/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "Topology.hpp"
#include "NodeConfig.hpp"
namespace ZeroTier {
#define ZT_KISSDB_HASH_TABLE_SIZE 131072
#define ZT_KISSDB_KEY_SIZE ZT_ADDRESS_LENGTH
#define ZT_KISSDB_VALUE_SIZE ZT_PEER_MAX_SERIALIZED_LENGTH
Topology::Topology(const RuntimeEnvironment *renv,const char *dbpath)
throw(std::runtime_error) :
Thread(),
_r(renv)
{
if (KISSDB_open(&_dbm,dbpath,KISSDB_OPEN_MODE_RWCREAT,ZT_KISSDB_HASH_TABLE_SIZE,ZT_KISSDB_KEY_SIZE,ZT_KISSDB_VALUE_SIZE)) {
if (KISSDB_open(&_dbm,dbpath,KISSDB_OPEN_MODE_RWREPLACE,ZT_KISSDB_HASH_TABLE_SIZE,ZT_KISSDB_KEY_SIZE,ZT_KISSDB_VALUE_SIZE))
throw std::runtime_error("unable to open peer database (rw/create)");
}
if ((_dbm.key_size != ZT_KISSDB_KEY_SIZE)||(_dbm.value_size != ZT_KISSDB_VALUE_SIZE)||(_dbm.hash_table_size != ZT_KISSDB_HASH_TABLE_SIZE)) {
KISSDB_close(&_dbm);
if (KISSDB_open(&_dbm,dbpath,KISSDB_OPEN_MODE_RWREPLACE,ZT_KISSDB_HASH_TABLE_SIZE,ZT_KISSDB_KEY_SIZE,ZT_KISSDB_VALUE_SIZE))
throw std::runtime_error("unable to open peer database (recreate)");
}
Utils::lockDownFile(dbpath,false); // node.db caches secrets
start();
}
Topology::~Topology()
{
{
Mutex::Lock _l(_peerDeepVerifyJobs_m);
_peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob());
_peerDeepVerifyJobs.back().type = _PeerDeepVerifyJob::CLEAN_CACHE;
_peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob());
_peerDeepVerifyJobs.back().type = _PeerDeepVerifyJob::EXIT_THREAD;
}
_peerDeepVerifyJobs_c.signal();
while (running())
Thread::sleep(10); // wait for thread to terminate without join()
KISSDB_close(&_dbm);
}
void Topology::setSupernodes(const std::map< Identity,std::vector > &sn)
{
Mutex::Lock _l(_supernodes_m);
_supernodes = sn;
_supernodeAddresses.clear();
_supernodePeers.clear();
for(std::map< Identity,std::vector >::const_iterator i(sn.begin());i!=sn.end();++i) {
if (i->first != _r->identity) {
SharedPtr p(getPeer(i->first.address()));
if ((!p)||(p->identity() != i->first)) {
p = SharedPtr(new Peer(_r->identity,i->first));
_reallyAddPeer(p);
}
for(std::vector::const_iterator j(i->second.begin());j!=i->second.end();++j)
p->setPathAddress(*j,true);
_supernodePeers.push_back(p);
}
_supernodeAddresses.insert(i->first.address());
}
}
void Topology::addPeer(const SharedPtr &candidate,void (*callback)(void *,const SharedPtr &,Topology::PeerVerifyResult),void *arg)
{
if (candidate->address() != _r->identity.address()) {
Mutex::Lock _l(_peerDeepVerifyJobs_m);
_peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob());
_PeerDeepVerifyJob &job = _peerDeepVerifyJobs.back();
job.callback = callback;
job.arg = arg;
job.candidate = candidate;
job.type = _PeerDeepVerifyJob::VERIFY_PEER;
_peerDeepVerifyJobs_c.signal();
} else {
TRACE("BUG: addPeer() caught and ignored attempt to add peer for self");
if (callback)
callback(arg,candidate,PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED);
}
}
SharedPtr Topology::getPeer(const Address &zta)
{
if (zta == _r->identity.address()) {
TRACE("BUG: ignored attempt to getPeer() for self, returned NULL");
return SharedPtr();
}
{
Mutex::Lock _l(_activePeers_m);
std::map< Address,SharedPtr >::const_iterator ap(_activePeers.find(zta));
if ((ap != _activePeers.end())&&(ap->second))
return ap->second;
}
Buffer b(ZT_KISSDB_VALUE_SIZE);
_dbm_m.lock();
if (!KISSDB_get(&_dbm,zta.data(),b.data())) {
_dbm_m.unlock();
SharedPtr p(new Peer());
try {
p->deserialize(b,0);
Mutex::Lock _l(_activePeers_m);
_activePeers[zta] = p;
return p;
} catch ( ... ) {
TRACE("unexpected exception deserializing peer %s from peerdb",zta.toString().c_str());
return SharedPtr();
}
} else _dbm_m.unlock();
return SharedPtr();
}
SharedPtr Topology::getBestSupernode(const Address *avoid,unsigned int avoidCount) const
{
SharedPtr bestSupernode;
unsigned long bestSupernodeLatency = 0xffff;
uint64_t now = Utils::now();
Mutex::Lock _l(_supernodes_m);
for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();) {
for(unsigned int i=0;iaddress())
goto skip_and_try_next_supernode;
}
if ((*sn)->hasActiveDirectPath(now)) { // only consider those that responded to pings
unsigned int l = (*sn)->latency();
if ((l)&&(l <= bestSupernodeLatency)) {
bestSupernodeLatency = l;
bestSupernode = *sn;
}
}
skip_and_try_next_supernode:
++sn;
}
if (bestSupernode)
return bestSupernode;
for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();++sn) {
if ((*sn)->hasActiveDirectPath(now)) { // only consider those that responded to pings
unsigned int l = (*sn)->latency();
if ((l)&&(l <= bestSupernodeLatency)) {
bestSupernodeLatency = l;
bestSupernode = *sn;
}
}
}
if (bestSupernode)
return bestSupernode;
uint64_t bestSupernodeLastDirectReceive = 0;
for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();++sn) {
uint64_t l = (*sn)->lastDirectReceive();
if (l > bestSupernodeLastDirectReceive) {
bestSupernodeLastDirectReceive = l;
bestSupernode = *sn;
}
}
return bestSupernode;
}
void Topology::clean()
{
{
Mutex::Lock _l(_peerDeepVerifyJobs_m);
_peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob());
_peerDeepVerifyJobs.back().type = _PeerDeepVerifyJob::CLEAN_CACHE;
}
_peerDeepVerifyJobs_c.signal();
}
void Topology::likesMulticastGroup(uint64_t nwid,const MulticastGroup &mg,const Address &addr,uint64_t now)
{
Mutex::Lock _l(_multicastGroupMembers_m);
_multicastGroupMembers[nwid][mg][addr] = now;
}
struct _PickMulticastPropagationPeersPeerPrioritySortOrder
{
inline bool operator()(const SharedPtr &p1,const SharedPtr &p2) const
{
return (p1->lastUnicastFrame() >= p2->lastUnicastFrame());
}
};
#define _MAX_PEERS_TO_CONSIDER 256
unsigned int Topology::pickMulticastPropagationPeers(uint64_t nwid,const Address &exclude,const void *propagationBloom,unsigned int propagationBloomSize,unsigned int count,const MulticastGroup &mg,SharedPtr *peers)
{
SharedPtr possiblePeers[_MAX_PEERS_TO_CONSIDER];
unsigned int numPossiblePeers = 0;
if (count > _MAX_PEERS_TO_CONSIDER)
count = _MAX_PEERS_TO_CONSIDER;
Mutex::Lock _l1(_activePeers_m);
Mutex::Lock _l2(_supernodes_m);
// Grab known non-supernode peers in multicast group, excluding 'exclude'
// Also lazily clean up the _multicastGroupMembers structure
{
Mutex::Lock _l3(_multicastGroupMembers_m);
std::map< uint64_t,std::map< MulticastGroup,std::map< Address,uint64_t > > >::iterator mgm(_multicastGroupMembers.find(nwid));
if (mgm != _multicastGroupMembers.end()) {
std::map< MulticastGroup,std::map< Address,uint64_t > >::iterator g(mgm->second.find(mg));
if (g != mgm->second.end()) {
uint64_t now = Utils::now();
for(std::map< Address,uint64_t >::iterator m(g->second.begin());m!=g->second.end();) {
if (((now - m->second) < ZT_MULTICAST_LIKE_EXPIRE)&&(m->first != exclude)) {
std::map< Address,SharedPtr >::const_iterator p(_activePeers.find(m->first));
if (p != _activePeers.end()) {
possiblePeers[numPossiblePeers++] = p->second;
if (numPossiblePeers > _MAX_PEERS_TO_CONSIDER)
break;
}
++m;
} else g->second.erase(m++);
}
if (!g->second.size())
mgm->second.erase(g);
}
}
}
// Sort non-supernode peers in descending order of most recent data
// exchange timestamp. This sorts by implicit social relationships -- who
// you are talking to are the people who get multicasts first.
std::sort(&(possiblePeers[0]),&(possiblePeers[numPossiblePeers]),_PickMulticastPropagationPeersPeerPrioritySortOrder());
// Tack on a supernode peer to the end if we don't have enough regular
// peers, using supernodes to bridge gaps in sparse multicast groups.
if (numPossiblePeers < count) {
SharedPtr bestSupernode;
unsigned int bestSupernodeLatency = 0xffff;
for(std::vector< SharedPtr >::const_iterator sn(_supernodePeers.begin());sn!=_supernodePeers.end();++sn) {
if (((*sn)->latency())&&((*sn)->latency() < bestSupernodeLatency)) {
bestSupernodeLatency = (*sn)->latency();
bestSupernode = *sn;
}
}
if (bestSupernode)
possiblePeers[numPossiblePeers++] = bestSupernode;
}
unsigned int num = 0;
// First, try to pick peers not in the propgation bloom filter
for(unsigned int i=0;iaddress().sum())) {
peers[num++] = possiblePeers[i];
if (num >= count)
return num;
}
}
// Next, pick other peers until full (without duplicates)
for(unsigned int i=0;i= count)
return num;
check_next_peer:
continue;
}
return num;
}
void Topology::main()
throw()
{
for(;;) {
_peerDeepVerifyJobs_m.lock();
if (_peerDeepVerifyJobs.empty()) {
_peerDeepVerifyJobs_m.unlock();
_peerDeepVerifyJobs_c.wait();
continue;
}
_PeerDeepVerifyJob job(_peerDeepVerifyJobs.front());
_peerDeepVerifyJobs.pop_front();
unsigned long queueRemaining = _peerDeepVerifyJobs.size();
_peerDeepVerifyJobs_m.unlock();
switch(job.type) {
case _PeerDeepVerifyJob::VERIFY_PEER:
/* TODO: We should really verify peers every time completely if this
* is a supernode, perhaps deferring the expensive part for new
* addresses. An attempt at claim jumping should also trigger a
* short duration ban of the originating IP address in most cases,
* since this means either malicious intent or broken software. */
TRACE("verifying peer: %s",job.candidate->identity().address().toString().c_str());
if ((job.candidate->identity())&&(!job.candidate->identity().address().isReserved())&&(job.candidate->identity().locallyValidate(false))) {
// Peer passes sniff test, so check to see if we've already got
// one with the same address.
SharedPtr existingPeer(getPeer(job.candidate->identity().address()));
if (existingPeer) {
if (existingPeer->identity() == job.candidate->identity()) {
// It's an *exact* duplicate, so return the existing peer
if (job.callback)
job.callback(job.arg,existingPeer,PEER_VERIFY_ACCEPTED_ALREADY_HAVE);
} else if (queueRemaining > 3) {
/* Prevents a CPU hog DOS attack, while allowing a very unlikely kind of
* DOS attack where someone knows someone else's address prior to their
* registering it and claim-jumps them and then floods with bad identities
* to hold their claim. Of the two, the latter would be infeasable
* without already having cracked the target's machine in which case
* the attacker has their private key anyway and can really steal their
* identity. So why bother.*/
TRACE("%s is duplicate, load too high, old won",job.candidate->identity().address().toString().c_str());
if (job.callback)
job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED);
} else {
// It's different so deeply validate it first, then the
// existing claimant, and toss the imposter. If both verify, the
// one we already have wins.
if (!job.candidate->identity().locallyValidate(true)) {
LOG("Topology: IMPOSTER %s rejected",job.candidate->identity().address().toString().c_str());
if (job.callback)
job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_INVALID_IDENTITY);
} else if (!existingPeer->identity().locallyValidate(true)) {
LOG("Topology: previous IMPOSTER %s displaced by valid identity!",job.candidate->identity().address().toString().c_str());
_reallyAddPeer(job.candidate);
if (job.callback)
job.callback(job.arg,job.candidate,PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS);
} else {
LOG("Topology: tie between apparently valid claims on %s, oldest won",job.candidate->identity().address().toString().c_str());
if (job.callback)
job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_DUPLICATE);
}
}
} else {
TRACE("%s accepted as new",job.candidate->identity().address().toString().c_str());
_reallyAddPeer(job.candidate);
if (job.callback)
job.callback(job.arg,job.candidate,PEER_VERIFY_ACCEPTED_NEW);
}
} else {
TRACE("%s rejected, identity failed initial checks",job.candidate->identity().address().toString().c_str());
if (job.callback)
job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_INVALID_IDENTITY);
}
break;
case _PeerDeepVerifyJob::CLEAN_CACHE:
TRACE("cleaning caches and flushing modified peers to disk...");
{
Mutex::Lock _l(_activePeers_m);
for(std::map< Address,SharedPtr >::iterator p(_activePeers.begin());p!=_activePeers.end();++p) {
if (p->second->getAndResetDirty()) {
try {
Buffer b;
p->second->serialize(b);
b.zeroUnused();
_dbm_m.lock();
if (KISSDB_put(&_dbm,p->second->identity().address().data(),b.data())) {
TRACE("error writing %s to peer.db",p->second->identity().address().toString().c_str());
}
_dbm_m.unlock();
} catch ( ... ) {
TRACE("unexpected exception flushing %s to peer.db",p->second->identity().address().toString().c_str());
}
}
}
}
{
Mutex::Lock _l(_multicastGroupMembers_m);
for(std::map< uint64_t,std::map< MulticastGroup,std::map< Address,uint64_t > > >::iterator mgm(_multicastGroupMembers.begin());mgm!=_multicastGroupMembers.end();) {
if (_r->nc->hasNetwork(mgm->first))
++mgm;
else _multicastGroupMembers.erase(mgm++);
}
}
break;
case _PeerDeepVerifyJob::EXIT_THREAD:
TRACE("thread terminating...");
return;
}
}
}
void Topology::_reallyAddPeer(const SharedPtr &p)
{
{
Mutex::Lock _l(_activePeers_m);
_activePeers[p->identity().address()] = p;
}
try {
Buffer b;
p->serialize(b);
b.zeroUnused();
_dbm_m.lock();
if (KISSDB_put(&_dbm,p->identity().address().data(),b.data())) {
TRACE("error writing %s to peerdb",p->address().toString().c_str());
} else p->getAndResetDirty();
_dbm_m.unlock();
} catch ( ... ) {
TRACE("unexpected exception flushing to peerdb");
}
}
} // namespace ZeroTier