/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_RINGBUFFER_H
#define ZT_RINGBUFFER_H
#include
#include
#include
#include
#include
#include
namespace ZeroTier {
/**
* A circular buffer
*
* For fast handling of continuously-evolving variables (such as path quality metrics).
* Using this, we can maintain longer sliding historical windows for important path
* metrics without the need for potentially expensive calls to memcpy/memmove.
*
* Some basic statistical functionality is implemented here in an attempt
* to reduce the complexity of code needed to interact with this type of buffer.
*/
template
class RingBuffer
{
private:
T * buf;
size_t size;
size_t begin;
size_t end;
bool wrap;
public:
/**
* create a RingBuffer with space for up to size elements.
*/
explicit RingBuffer(size_t size)
: size(size),
begin(0),
end(0),
wrap(false)
{
buf = new T[size];
memset(buf, 0, sizeof(T) * size);
}
~RingBuffer()
{
delete [] buf;
}
/**
* @return A pointer to the underlying buffer
*/
T* get_buf()
{
return buf + begin;
}
/**
* Adjust buffer index pointer as if we copied data in
* @param n Number of elements to copy in
* @return Number of elements we copied in
*/
size_t produce(size_t n)
{
n = std::min(n, getFree());
if (n == 0) {
return n;
}
const size_t first_chunk = std::min(n, size - end);
end = (end + first_chunk) % size;
if (first_chunk < n) {
const size_t second_chunk = n - first_chunk;
end = (end + second_chunk) % size;
}
if (begin == end) {
wrap = true;
}
return n;
}
/**
* Fast erase, O(1).
* Merely reset the buffer pointer, doesn't erase contents
*/
void reset()
{
consume(count());
}
/**
* adjust buffer index pointer as if we copied data out
* @param n Number of elements we copied from the buffer
* @return Number of elements actually available from the buffer
*/
size_t consume(size_t n)
{
n = std::min(n, count());
if (n == 0) {
return n;
}
if (wrap) {
wrap = false;
}
const size_t first_chunk = std::min(n, size - begin);
begin = (begin + first_chunk) % size;
if (first_chunk < n) {
const size_t second_chunk = n - first_chunk;
begin = (begin + second_chunk) % size;
}
return n;
}
/**
* @param data Buffer that is to be written to the ring
* @param n Number of elements to write to the buffer
*/
size_t write(const T * data, size_t n)
{
n = std::min(n, getFree());
if (n == 0) {
return n;
}
const size_t first_chunk = std::min(n, size - end);
memcpy(buf + end, data, first_chunk * sizeof(T));
end = (end + first_chunk) % size;
if (first_chunk < n) {
const size_t second_chunk = n - first_chunk;
memcpy(buf + end, data + first_chunk, second_chunk * sizeof(T));
end = (end + second_chunk) % size;
}
if (begin == end) {
wrap = true;
}
return n;
}
/**
* Place a single value on the buffer. If the buffer is full, consume a value first.
*
* @param value A single value to be placed in the buffer
*/
void push(const T value)
{
if (count() == size) {
consume(1);
}
const size_t first_chunk = std::min((size_t)1, size - end);
*(buf + end) = value;
end = (end + first_chunk) % size;
if (begin == end) {
wrap = true;
}
}
/**
* @return The most recently pushed element on the buffer
*/
T get_most_recent() { return *(buf + end); }
/**
* @param dest Destination buffer
* @param n Size (in terms of number of elements) of the destination buffer
* @return Number of elements read from the buffer
*/
size_t read(T * dest, size_t n)
{
n = std::min(n, count());
if (n == 0) {
return n;
}
if (wrap) {
wrap = false;
}
const size_t first_chunk = std::min(n, size - begin);
memcpy(dest, buf + begin, first_chunk * sizeof(T));
begin = (begin + first_chunk) % size;
if (first_chunk < n) {
const size_t second_chunk = n - first_chunk;
memcpy(dest + first_chunk, buf + begin, second_chunk * sizeof(T));
begin = (begin + second_chunk) % size;
}
return n;
}
/**
* Return how many elements are in the buffer, O(1).
*
* @return The number of elements in the buffer
*/
size_t count()
{
if (end == begin) {
return wrap ? size : 0;
}
else if (end > begin) {
return end - begin;
}
else {
return size + end - begin;
}
}
/**
* @return The number of slots that are unused in the buffer
*/
size_t getFree() { return size - count(); }
/**
* @return The arithmetic mean of the contents of the buffer
*/
float mean()
{
size_t iterator = begin;
float subtotal = 0;
size_t curr_cnt = count();
for (size_t i=0; i