (gs.txQueue.size() >= ZT_TX_QUEUE_SIZE) { gs.txQueue.pop_front(); } const unsigned int gatherLimit = (limit - (unsigned int)gs.members.size()) + 1; int timerScale = RR->node->lowBandwidthModeEnabled() ? 3 : 1; if ((gs.members.empty())||((now - gs.lastExplicitGather) >= (ZT_MULTICAST_EXPLICIT_GATHER_DELAY * timerScale))) { gs.lastExplicitGather = now; Address explicitGatherPeers[16]; unsigned int numExplicitGatherPeers = 0; SharedPtr bestRoot(RR->topology->getUpstreamPeer()); if (bestRoot) explicitGatherPeers[numExplicitGatherPeers++] = bestRoot->address(); explicitGatherPeers[numExplicitGatherPeers++] = network->controller(); Address ac[ZT_MAX_NETWORK_SPECIALISTS]; const unsigned int accnt = network->config().alwaysContactAddresses(ac); unsigned int shuffled[ZT_MAX_NETWORK_SPECIALISTS]; for(unsigned int i=0;i>1;inode->prng(); const unsigned int x1 = shuffled[(unsigned int)x % accnt]; const unsigned int x2 = shuffled[(unsigned int)(x >> 32) % accnt]; const unsigned int tmp = shuffled[x1]; shuffled[x1] = shuffled[x2]; shuffled[x2] = tmp; } for(unsigned int i=0;i anchors(network->config().anchors()); for(std::vector
::const_iterator a(anchors.begin());a!=anchors.end();++a) { if (*a != RR->identity.address()) { explicitGatherPeers[numExplicitGatherPeers++] = *a; if (numExplicitGatherPeers == 16) break; } } for(unsigned int k=0;kconfig().com) ? &(network->config().com) : (const CertificateOfMembership *)0) : (const CertificateOfMembership *)0; Packet outp(explicitGatherPeers[k],RR->identity.address(),Packet::VERB_MULTICAST_GATHER); outp.append(network->id()); outp.append((uint8_t)((com) ? 0x01 : 0x00)); mg.mac().appendTo(outp); outp.append((uint32_t)mg.adi()); outp.append((uint32_t)gatherLimit); if (com) com->serialize(outp); RR->node->expectReplyTo(outp.packetId()); RR->sw->send(tPtr,outp,true); } } gs.txQueue.push_back(OutboundMulticast()); OutboundMulticast &out = gs.txQueue.back(); out.init( RR, now, network->id(), network->config().disableCompression(), limit, gatherLimit, src, mg, etherType, data, len); if (origin) out.logAsSent(origin); unsigned int count = 0; for(unsigned int i=0;iidentity.address()) { out.sendAndLog(RR,tPtr,activeBridges[i]); if (++count >= limit) break; } } unsigned long idx = 0; while ((count < limit)&&(idx < gs.members.size())) { Address ma(gs.members[indexes[idx++]].address); if (std::find(activeBridges,activeBridges + activeBridgeCount,ma) == (activeBridges + activeBridgeCount)) { out.sendAndLog(RR,tPtr,ma); ++count; } } } } catch ( ... ) {} // this is a sanity check to catch any failures and make sure indexes[] still gets deleted // Free allocated memory buffer if any if (indexes != idxbuf) delete [] indexes; } void Multicaster::clean(int64_t now) { Mutex::Lock _l(_groups_m); Multicaster::Key *k = (Multicaster::Key *)0; MulticastGroupStatus *s = (MulticastGroupStatus *)0; Hashtable::Iterator mm(_groups); while (mm.next(k,s)) { for(std::list::iterator tx(s->txQueue.begin());tx!=s->txQueue.end();) { if ((tx->expired(now))||(tx->atLimit())) s->txQueue.erase(tx++); else ++tx; } unsigned long count = 0; { std::vector::iterator reader(s->members.begin()); std::vector::iterator writer(reader); while (reader != s->members.end()) { if ((now - reader->timestamp) < ZT_MULTICAST_LIKE_EXPIRE) { *writer = *reader; ++writer; ++count; } ++reader; } } if (count) { s->members.resize(count); } else if (s->txQueue.empty()) { _groups.erase(*k); } else { s->members.clear(); } } } void Multicaster::_add(void *tPtr,int64_t now,uint64_t nwid,const MulticastGroup &mg,MulticastGroupStatus &gs,const Address &member) { // assumes _groups_m is locked // Do not add self -- even if someone else returns it if (member == RR->identity.address()) return; std::vector::iterator m(std::lower_bound(gs.members.begin(),gs.members.end(),member)); if (m != gs.members.end()) { if (m->address == member) { m->timestamp = now; return; } gs.members.insert(m,MulticastGroupMember(member,now)); } else { gs.members.push_back(MulticastGroupMember(member,now)); } for(std::list::iterator tx(gs.txQueue.begin());tx!=gs.txQueue.end();) { if (tx->atLimit()) gs.txQueue.erase(tx++); else { tx->sendIfNew(RR,tPtr,member); if (tx->atLimit()) gs.txQueue.erase(tx++); else ++tx; } } } } // namespace ZeroTier