/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include "../version.h" #include "../include/ZeroTierOne.h" #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Switch.hpp" #include "Node.hpp" #include "InetAddress.hpp" #include "Topology.hpp" #include "Peer.hpp" #include "AntiRecursion.hpp" #include "SelfAwareness.hpp" #include "Packet.hpp" #include "Cluster.hpp" namespace ZeroTier { #ifdef ZT_TRACE static const char *etherTypeName(const unsigned int etherType) { switch(etherType) { case ZT_ETHERTYPE_IPV4: return "IPV4"; case ZT_ETHERTYPE_ARP: return "ARP"; case ZT_ETHERTYPE_RARP: return "RARP"; case ZT_ETHERTYPE_ATALK: return "ATALK"; case ZT_ETHERTYPE_AARP: return "AARP"; case ZT_ETHERTYPE_IPX_A: return "IPX_A"; case ZT_ETHERTYPE_IPX_B: return "IPX_B"; case ZT_ETHERTYPE_IPV6: return "IPV6"; } return "UNKNOWN"; } #endif // ZT_TRACE Switch::Switch(const RuntimeEnvironment *renv) : RR(renv), _lastBeaconResponse(0), _outstandingWhoisRequests(32), _defragQueue(32), _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine { } Switch::~Switch() { } void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len) { try { if (len == 13) { /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast * announcements on the LAN to solve the 'same network problem.' We * no longer send these, but we'll listen for them for a while to * locate peers with versions <1.0.4. */ Address beaconAddr(reinterpret_cast(data) + 8,5); if (beaconAddr == RR->identity.address()) return; SharedPtr peer(RR->topology->getPeer(beaconAddr)); if (peer) { // we'll only respond to beacons from known peers const uint64_t now = RR->node->now(); if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses _lastBeaconResponse = now; Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP); outp.armor(peer->key(),false); RR->node->putPacket(localAddr,fromAddr,outp.data(),outp.size()); } } } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) { _handleRemotePacketFragment(localAddr,fromAddr,data,len); } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { _handleRemotePacketHead(localAddr,fromAddr,data,len); } } } catch (std::exception &ex) { TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str()); } } void Switch::onLocalEthernet(const SharedPtr &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { SharedPtr nconf(network->config2()); if (!nconf) return; // Sanity check -- bridge loop? OS problem? if (to == network->mac()) return; /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links. * Note: even when we introduce a more purposeful binding of the main UDP port, this can * still happen because Windows likes to send broadcasts over interfaces that have little * to do with their intended target audience. :P */ if (!RR->antiRec->checkEthernetFrame(data,len)) { TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len); return; } // Check to make sure this protocol is allowed on this network if (!nconf->permitsEtherType(etherType)) { TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id()); return; } // Check if this packet is from someone other than the tap -- i.e. bridged in bool fromBridged = false; if (from != network->mac()) { if (!network->permitsBridging(RR->identity.address())) { TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); return; } fromBridged = true; } if (to.isMulticast()) { // Destination is a multicast address (including broadcast) MulticastGroup mg(to,0); if (to.isBroadcast()) { if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) { /* IPv4 ARP is one of the few special cases that we impose upon what is * otherwise a straightforward Ethernet switch emulation. Vanilla ARP * is dumb old broadcast and simply doesn't scale. ZeroTier multicast * groups have an additional field called ADI (additional distinguishing * information) which was added specifically for ARP though it could * be used for other things too. We then take ARP broadcasts and turn * them into multicasts by stuffing the IP address being queried into * the 32-bit ADI field. In practice this uses our multicast pub/sub * system to implement a kind of extended/distributed ARP table. */ mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0)); } else if (!nconf->enableBroadcast()) { // Don't transmit broadcasts if this network doesn't want them TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id()); return; } } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) { /* IPv6 NDP emulation on ZeroTier-RFC4193 addressed networks! This allows * for multicast-free operation in IPv6 networks, which both improves * performance and is friendlier to mobile and (especially) IoT devices. * In the future there may be a no-multicast build option for embedded * and IoT use and this will be the preferred addressing mode. Note that * it plays nice with our L2 emulation philosophy and even with bridging. * While "real" devices behind the bridge can't have ZT-RFC4193 addresses * themselves, they can look these addresses up with NDP and it will * work just fine. */ if ((reinterpret_cast(data)[6] == 0x3a)&&(reinterpret_cast(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation for(std::vector::const_iterator sip(nconf->staticIps().begin()),sipend(nconf->staticIps().end());sip!=sipend;++sip) { if ((sip->ss_family == AF_INET6)&&(Utils::ntoh((uint16_t)reinterpret_cast(&(*sip))->sin6_port) == 88)) { const uint8_t *my6 = reinterpret_cast(reinterpret_cast(&(*sip))->sin6_addr.s6_addr); if ((my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 == fd__:____:____:____:__99:93__:____:____ / 88 const uint8_t *pkt6 = reinterpret_cast(data) + 40 + 8; unsigned int ptr = 0; while (ptr != 11) { if (pkt6[ptr] != my6[ptr]) break; ++ptr; } if (ptr == 11) { // /88 matches an assigned address on this network const Address atPeer(pkt6 + ptr,5); if (atPeer != RR->identity.address()) { const MAC atPeerMac(atPeer,network->id()); TRACE("ZT-RFC4193 NDP emulation: %.16llx: forging response for %s/%s",network->id(),atPeer.toString().c_str(),atPeerMac.toString().c_str()); uint8_t adv[72]; adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00; adv[4] = 0x00; adv[5] = 0x20; adv[6] = 0x3a; adv[7] = 0xff; for(int i=0;i<16;++i) adv[8 + i] = pkt6[i]; for(int i=0;i<16;++i) adv[24 + i] = my6[i]; adv[40] = 0x88; adv[41] = 0x00; adv[42] = 0x00; adv[43] = 0x00; // future home of checksum adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00; for(int i=0;i<16;++i) adv[48 + i] = pkt6[i]; adv[64] = 0x02; adv[65] = 0x01; adv[66] = atPeerMac[0]; adv[67] = atPeerMac[1]; adv[68] = atPeerMac[2]; adv[69] = atPeerMac[3]; adv[70] = atPeerMac[4]; adv[71] = atPeerMac[5]; uint16_t pseudo_[36]; uint8_t *const pseudo = reinterpret_cast(pseudo_); for(int i=0;i<32;++i) pseudo[i] = adv[8 + i]; pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20; pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a; for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i]; uint32_t checksum = 0; for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]); while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16); checksum = ~checksum; adv[42] = (checksum >> 8) & 0xff; adv[43] = checksum & 0xff; RR->node->putFrame(network->id(),atPeerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72); return; // stop processing: we have handled this frame with a spoofed local reply so no need to send it anywhere } } } } } } } /* Learn multicast groups for bridged-in hosts. * Note that some OSes, most notably Linux, do this for you by learning * multicast addresses on bridge interfaces and subscribing each slave. * But in that case this does no harm, as the sets are just merged. */ if (fromBridged) network->learnBridgedMulticastGroup(mg,RR->node->now()); //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len); RR->mc->send( ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0, nconf->multicastLimit(), RR->node->now(), network->id(), nconf->activeBridges(), mg, (fromBridged) ? from : MAC(), etherType, data, len); return; } if (to[0] == MAC::firstOctetForNetwork(network->id())) { // Destination is another ZeroTier peer on the same network Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this SharedPtr toPeer(RR->topology->getPeer(toZT)); const bool includeCom = ( (nconf->isPrivate()) && (nconf->com()) && ((!toPeer)||(toPeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ); if ((fromBridged)||(includeCom)) { Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(network->id()); if (includeCom) { outp.append((unsigned char)0x01); // 0x01 -- COM included nconf->com().serialize(outp); } else { outp.append((unsigned char)0x00); } to.appendTo(outp); from.appendTo(outp); outp.append((uint16_t)etherType); outp.append(data,len); outp.compress(); send(outp,true,network->id()); } else { Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME); outp.append(network->id()); outp.append((uint16_t)etherType); outp.append(data,len); outp.compress(); send(outp,true,network->id()); } //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom); return; } { // Destination is bridged behind a remote peer Address bridges[ZT_MAX_BRIDGE_SPAM]; unsigned int numBridges = 0; /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */ bridges[0] = network->findBridgeTo(to); if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->permitsBridging(bridges[0]))) { /* We have a known bridge route for this MAC, send it there. */ ++numBridges; } else if (!nconf->activeBridges().empty()) { /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active * bridges. If someone responds, we'll learn the route. */ std::vector
::const_iterator ab(nconf->activeBridges().begin()); if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) { // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all while (ab != nconf->activeBridges().end()) { bridges[numBridges++] = *ab; ++ab; } } else { // Otherwise pick a random set of them while (numBridges < ZT_MAX_BRIDGE_SPAM) { if (ab == nconf->activeBridges().end()) ab = nconf->activeBridges().begin(); if (((unsigned long)RR->node->prng() % (unsigned long)nconf->activeBridges().size()) == 0) { bridges[numBridges++] = *ab; ++ab; } else ++ab; } } } for(unsigned int b=0;b bridgePeer(RR->topology->getPeer(bridges[b])); Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(network->id()); if ( (nconf->isPrivate()) && (nconf->com()) && ((!bridgePeer)||(bridgePeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ) { outp.append((unsigned char)0x01); // 0x01 -- COM included nconf->com().serialize(outp); } else { outp.append((unsigned char)0); } to.appendTo(outp); from.appendTo(outp); outp.append((uint16_t)etherType); outp.append(data,len); outp.compress(); send(outp,true,network->id()); } } } void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid) { if (packet.destination() == RR->identity.address()) { TRACE("BUG: caught attempt to send() to self, ignored"); return; } //TRACE(">> %s to %s (%u bytes, encrypt==%d, nwid==%.16llx)",Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(int)encrypt,nwid); if (!_trySend(packet,encrypt,nwid)) { Mutex::Lock _l(_txQueue_m); _txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt,nwid)); } } bool Switch::unite(const Address &p1,const Address &p2) { if ((p1 == RR->identity.address())||(p2 == RR->identity.address())) return false; SharedPtr p1p = RR->topology->getPeer(p1); if (!p1p) return false; SharedPtr p2p = RR->topology->getPeer(p2); if (!p2p) return false; const uint64_t now = RR->node->now(); std::pair cg(Peer::findCommonGround(*p1p,*p2p,now)); if ((!(cg.first))||(cg.first.ipScope() != cg.second.ipScope())) return false; TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str()); /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and * P2 in randomized order in terms of which gets sent first. This is done * since in a few cases NAT-t can be sensitive to slight timing differences * in terms of when the two peers initiate. Normally this is accounted for * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but * given that relay are hosted on cloud providers this can in some * cases have a few ms of latency between packet departures. By randomizing * the order we make each attempted NAT-t favor one or the other going * first, meaning if it doesn't succeed the first time it might the second * and so forth. */ unsigned int alt = (unsigned int)RR->node->prng() & 1; unsigned int completed = alt + 2; while (alt != completed) { if ((alt & 1) == 0) { // Tell p1 where to find p2. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((unsigned char)0); p2.appendTo(outp); outp.append((uint16_t)cg.first.port()); if (cg.first.isV6()) { outp.append((unsigned char)16); outp.append(cg.first.rawIpData(),16); } else { outp.append((unsigned char)4); outp.append(cg.first.rawIpData(),4); } outp.armor(p1p->key(),true); p1p->send(RR,outp.data(),outp.size(),now); } else { // Tell p2 where to find p1. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((unsigned char)0); p1.appendTo(outp); outp.append((uint16_t)cg.second.port()); if (cg.second.isV6()) { outp.append((unsigned char)16); outp.append(cg.second.rawIpData(),16); } else { outp.append((unsigned char)4); outp.append(cg.second.rawIpData(),4); } outp.armor(p2p->key(),true); p2p->send(RR,outp.data(),outp.size(),now); } ++alt; // counts up and also flips LSB } return true; } void Switch::rendezvous(const SharedPtr &peer,const InetAddress &localAddr,const InetAddress &atAddr) { TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str()); const uint64_t now = RR->node->now(); peer->attemptToContactAt(RR,localAddr,atAddr,now); { Mutex::Lock _l(_contactQueue_m); _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,localAddr,atAddr)); } } void Switch::requestWhois(const Address &addr) { bool inserted = false; { Mutex::Lock _l(_outstandingWhoisRequests_m); WhoisRequest &r = _outstandingWhoisRequests[addr]; if (r.lastSent) { r.retries = 0; // reset retry count if entry already existed, but keep waiting and retry again after normal timeout } else { r.lastSent = RR->node->now(); inserted = true; } } if (inserted) _sendWhoisRequest(addr,(const Address *)0,0); } void Switch::cancelWhoisRequest(const Address &addr) { Mutex::Lock _l(_outstandingWhoisRequests_m); _outstandingWhoisRequests.erase(addr); } void Switch::doAnythingWaitingForPeer(const SharedPtr &peer) { { // cancel pending WHOIS since we now know this peer Mutex::Lock _l(_outstandingWhoisRequests_m); _outstandingWhoisRequests.erase(peer->address()); } { // finish processing any packets waiting on peer's public key / identity Mutex::Lock _l(_rxQueue_m); for(std::list< SharedPtr >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) { if ((*rxi)->tryDecode(RR)) _rxQueue.erase(rxi++); else ++rxi; } } { // finish sending any packets waiting on peer's public key / identity Mutex::Lock _l(_txQueue_m); for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { if (txi->dest == peer->address()) { if (_trySend(txi->packet,txi->encrypt,txi->nwid)) _txQueue.erase(txi++); else ++txi; } else ++txi; } } } unsigned long Switch::doTimerTasks(uint64_t now) { unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum { // Iterate through NAT traversal strategies for entries in contact queue Mutex::Lock _l(_contactQueue_m); for(std::list::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) { if (now >= qi->fireAtTime) { if (qi->peer->hasActiveDirectPath(now)) { // Cancel if connection has succeeded _contactQueue.erase(qi++); continue; } else { if (qi->strategyIteration == 0) { // First strategy: send packet directly to destination qi->peer->attemptToContactAt(RR,qi->localAddr,qi->inaddr,now); } else if (qi->strategyIteration <= 4) { // Strategies 1-4: try escalating ports for symmetric NATs that remap sequentially InetAddress tmpaddr(qi->inaddr); int p = (int)qi->inaddr.port() + qi->strategyIteration; if (p < 0xffff) { tmpaddr.setPort((unsigned int)p); qi->peer->attemptToContactAt(RR,qi->localAddr,tmpaddr,now); } else qi->strategyIteration = 5; } else { // All strategies tried, expire entry _contactQueue.erase(qi++); continue; } ++qi->strategyIteration; qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY; nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY); } } else { nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now)); } ++qi; // if qi was erased, loop will have continued before here } } { // Retry outstanding WHOIS requests Mutex::Lock _l(_outstandingWhoisRequests_m); Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests); Address *a = (Address *)0; WhoisRequest *r = (WhoisRequest *)0; while (i.next(a,r)) { const unsigned long since = (unsigned long)(now - r->lastSent); if (since >= ZT_WHOIS_RETRY_DELAY) { if (r->retries >= ZT_MAX_WHOIS_RETRIES) { TRACE("WHOIS %s timed out",a->toString().c_str()); _outstandingWhoisRequests.erase(*a); } else { r->lastSent = now; r->peersConsulted[r->retries] = _sendWhoisRequest(*a,r->peersConsulted,r->retries); ++r->retries; TRACE("WHOIS %s (retry %u)",a->toString().c_str(),r->retries); nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY); } } else { nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since); } } } { // Time out TX queue packets that never got WHOIS lookups or other info. Mutex::Lock _l(_txQueue_m); for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { if (_trySend(txi->packet,txi->encrypt,txi->nwid)) _txQueue.erase(txi++); else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) { TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str()); _txQueue.erase(txi++); } else ++txi; } } { // Time out RX queue packets that never got WHOIS lookups or other info. Mutex::Lock _l(_rxQueue_m); for(std::list< SharedPtr >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) { if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) { TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str()); _rxQueue.erase(i++); } else ++i; } } { // Time out packets that didn't get all their fragments. Mutex::Lock _l(_defragQueue_m); Hashtable< uint64_t,DefragQueueEntry >::Iterator i(_defragQueue); uint64_t *packetId = (uint64_t *)0; DefragQueueEntry *qe = (DefragQueueEntry *)0; while (i.next(packetId,qe)) { if ((now - qe->creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) { TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",*packetId); _defragQueue.erase(*packetId); } } } { // Remove really old last unite attempt entries to keep table size controlled Mutex::Lock _l(_lastUniteAttempt_m); Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt); _LastUniteKey *k = (_LastUniteKey *)0; uint64_t *v = (uint64_t *)0; while (i.next(k,v)) { if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8)) _lastUniteAttempt.erase(*k); } } return nextDelay; } void Switch::_handleRemotePacketFragment(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len) { Packet::Fragment fragment(data,len); Address destination(fragment.destination()); if (destination != RR->identity.address()) { // Fragment is not for us, so try to relay it if (fragment.hops() < ZT_RELAY_MAX_HOPS) { fragment.incrementHops(); // Note: we don't bother initiating NAT-t for fragments, since heads will set that off. // It wouldn't hurt anything, just redundant and unnecessary. SharedPtr relayTo = RR->topology->getPeer(destination); if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) { #ifdef ZT_ENABLE_CLUSTER if ((RR->cluster)&&(RR->cluster->sendViaCluster(Address(),destination,fragment.data(),fragment.size(),false))) return; // sent by way of another member of this cluster #endif // Don't know peer or no direct path -- so relay via root server relayTo = RR->topology->getBestRoot(); if (relayTo) relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()); } } else { TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str()); } } else { // Fragment looks like ours uint64_t pid = fragment.packetId(); unsigned int fno = fragment.fragmentNumber(); unsigned int tf = fragment.totalFragments(); if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) { // Fragment appears basically sane. Its fragment number must be // 1 or more, since a Packet with fragmented bit set is fragment 0. // Total fragments must be more than 1, otherwise why are we // seeing a Packet::Fragment? Mutex::Lock _l(_defragQueue_m); DefragQueueEntry &dq = _defragQueue[pid]; if (!dq.creationTime) { // We received a Packet::Fragment without its head, so queue it and wait dq.creationTime = RR->node->now(); dq.frags[fno - 1] = fragment; dq.totalFragments = tf; // total fragment count is known dq.haveFragments = 1 << fno; // we have only this fragment //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str()); } else if (!(dq.haveFragments & (1 << fno))) { // We have other fragments and maybe the head, so add this one and check dq.frags[fno - 1] = fragment; dq.totalFragments = tf; //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str()); if (Utils::countBits(dq.haveFragments |= (1 << fno)) == tf) { // We have all fragments -- assemble and process full Packet //TRACE("packet %.16llx is complete, assembling and processing...",pid); SharedPtr packet(dq.frag0); for(unsigned int f=1;fappend(dq.frags[f - 1].payload(),dq.frags[f - 1].payloadLength()); _defragQueue.erase(pid); // dq no longer valid after this if (!packet->tryDecode(RR)) { Mutex::Lock _l(_rxQueue_m); _rxQueue.push_back(packet); } } } // else this is a duplicate fragment, ignore } } } void Switch::_handleRemotePacketHead(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len) { const uint64_t now = RR->node->now(); SharedPtr packet(new IncomingPacket(data,len,localAddr,fromAddr,now)); Address source(packet->source()); Address destination(packet->destination()); // Catch this and toss it -- it would never work, but it could happen if we somehow // mistakenly guessed an address we're bound to as a destination for another peer. if (source == RR->identity.address()) return; //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size()); if (destination != RR->identity.address()) { // Packet is not for us, so try to relay it if (packet->hops() < ZT_RELAY_MAX_HOPS) { packet->incrementHops(); SharedPtr relayTo = RR->topology->getPeer(destination); if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),now)))) { if (_shouldTryUnite(now,source,destination)) unite(source,destination); } else { #ifdef ZT_ENABLE_CLUSTER if ((RR->cluster)&&(RR->cluster->sendViaCluster(source,destination,packet->data(),packet->size(),_shouldTryUnite(now,source,destination)))) return; // sent by way of another member of this cluster #endif relayTo = RR->topology->getBestRoot(&source,1,true); if (relayTo) relayTo->send(RR,packet->data(),packet->size(),now); } } else { TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str()); } } else if (packet->fragmented()) { // Packet is the head of a fragmented packet series uint64_t pid = packet->packetId(); Mutex::Lock _l(_defragQueue_m); DefragQueueEntry &dq = _defragQueue[pid]; if (!dq.creationTime) { // If we have no other fragments yet, create an entry and save the head dq.creationTime = now; dq.frag0 = packet; dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment dq.haveFragments = 1; // head is first bit (left to right) //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str()); } else if (!(dq.haveFragments & 1)) { // If we have other fragments but no head, see if we are complete with the head if ((dq.totalFragments)&&(Utils::countBits(dq.haveFragments |= 1) == dq.totalFragments)) { // We have all fragments -- assemble and process full Packet //TRACE("packet %.16llx is complete, assembling and processing...",pid); // packet already contains head, so append fragments for(unsigned int f=1;fappend(dq.frags[f - 1].payload(),dq.frags[f - 1].payloadLength()); _defragQueue.erase(pid); // dq no longer valid after this if (!packet->tryDecode(RR)) { Mutex::Lock _l(_rxQueue_m); _rxQueue.push_back(packet); } } else { // Still waiting on more fragments, so queue the head dq.frag0 = packet; } } // else this is a duplicate head, ignore } else { // Packet is unfragmented, so just process it if (!packet->tryDecode(RR)) { Mutex::Lock _l(_rxQueue_m); _rxQueue.push_back(packet); } } } Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted) { SharedPtr root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false)); if (root) { Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS); addr.appendTo(outp); outp.armor(root->key(),true); if (root->send(RR,outp.data(),outp.size(),RR->node->now())) return root->address(); } return Address(); } bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid) { SharedPtr peer(RR->topology->getPeer(packet.destination())); if (peer) { const uint64_t now = RR->node->now(); SharedPtr network; SharedPtr nconf; if (nwid) { network = RR->node->network(nwid); if (!network) return false; // we probably just left this network, let its packets die nconf = network->config2(); if (!nconf) return false; // sanity check: unconfigured network? why are we trying to talk to it? } Path *viaPath = peer->getBestPath(now); SharedPtr relay; if (!viaPath) { // See if this network has a preferred relay (if packet has an associated network) if (nconf) { unsigned int bestq = ~((unsigned int)0); for(std::vector< std::pair >::const_iterator r(nconf->relays().begin());r!=nconf->relays().end();++r) { if (r->first != peer->address()) { SharedPtr rp(RR->topology->getPeer(r->first)); const unsigned int q = rp->relayQuality(now); if ((rp)&&(q < bestq)) { // SUBTILE: < == don't use these if they are nil quality (unsigned int max), instead use a root bestq = q; rp.swap(relay); } } } } // Otherwise relay off a root server if (!relay) relay = RR->topology->getBestRoot(); if (!(relay)||(!(viaPath = relay->getBestPath(now)))) return false; // no paths, no root servers? } if ((network)&&(relay)&&(network->isAllowed(peer))) { // Push hints for direct connectivity to this peer if we are relaying peer->pushDirectPaths(RR,viaPath,now,false); } Packet tmp(packet); unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU); tmp.setFragmented(chunkSize < tmp.size()); tmp.armor(peer->key(),encrypt); if (viaPath->send(RR,tmp.data(),chunkSize,now)) { if (chunkSize < tmp.size()) { // Too big for one packet, fragment the rest unsigned int fragStart = chunkSize; unsigned int remaining = tmp.size() - chunkSize; unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)); if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining) ++fragsRemaining; unsigned int totalFragments = fragsRemaining + 1; for(unsigned int fno=1;fnosend(RR,frag.data(),frag.size(),now); fragStart += chunkSize; remaining -= chunkSize; } } return true; } } else { requestWhois(packet.destination()); } return false; } bool Switch::_shouldTryUnite(const uint64_t now,const Address &p1,const Address &p2) { Mutex::Lock _l(_lastUniteAttempt_m); uint64_t &luts = _lastUniteAttempt[_LastUniteKey(p1,p2)]; if ((now - luts) < ZT_MIN_UNITE_INTERVAL) return false; luts = now; return true; } } // namespace ZeroTier