/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #ifdef ZT_ENABLE_CLUSTER #include #include #include #include #include #include #include #include "../version.h" #include "Cluster.hpp" #include "RuntimeEnvironment.hpp" #include "MulticastGroup.hpp" #include "CertificateOfMembership.hpp" #include "Salsa20.hpp" #include "Poly1305.hpp" #include "Identity.hpp" #include "Topology.hpp" #include "Packet.hpp" #include "Switch.hpp" #include "Node.hpp" namespace ZeroTier { static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2) throw() { double dx = ((double)x2 - (double)x1); double dy = ((double)y2 - (double)y1); double dz = ((double)z2 - (double)z1); return sqrt((dx * dx) + (dy * dy) + (dz * dz)); } Cluster::Cluster( const RuntimeEnvironment *renv, uint16_t id, const std::vector &zeroTierPhysicalEndpoints, int32_t x, int32_t y, int32_t z, void (*sendFunction)(void *,unsigned int,const void *,unsigned int), void *sendFunctionArg, int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *), void *addressToLocationFunctionArg) : RR(renv), _sendFunction(sendFunction), _sendFunctionArg(sendFunctionArg), _addressToLocationFunction(addressToLocationFunction), _addressToLocationFunctionArg(addressToLocationFunctionArg), _x(x), _y(y), _z(z), _id(id), _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints), _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]), _peerAffinities(65536), _lastCleanedPeerAffinities(0), _lastCheckedPeersForAnnounce(0) { uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)]; // Generate master secret by hashing the secret from our Identity key pair RR->identity.sha512PrivateKey(_masterSecret); // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice memcpy(stmp,_masterSecret,sizeof(stmp)); stmp[0] ^= Utils::hton(id); SHA512::hash(stmp,stmp,sizeof(stmp)); SHA512::hash(stmp,stmp,sizeof(stmp)); memcpy(_key,stmp,sizeof(_key)); Utils::burn(stmp,sizeof(stmp)); } Cluster::~Cluster() { Utils::burn(_masterSecret,sizeof(_masterSecret)); Utils::burn(_key,sizeof(_key)); delete [] _members; } void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len) { Buffer dmsg; { // FORMAT: <[16] iv><[8] MAC><... data> if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH)) return; // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV char keytmp[32]; memcpy(keytmp,_key,32); for(int i=0;i<8;++i) keytmp[i] ^= reinterpret_cast(msg)[i]; Salsa20 s20(keytmp,256,reinterpret_cast(msg) + 8); Utils::burn(keytmp,sizeof(keytmp)); // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard") char polykey[ZT_POLY1305_KEY_LEN]; memset(polykey,0,sizeof(polykey)); s20.encrypt12(polykey,polykey,sizeof(polykey)); // Compute 16-byte MAC char mac[ZT_POLY1305_MAC_LEN]; Poly1305::compute(mac,reinterpret_cast(msg) + 24,len - 24,polykey); // Check first 8 bytes of MAC against 64-bit MAC in stream if (!Utils::secureEq(mac,reinterpret_cast(msg) + 16,8)) return; // Decrypt! dmsg.setSize(len - 24); s20.decrypt12(reinterpret_cast(msg) + 24,const_cast(dmsg.data()),dmsg.size()); } if (dmsg.size() < 4) return; const uint16_t fromMemberId = dmsg.at(0); unsigned int ptr = 2; if (fromMemberId == _id) // sanity check: we don't talk to ourselves return; const uint16_t toMemberId = dmsg.at(ptr); ptr += 2; if (toMemberId != _id) // sanity check: message not for us? return; { // make sure sender is actually considered a member Mutex::Lock _l3(_memberIds_m); if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end()) return; } { _Member &m = _members[fromMemberId]; Mutex::Lock mlck(m.lock); try { while (ptr < dmsg.size()) { const unsigned int mlen = dmsg.at(ptr); ptr += 2; const unsigned int nextPtr = ptr + mlen; if (nextPtr > dmsg.size()) break; int mtype = -1; try { switch((StateMessageType)(mtype = (int)dmsg[ptr++])) { default: break; case STATE_MESSAGE_ALIVE: { ptr += 7; // skip version stuff, not used yet m.x = dmsg.at(ptr); ptr += 4; m.y = dmsg.at(ptr); ptr += 4; m.z = dmsg.at(ptr); ptr += 4; ptr += 8; // skip local clock, not used m.load = dmsg.at(ptr); ptr += 8; ptr += 8; // skip flags, unused #ifdef ZT_TRACE std::string addrs; #endif unsigned int physicalAddressCount = dmsg[ptr++]; m.zeroTierPhysicalEndpoints.clear(); for(unsigned int i=0;i 0) addrs.push_back(','); addrs.append(m.zeroTierPhysicalEndpoints.back().toString()); } #endif } #ifdef ZT_TRACE if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) { TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str()); } #endif m.lastReceivedAliveAnnouncement = RR->node->now(); } break; case STATE_MESSAGE_HAVE_PEER: { const uint64_t now = RR->node->now(); Identity id; InetAddress physicalAddress; ptr += id.deserialize(dmsg,ptr); ptr += physicalAddress.deserialize(dmsg,ptr); if (id) { // Forget any paths that we have to this peer at its address if (physicalAddress) { SharedPtr myPeerRecord(RR->topology->getPeerNoCache(id.address(),now)); if (myPeerRecord) myPeerRecord->removePathByAddress(physicalAddress); } // Always save identity to update file time RR->topology->saveIdentity(id); // Set peer affinity to its new home { Mutex::Lock _l2(_peerAffinities_m); _PA &pa = _peerAffinities[id.address()]; pa.ts = now; pa.mid = fromMemberId; } TRACE("[%u] has %s @ %s",(unsigned int)fromMemberId,id.address().toString().c_str(),physicalAddress.toString().c_str()); } } break; case STATE_MESSAGE_MULTICAST_LIKE: { const uint64_t nwid = dmsg.at(ptr); ptr += 8; const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH; const MAC mac(dmsg.field(ptr,6),6); ptr += 6; const uint32_t adi = dmsg.at(ptr); ptr += 4; RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address); TRACE("[%u] %s likes %s/%.8x on %.16llx",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid); } break; case STATE_MESSAGE_COM: { /* not currently used so not decoded yet CertificateOfMembership com; ptr += com.deserialize(dmsg,ptr); if (com) { TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision()); } */ } break; case STATE_MESSAGE_PROXY_UNITE: { const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH; const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH; const unsigned int numRemotePeerPaths = dmsg[ptr++]; InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max for(unsigned int i=0;inode->now(); SharedPtr localPeer(RR->topology->getPeerNoCache(localPeerAddress,now)); if ((localPeer)&&(numRemotePeerPaths > 0)) { InetAddress bestLocalV4,bestLocalV6; localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6); InetAddress bestRemoteV4,bestRemoteV6; for(unsigned int i=0;iidentity.address(),Packet::VERB_RENDEZVOUS); rendezvousForLocal.append((uint8_t)0); remotePeerAddress.appendTo(rendezvousForLocal); Buffer<2048> rendezvousForRemote; remotePeerAddress.appendTo(rendezvousForRemote); rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS); const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForRemote.size(); rendezvousForRemote.addSize(2); // space for actual packet payload length rendezvousForRemote.append((uint8_t)0); // flags == 0 localPeerAddress.appendTo(rendezvousForRemote); bool haveMatch = false; if ((bestLocalV6)&&(bestRemoteV6)) { haveMatch = true; rendezvousForLocal.append((uint16_t)bestRemoteV6.port()); rendezvousForLocal.append((uint8_t)16); rendezvousForLocal.append(bestRemoteV6.rawIpData(),16); rendezvousForRemote.append((uint16_t)bestLocalV6.port()); rendezvousForRemote.append((uint8_t)16); rendezvousForRemote.append(bestLocalV6.rawIpData(),16); rendezvousForRemote.setAt(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16)); } else if ((bestLocalV4)&&(bestRemoteV4)) { haveMatch = true; rendezvousForLocal.append((uint16_t)bestRemoteV4.port()); rendezvousForLocal.append((uint8_t)4); rendezvousForLocal.append(bestRemoteV4.rawIpData(),4); rendezvousForRemote.append((uint16_t)bestLocalV4.port()); rendezvousForRemote.append((uint8_t)4); rendezvousForRemote.append(bestLocalV4.rawIpData(),4); rendezvousForRemote.setAt(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4)); } if (haveMatch) { _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size()); _flush(fromMemberId); // we want this to go ASAP, since with port restricted cone NATs success can be timing-sensitive RR->sw->send(rendezvousForLocal,true,0); } } } break; case STATE_MESSAGE_PROXY_SEND: { const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH; const Packet::Verb verb = (Packet::Verb)dmsg[ptr++]; const unsigned int len = dmsg.at(ptr); ptr += 2; Packet outp(rcpt,RR->identity.address(),verb); outp.append(dmsg.field(ptr,len),len); ptr += len; RR->sw->send(outp,true,0); TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len); } break; } } catch ( ... ) { TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype); // drop invalids } ptr = nextPtr; } } catch ( ... ) { TRACE("invalid message (outer loop), discarding"); // drop invalids } } } bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite) { if (len > 16384) // sanity check return false; const uint64_t now = RR->node->now(); unsigned int canHasPeer = 0; { // Anyone got this peer? Mutex::Lock _l2(_peerAffinities_m); _PA *pa = _peerAffinities.get(toPeerAddress); if ((pa)&&(pa->mid != _id)&&((now - pa->ts) < ZT_PEER_ACTIVITY_TIMEOUT)) canHasPeer = pa->mid; else return false; } Buffer<1024> buf; if (unite) { InetAddress v4,v6; if (fromPeerAddress) { SharedPtr fromPeer(RR->topology->getPeerNoCache(fromPeerAddress,now)); if (fromPeer) fromPeer->getBestActiveAddresses(now,v4,v6); } uint8_t addrCount = 0; if (v4) ++addrCount; if (v6) ++addrCount; if (addrCount) { toPeerAddress.appendTo(buf); fromPeerAddress.appendTo(buf); buf.append(addrCount); if (v4) v4.serialize(buf); if (v6) v6.serialize(buf); } } { Mutex::Lock _l2(_members[canHasPeer].lock); if (buf.size() > 0) _send(canHasPeer,STATE_MESSAGE_PROXY_UNITE,buf.data(),buf.size()); if (_members[canHasPeer].zeroTierPhysicalEndpoints.size() > 0) RR->node->putPacket(InetAddress(),_members[canHasPeer].zeroTierPhysicalEndpoints.front(),data,len); } TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer); return true; } void Cluster::replicateHavePeer(const Identity &peerId,const InetAddress &physicalAddress) { const uint64_t now = RR->node->now(); { Mutex::Lock _l2(_peerAffinities_m); _PA &pa = _peerAffinities[peerId.address()]; if (pa.mid != _id) { pa.ts = now; pa.mid = _id; } else if ((now - pa.ts) < ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) { return; } else { pa.ts = now; } } // announcement Buffer<4096> buf; peerId.serialize(buf,false); physicalAddress.serialize(buf); { Mutex::Lock _l(_memberIds_m); for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { Mutex::Lock _l2(_members[*mid].lock); _send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size()); } } } void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group) { Buffer<1024> buf; buf.append((uint64_t)nwid); peerAddress.appendTo(buf); group.mac().appendTo(buf); buf.append((uint32_t)group.adi()); TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi()); { Mutex::Lock _l(_memberIds_m); for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { Mutex::Lock _l2(_members[*mid].lock); _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size()); } } } void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com) { Buffer<4096> buf; com.serialize(buf); TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId()); { Mutex::Lock _l(_memberIds_m); for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { Mutex::Lock _l2(_members[*mid].lock); _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size()); } } } struct _ClusterAnnouncePeers { _ClusterAnnouncePeers(const uint64_t now_,Cluster *parent_) : now(now_),parent(parent_) {} const uint64_t now; Cluster *const parent; inline void operator()(const Topology &t,const SharedPtr &peer) const { Path *p = peer->getBestPath(now); if (p) parent->replicateHavePeer(peer->identity(),p->address()); } }; void Cluster::doPeriodicTasks() { const uint64_t now = RR->node->now(); // Erase old peer affinity entries just to control table size if ((now - _lastCleanedPeerAffinities) >= (ZT_PEER_ACTIVITY_TIMEOUT * 5)) { _lastCleanedPeerAffinities = now; Address *k = (Address *)0; _PA *v = (_PA *)0; Mutex::Lock _l(_peerAffinities_m); Hashtable< Address,_PA >::Iterator i(_peerAffinities); while (i.next(k,v)) { if ((now - v->ts) >= (ZT_PEER_ACTIVITY_TIMEOUT * 5)) _peerAffinities.erase(*k); } } // Announce peers that we have active direct paths to -- note that we forget paths // that other cluster members claim they have, which prevents us from fighting // with other cluster members (route flapping) over specific paths. if ((now - _lastCheckedPeersForAnnounce) >= (ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD / 4)) { _lastCheckedPeersForAnnounce = now; _ClusterAnnouncePeers func(now,this); RR->topology->eachPeer<_ClusterAnnouncePeers &>(func); } // Flush outgoing packet send queue every doPeriodicTasks() { Mutex::Lock _l(_memberIds_m); for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { Mutex::Lock _l2(_members[*mid].lock); if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) { Buffer<2048> alive; alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR); alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR); alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); alive.append((uint8_t)ZT_PROTO_VERSION); if (_addressToLocationFunction) { alive.append((int32_t)_x); alive.append((int32_t)_y); alive.append((int32_t)_z); } else { alive.append((int32_t)0); alive.append((int32_t)0); alive.append((int32_t)0); } alive.append((uint64_t)now); alive.append((uint64_t)0); // TODO: compute and send load average alive.append((uint64_t)0); // unused/reserved flags alive.append((uint8_t)_zeroTierPhysicalEndpoints.size()); for(std::vector::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe) pe->serialize(alive); _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size()); _members[*mid].lastAnnouncedAliveTo = now; } _flush(*mid); // does nothing if nothing to flush } } } void Cluster::addMember(uint16_t memberId) { if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id)) return; Mutex::Lock _l2(_members[memberId].lock); { Mutex::Lock _l(_memberIds_m); if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end()) return; _memberIds.push_back(memberId); std::sort(_memberIds.begin(),_memberIds.end()); } _members[memberId].clear(); // Generate this member's message key from the master and its ID uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)]; memcpy(stmp,_masterSecret,sizeof(stmp)); stmp[0] ^= Utils::hton(memberId); SHA512::hash(stmp,stmp,sizeof(stmp)); SHA512::hash(stmp,stmp,sizeof(stmp)); memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key)); Utils::burn(stmp,sizeof(stmp)); // Prepare q _members[memberId].q.clear(); char iv[16]; Utils::getSecureRandom(iv,16); _members[memberId].q.append(iv,16); _members[memberId].q.addSize(8); // room for MAC _members[memberId].q.append((uint16_t)_id); _members[memberId].q.append((uint16_t)memberId); } void Cluster::removeMember(uint16_t memberId) { Mutex::Lock _l(_memberIds_m); std::vector newMemberIds; for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { if (*mid != memberId) newMemberIds.push_back(*mid); } _memberIds = newMemberIds; } bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload) { if (_addressToLocationFunction) { // Pick based on location if it can be determined int px = 0,py = 0,pz = 0; if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast(&peerPhysicalAddress),&px,&py,&pz) == 0) { TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str()); return false; } // Find member closest to this peer const uint64_t now = RR->node->now(); std::vector best; const double currentDistance = _dist3d(_x,_y,_z,px,py,pz); double bestDistance = (offload ? 2147483648.0 : currentDistance); unsigned int bestMember = _id; { Mutex::Lock _l(_memberIds_m); for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { _Member &m = _members[*mid]; Mutex::Lock _ml(m.lock); // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) { const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz); if (mdist < bestDistance) { bestDistance = mdist; bestMember = *mid; best = m.zeroTierPhysicalEndpoints; } } } } // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family for(std::vector::const_iterator a(best.begin());a!=best.end();++a) { if (a->ss_family == peerPhysicalAddress.ss_family) { TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str()); redirectTo = *a; return true; } } TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance); return false; } else { // TODO: pick based on load if no location info? return false; } } void Cluster::status(ZT_ClusterStatus &status) const { const uint64_t now = RR->node->now(); memset(&status,0,sizeof(ZT_ClusterStatus)); ZT_ClusterMemberStatus *ms[ZT_CLUSTER_MAX_MEMBERS]; memset(ms,0,sizeof(ms)); status.myId = _id; ms[_id] = &(status.members[status.clusterSize++]); ms[_id]->id = _id; ms[_id]->alive = 1; ms[_id]->x = _x; ms[_id]->y = _y; ms[_id]->z = _z; ms[_id]->peers = RR->topology->countActive(); for(std::vector::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) { if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check break; memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage)); } { Mutex::Lock _l1(_memberIds_m); for(std::vector::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) { if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check break; ZT_ClusterMemberStatus *s = ms[*mid] = &(status.members[status.clusterSize++]); _Member &m = _members[*mid]; Mutex::Lock ml(m.lock); s->id = *mid; s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement)); s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0; s->x = m.x; s->y = m.y; s->z = m.z; s->load = m.load; for(std::vector::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) { if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check break; memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage)); } } } { Mutex::Lock _l2(_peerAffinities_m); Address *k = (Address *)0; _PA *v = (_PA *)0; Hashtable< Address,_PA >::Iterator i(const_cast(this)->_peerAffinities); while (i.next(k,v)) { if ( (ms[v->mid]) && (v->mid != _id) && ((now - v->ts) < ZT_PEER_ACTIVITY_TIMEOUT) ) ++ms[v->mid]->peers; } } } void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len) { if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check return; _Member &m = _members[memberId]; // assumes m.lock is locked! if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH) _flush(memberId); m.q.append((uint16_t)(len + 1)); m.q.append((uint8_t)type); m.q.append(msg,len); } void Cluster::_flush(uint16_t memberId) { _Member &m = _members[memberId]; // assumes m.lock is locked! if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID // Create key from member's key and IV char keytmp[32]; memcpy(keytmp,m.key,32); for(int i=0;i<8;++i) keytmp[i] ^= m.q[i]; Salsa20 s20(keytmp,256,m.q.field(8,8)); Utils::burn(keytmp,sizeof(keytmp)); // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard") char polykey[ZT_POLY1305_KEY_LEN]; memset(polykey,0,sizeof(polykey)); s20.encrypt12(polykey,polykey,sizeof(polykey)); // Encrypt m.q in place s20.encrypt12(reinterpret_cast(m.q.data()) + 24,const_cast(reinterpret_cast(m.q.data())) + 24,m.q.size() - 24); // Add MAC for authentication (encrypt-then-MAC) char mac[ZT_POLY1305_MAC_LEN]; Poly1305::compute(mac,reinterpret_cast(m.q.data()) + 24,m.q.size() - 24,polykey); memcpy(m.q.field(16,8),mac,8); // Send! _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size()); // Prepare for more m.q.clear(); char iv[16]; Utils::getSecureRandom(iv,16); m.q.append(iv,16); m.q.addSize(8); // room for MAC m.q.append((uint16_t)_id); // from member ID m.q.append((uint16_t)memberId); // to member ID } } } // namespace ZeroTier #endif // ZT_ENABLE_CLUSTER