/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_LOCATOR_HPP
#define ZT_LOCATOR_HPP
#include "Constants.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "SHA512.hpp"
#include "Str.hpp"
#include
#include
#define ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES 255
#define ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES 255
namespace ZeroTier {
/**
* Signed information about a node's location on the network
*
* A locator is a signed record that contains information about where a node
* may be found. It can contain static physical addresses or virtual ZeroTier
* addresses of nodes that can forward to the target node. Locator records
* can be stored in signed DNS TXT record sets, in LF by roots, in caches,
* etc. Version 2.x nodes can sign their own locators. Roots can create
* signed locators using their own signature for version 1.x nodes. Locators
* signed by the node whose location they describe always take precedence
* over locators signed by other nodes.
*/
class Locator
{
public:
inline Locator() : _signatureLength(0) {}
inline const Identity &id() const { return _id; }
inline const Identity &signer() const { return ((_signedBy) ? _signedBy : _id); }
inline const std::vector &phy() const { return _physical; }
inline const std::vector &virt() const { return _virtual; }
/**
* Add a physical address to this locator (call before finish() to build a new Locator)
*/
inline void add(const InetAddress &ip)
{
if (_physical.size() < ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES)
_physical.push_back(ip);
}
/**
* Add a forwarding ZeroTier node to this locator (call before finish() to build a new Locator)
*/
inline void add(const Identity &zt)
{
if (_virtual.size() < ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES)
_virtual.push_back(zt);
}
/**
* Method to be called after add() is called for each address or forwarding node
*
* This sets timestamp and ID information and sorts and deduplicates target
* lists but does not sign the locator. The sign() method should be used after
* finish().
*/
inline void finish(const Identity &id,const int64_t ts)
{
_ts = ts;
_id = id;
std::sort(_physical.begin(),_physical.end());
_physical.erase(std::unique(_physical.begin(),_physical.end()),_physical.end());
std::sort(_virtual.begin(),_virtual.end());
_virtual.erase(std::unique(_virtual.begin(),_virtual.end()),_virtual.end());
}
/**
* Sign this locator (must be called after finish())
*/
inline bool sign(const Identity &signingId)
{
if (!signingId.hasPrivate())
return false;
if (signingId == _id) {
_signedBy.zero();
} else {
_signedBy = signingId;
}
Buffer<65536> *tmp = new Buffer<65536>();
try {
serialize(*tmp,true);
_signatureLength = signingId.sign(tmp->data(),tmp->size(),_signature,ZT_SIGNATURE_BUFFER_SIZE);
delete tmp;
return (_signatureLength > 0);
} catch ( ... ) {
delete tmp;
return false;
}
}
/**
* Verify this locator's signature against its embedded signing identity
*/
inline bool verify() const
{
if ((_signatureLength == 0)||(_signatureLength > sizeof(_signature)))
return false;
Buffer<65536> *tmp = nullptr;
try {
tmp = new Buffer<65536>();
serialize(*tmp,true);
const bool ok = (_signedBy) ? _signedBy.verify(tmp->data(),tmp->size(),_signature,_signatureLength) : _id.verify(tmp->data(),tmp->size(),_signature,_signatureLength);
delete tmp;
return ok;
} catch ( ... ) {
if (tmp) delete tmp;
return false;
}
}
/**
* Make DNS TXT records for this locator
*
* DNS TXT records are signed by an entirely separate key that is added along
* with DNS names to nodes to allow them to verify DNS results. It's separate
* from the locator's signature so that a single DNS record can point to more
* than one locator or be served by things like geo-aware DNS.
*
* Right now only NIST P-384 is supported for signing DNS records. NIST EDDSA
* is used here so that FIPS-only nodes can always use DNS to locate roots as
* FIPS-only nodes may be required to disable non-FIPS algorithms.
*/
inline std::vector makeTxtRecords(const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t p384SigningKeyPrivate[ZT_ECC384_PUBLIC_KEY_SIZE])
{
uint8_t s384[48],dnsSig[ZT_ECC384_SIGNATURE_SIZE];
char enc[256];
Buffer<65536> *const tmp = new Buffer<65536>();
serialize(*tmp,false);
SHA384(s384,tmp->data(),tmp->size());
ECC384ECDSASign(p384SigningKeyPrivate,s384,dnsSig);
tmp->append(dnsSig,ZT_ECC384_SIGNATURE_SIZE);
// Blob must be broken into multiple TXT records that must remain sortable so they are prefixed by a hex value.
// 186-byte chunks yield 248-byte base64 chunks which leaves some margin below the limit of 255.
std::vector txtRecords;
for(unsigned int p=0;psize();p+=186) {
unsigned int rem = tmp->size() - p;
if (rem > 186) rem = 186;
Utils::b64e(((const uint8_t *)tmp->data()) + p,rem,enc,sizeof(enc));
txtRecords.push_back(Str());
txtRecords.back() << Utils::HEXCHARS[(p >> 4) & 0xf] << Utils::HEXCHARS[p & 0xf] << enc;
}
delete tmp;
return txtRecords;
}
/**
* Decode TXT records
*
* The supplied TXT records must be sorted in ascending natural sort order prior
* to calling this method. The iterators supplied must be read iterators that
* point to string objects supporting the c_str() method, which can be Str or
* std::string.
*
* This method checks the decoded locator's signature using the supplied DNS TXT
* record signing public key. False is returned if the TXT records are invalid,
* incomplete, or fail signature check. If true is returned this Locator object
* now contains the contents of the supplied TXT records.
*/
template
inline bool decodeTxtRecords(I start,I end,const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE])
{
uint8_t dec[256],s384[48];
Buffer<65536> *tmp = nullptr;
try {
tmp = new Buffer<65536>();
while (start != end) {
tmp->append(dec,Utils::b64d(start->c_str(),dec,sizeof(dec)));
++start;
}
if (tmp->size() <= ZT_ECC384_SIGNATURE_SIZE) {
delete tmp;
return false;
}
SHA384(s384,tmp->data(),tmp->size() - ZT_ECC384_SIGNATURE_SIZE);
if (!ECC384ECDSAVerify(p384SigningKeyPublic,s384,((const uint8_t *)tmp->data()) + (tmp->size() - ZT_ECC384_SIGNATURE_SIZE))) {
delete tmp;
return false;
}
deserialize(*tmp,0);
delete tmp;
return verify();
} catch ( ... ) {
if (tmp) delete tmp;
return false;
}
}
template
inline void serialize(Buffer &b,const bool forSign = false) const
{
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
b.append((uint8_t)0); // version/flags, currently 0
b.append((uint64_t)_ts);
_id.serialise(b,false);
if (_signedBy) {
b.append((uint8_t)1); // number of signers, current max is 1
_signedBy.serialize(b,false);
} else {
b.append((uint8_t)0); // signer is _id
}
b.append((uint8_t)_physical.size());
for(std::vector::const_iterator i(_physical.begin());i!=_physical.end();++i)
i->serialize(b);
b.append((uint8_t)_virtual.size());
for(std::vector::const_iterator i(_virtual.begin());i!=_virtual.end();++i)
i->serialize(b,false);
if (!forSign) {
b.append((uint16_t)_signatureLength);
b.append(_signature,_signatureLength);
}
b.append((uint16_t)0); // length of additional fields, currently 0
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
template
inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0)
{
unsigned int p = startAt;
if (b[p++] != 0)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
_ts = (int64_t)b.template at(p); p += 8;
p += _id.deserialize(b,p);
const unsigned int signerCount = b[p++];
if (signerCount > 1) /* only one third party signer is currently supported */
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
if (signerCount == 1) {
p += _signedBy.deserialize(b,p);
} else {
_signedBy.zero();
}
const unsigned int physicalCount = b[p++];
_physical.resize(physicalCount);
for(unsigned int i=0;i(p); p += 2;
if (_signatureLength > ZT_SIGNATURE_BUFFER_SIZE)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
memcpy(_signature,b.field(p,_signatureLength),_signatureLength);
p += _signatureLength;
p += b.template at(p); p += 2;
if (p > b.size())
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
return (p - startAt);
}
inline operator bool() const { return (_id); }
inline bool operator==(const Locator &l) const { return ((_ts == l._ts)&&(_id == l._id)&&(_signedBy == l._signedBy)&&(_physical == l._physical)&&(_virtual == l._virtual)&&(_signatureLength == l._signatureLength)&&(memcmp(_signature,l._signature,_signatureLength) == 0)); }
inline bool operator!=(const Locator &l) const { return (!(*this == l)); }
inline bool operator<(const Locator &l) const
{
if (_id < l._id) return true;
if (_ts < l._ts) return true;
if (_signedBy < l._signedBy) return true;
if (_physical < l._physical) return true;
if (_virtual < l._virtual) return true;
return false;
}
inline bool operator>(const Locator &l) const { return (l < *this); }
inline bool operator<=(const Locator &l) const { return (!(l < *this)); }
inline bool operator>=(const Locator &l) const { return (!(*this < l)); }
inline unsigned long hashCode() const { return (unsigned long)(_id.address().toInt() ^ (uint64_t)_ts); }
private:
int64_t _ts;
Identity _id;
Identity _signedBy; // signed by _id if nil/zero
std::vector _physical;
std::vector _virtual;
unsigned int _signatureLength;
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
};
} // namespace ZeroTier
#endif