/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2012-2013 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include "Topology.hpp" #include "NodeConfig.hpp" namespace ZeroTier { #define ZT_KISSDB_HASH_TABLE_SIZE 131072 #define ZT_KISSDB_KEY_SIZE ZT_ADDRESS_LENGTH #define ZT_KISSDB_VALUE_SIZE ZT_PEER_MAX_SERIALIZED_LENGTH Topology::Topology(const RuntimeEnvironment *renv,const char *dbpath) throw(std::runtime_error) : Thread(), _r(renv) { if (KISSDB_open(&_dbm,dbpath,KISSDB_OPEN_MODE_RWCREAT,ZT_KISSDB_HASH_TABLE_SIZE,ZT_KISSDB_KEY_SIZE,ZT_KISSDB_VALUE_SIZE)) { if (KISSDB_open(&_dbm,dbpath,KISSDB_OPEN_MODE_RWREPLACE,ZT_KISSDB_HASH_TABLE_SIZE,ZT_KISSDB_KEY_SIZE,ZT_KISSDB_VALUE_SIZE)) throw std::runtime_error("unable to open peer database (rw/create)"); } if ((_dbm.key_size != ZT_KISSDB_KEY_SIZE)||(_dbm.value_size != ZT_KISSDB_VALUE_SIZE)||(_dbm.hash_table_size != ZT_KISSDB_HASH_TABLE_SIZE)) { KISSDB_close(&_dbm); if (KISSDB_open(&_dbm,dbpath,KISSDB_OPEN_MODE_RWREPLACE,ZT_KISSDB_HASH_TABLE_SIZE,ZT_KISSDB_KEY_SIZE,ZT_KISSDB_VALUE_SIZE)) throw std::runtime_error("unable to open peer database (recreate)"); } Utils::lockDownFile(dbpath,false); // node.db caches secrets start(); } Topology::~Topology() { { Mutex::Lock _l(_peerDeepVerifyJobs_m); _peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob()); _peerDeepVerifyJobs.back().type = _PeerDeepVerifyJob::CLEAN_CACHE; _peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob()); _peerDeepVerifyJobs.back().type = _PeerDeepVerifyJob::EXIT_THREAD; } _peerDeepVerifyJobs_c.signal(); while (running()) Thread::sleep(10); // wait for thread to terminate without join() KISSDB_close(&_dbm); } void Topology::setSupernodes(const std::map< Identity,std::vector > &sn) { Mutex::Lock _l(_supernodes_m); _supernodes = sn; _supernodeAddresses.clear(); _supernodePeers.clear(); for(std::map< Identity,std::vector >::const_iterator i(sn.begin());i!=sn.end();++i) { if (i->first != _r->identity) { SharedPtr p(getPeer(i->first.address())); if ((!p)||(p->identity() != i->first)) { p = SharedPtr(new Peer(_r->identity,i->first)); _reallyAddPeer(p); } for(std::vector::const_iterator j(i->second.begin());j!=i->second.end();++j) p->setPathAddress(*j,true); _supernodePeers.push_back(p); } _supernodeAddresses.insert(i->first.address()); } } void Topology::addPeer(const SharedPtr &candidate,void (*callback)(void *,const SharedPtr &,Topology::PeerVerifyResult),void *arg) { if (candidate->address() != _r->identity.address()) { Mutex::Lock _l(_peerDeepVerifyJobs_m); _peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob()); _PeerDeepVerifyJob &job = _peerDeepVerifyJobs.back(); job.callback = callback; job.arg = arg; job.candidate = candidate; job.type = _PeerDeepVerifyJob::VERIFY_PEER; _peerDeepVerifyJobs_c.signal(); } else { TRACE("BUG: addPeer() caught and ignored attempt to add peer for self"); if (callback) callback(arg,candidate,PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED); } } SharedPtr Topology::getPeer(const Address &zta) { if (zta == _r->identity.address()) { TRACE("BUG: ignored attempt to getPeer() for self, returned NULL"); return SharedPtr(); } { Mutex::Lock _l(_activePeers_m); std::map< Address,SharedPtr >::const_iterator ap(_activePeers.find(zta)); if ((ap != _activePeers.end())&&(ap->second)) return ap->second; } Buffer b(ZT_KISSDB_VALUE_SIZE); _dbm_m.lock(); if (!KISSDB_get(&_dbm,zta.data(),b.data())) { _dbm_m.unlock(); SharedPtr p(new Peer()); try { p->deserialize(b,0); Mutex::Lock _l(_activePeers_m); _activePeers[zta] = p; return p; } catch ( ... ) { TRACE("unexpected exception deserializing peer %s from peerdb",zta.toString().c_str()); return SharedPtr(); } } else _dbm_m.unlock(); return SharedPtr(); } SharedPtr Topology::getBestSupernode(const Address *avoid,unsigned int avoidCount) const { SharedPtr bestSupernode; unsigned long bestSupernodeLatency = 0xffff; uint64_t now = Utils::now(); Mutex::Lock _l(_supernodes_m); for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();) { for(unsigned int i=0;iaddress()) goto skip_and_try_next_supernode; } if ((*sn)->hasActiveDirectPath(now)) { // only consider those that responded to pings unsigned int l = (*sn)->latency(); if ((l)&&(l <= bestSupernodeLatency)) { bestSupernodeLatency = l; bestSupernode = *sn; } } skip_and_try_next_supernode: ++sn; } if (bestSupernode) return bestSupernode; for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();++sn) { if ((*sn)->hasActiveDirectPath(now)) { // only consider those that responded to pings unsigned int l = (*sn)->latency(); if ((l)&&(l <= bestSupernodeLatency)) { bestSupernodeLatency = l; bestSupernode = *sn; } } } if (bestSupernode) return bestSupernode; uint64_t bestSupernodeLastDirectReceive = 0; for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();++sn) { uint64_t l = (*sn)->lastDirectReceive(); if (l > bestSupernodeLastDirectReceive) { bestSupernodeLastDirectReceive = l; bestSupernode = *sn; } } return bestSupernode; } void Topology::clean() { { Mutex::Lock _l(_peerDeepVerifyJobs_m); _peerDeepVerifyJobs.push_back(_PeerDeepVerifyJob()); _peerDeepVerifyJobs.back().type = _PeerDeepVerifyJob::CLEAN_CACHE; } _peerDeepVerifyJobs_c.signal(); } void Topology::likesMulticastGroup(uint64_t nwid,const MulticastGroup &mg,const Address &addr,uint64_t now) { Mutex::Lock _l(_multicastGroupMembers_m); _multicastGroupMembers[nwid][mg][addr] = now; } struct _PickMulticastPropagationPeersPeerPrioritySortOrder { inline bool operator()(const SharedPtr &p1,const SharedPtr &p2) const { return (p1->lastUnicastFrame() >= p2->lastUnicastFrame()); } }; #define _MAX_PEERS_TO_CONSIDER 256 unsigned int Topology::pickMulticastPropagationPeers(uint64_t nwid,const Address &exclude,const void *propagationBloom,unsigned int propagationBloomSize,unsigned int count,const MulticastGroup &mg,SharedPtr *peers) { SharedPtr possiblePeers[_MAX_PEERS_TO_CONSIDER]; unsigned int numPossiblePeers = 0; if (count > _MAX_PEERS_TO_CONSIDER) count = _MAX_PEERS_TO_CONSIDER; Mutex::Lock _l1(_activePeers_m); Mutex::Lock _l2(_supernodes_m); // Grab known non-supernode peers in multicast group, excluding 'exclude' // Also lazily clean up the _multicastGroupMembers structure { Mutex::Lock _l3(_multicastGroupMembers_m); std::map< uint64_t,std::map< MulticastGroup,std::map< Address,uint64_t > > >::iterator mgm(_multicastGroupMembers.find(nwid)); if (mgm != _multicastGroupMembers.end()) { std::map< MulticastGroup,std::map< Address,uint64_t > >::iterator g(mgm->second.find(mg)); if (g != mgm->second.end()) { uint64_t now = Utils::now(); for(std::map< Address,uint64_t >::iterator m(g->second.begin());m!=g->second.end();) { if (((now - m->second) < ZT_MULTICAST_LIKE_EXPIRE)&&(m->first != exclude)) { std::map< Address,SharedPtr >::const_iterator p(_activePeers.find(m->first)); if (p != _activePeers.end()) { possiblePeers[numPossiblePeers++] = p->second; if (numPossiblePeers > _MAX_PEERS_TO_CONSIDER) break; } ++m; } else g->second.erase(m++); } if (!g->second.size()) mgm->second.erase(g); } } } // Sort non-supernode peers in descending order of most recent data // exchange timestamp. This sorts by implicit social relationships -- who // you are talking to are the people who get multicasts first. std::sort(&(possiblePeers[0]),&(possiblePeers[numPossiblePeers]),_PickMulticastPropagationPeersPeerPrioritySortOrder()); // Tack on a supernode peer to the end if we don't have enough regular // peers, using supernodes to bridge gaps in sparse multicast groups. if (numPossiblePeers < count) { SharedPtr bestSupernode; unsigned int bestSupernodeLatency = 0xffff; for(std::vector< SharedPtr >::const_iterator sn(_supernodePeers.begin());sn!=_supernodePeers.end();++sn) { if (((*sn)->latency())&&((*sn)->latency() < bestSupernodeLatency)) { bestSupernodeLatency = (*sn)->latency(); bestSupernode = *sn; } } if (bestSupernode) possiblePeers[numPossiblePeers++] = bestSupernode; } unsigned int num = 0; // First, try to pick peers not in the propgation bloom filter for(unsigned int i=0;iaddress().sum())) { peers[num++] = possiblePeers[i]; if (num >= count) return num; } } // Next, pick other peers until full (without duplicates) for(unsigned int i=0;i= count) return num; check_next_peer: continue; } return num; } void Topology::main() throw() { for(;;) { _peerDeepVerifyJobs_m.lock(); if (_peerDeepVerifyJobs.empty()) { _peerDeepVerifyJobs_m.unlock(); _peerDeepVerifyJobs_c.wait(); continue; } _PeerDeepVerifyJob job(_peerDeepVerifyJobs.front()); _peerDeepVerifyJobs.pop_front(); unsigned long queueRemaining = _peerDeepVerifyJobs.size(); _peerDeepVerifyJobs_m.unlock(); switch(job.type) { case _PeerDeepVerifyJob::VERIFY_PEER: /* TODO: We should really verify peers every time completely if this * is a supernode, perhaps deferring the expensive part for new * addresses. An attempt at claim jumping should also trigger a * short duration ban of the originating IP address in most cases, * since this means either malicious intent or broken software. */ TRACE("verifying peer: %s",job.candidate->identity().address().toString().c_str()); if ((job.candidate->identity())&&(!job.candidate->identity().address().isReserved())&&(job.candidate->identity().locallyValidate(false))) { // Peer passes sniff test, so check to see if we've already got // one with the same address. SharedPtr existingPeer(getPeer(job.candidate->identity().address())); if (existingPeer) { if (existingPeer->identity() == job.candidate->identity()) { // It's an *exact* duplicate, so return the existing peer if (job.callback) job.callback(job.arg,existingPeer,PEER_VERIFY_ACCEPTED_ALREADY_HAVE); } else if (queueRemaining > 3) { /* Prevents a CPU hog DOS attack, while allowing a very unlikely kind of * DOS attack where someone knows someone else's address prior to their * registering it and claim-jumps them and then floods with bad identities * to hold their claim. Of the two, the latter would be infeasable * without already having cracked the target's machine in which case * the attacker has their private key anyway and can really steal their * identity. So why bother.*/ TRACE("%s is duplicate, load too high, old won",job.candidate->identity().address().toString().c_str()); if (job.callback) job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED); } else { // It's different so deeply validate it first, then the // existing claimant, and toss the imposter. If both verify, the // one we already have wins. if (!job.candidate->identity().locallyValidate(true)) { LOG("Topology: IMPOSTER %s rejected",job.candidate->identity().address().toString().c_str()); if (job.callback) job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_INVALID_IDENTITY); } else if (!existingPeer->identity().locallyValidate(true)) { LOG("Topology: previous IMPOSTER %s displaced by valid identity!",job.candidate->identity().address().toString().c_str()); _reallyAddPeer(job.candidate); if (job.callback) job.callback(job.arg,job.candidate,PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS); } else { LOG("Topology: tie between apparently valid claims on %s, oldest won",job.candidate->identity().address().toString().c_str()); if (job.callback) job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_DUPLICATE); } } } else { TRACE("%s accepted as new",job.candidate->identity().address().toString().c_str()); _reallyAddPeer(job.candidate); if (job.callback) job.callback(job.arg,job.candidate,PEER_VERIFY_ACCEPTED_NEW); } } else { TRACE("%s rejected, identity failed initial checks",job.candidate->identity().address().toString().c_str()); if (job.callback) job.callback(job.arg,job.candidate,PEER_VERIFY_REJECTED_INVALID_IDENTITY); } break; case _PeerDeepVerifyJob::CLEAN_CACHE: TRACE("cleaning caches and flushing modified peers to disk..."); { Mutex::Lock _l(_activePeers_m); for(std::map< Address,SharedPtr >::iterator p(_activePeers.begin());p!=_activePeers.end();++p) { if (p->second->getAndResetDirty()) { try { Buffer b; p->second->serialize(b); b.zeroUnused(); _dbm_m.lock(); if (KISSDB_put(&_dbm,p->second->identity().address().data(),b.data())) { TRACE("error writing %s to peer.db",p->second->identity().address().toString().c_str()); } _dbm_m.unlock(); } catch ( ... ) { TRACE("unexpected exception flushing %s to peer.db",p->second->identity().address().toString().c_str()); } } } } { Mutex::Lock _l(_multicastGroupMembers_m); for(std::map< uint64_t,std::map< MulticastGroup,std::map< Address,uint64_t > > >::iterator mgm(_multicastGroupMembers.begin());mgm!=_multicastGroupMembers.end();) { if (_r->nc->hasNetwork(mgm->first)) ++mgm; else _multicastGroupMembers.erase(mgm++); } } break; case _PeerDeepVerifyJob::EXIT_THREAD: TRACE("thread terminating..."); return; } } } void Topology::_reallyAddPeer(const SharedPtr &p) { { Mutex::Lock _l(_activePeers_m); _activePeers[p->identity().address()] = p; } try { Buffer b; p->serialize(b); b.zeroUnused(); _dbm_m.lock(); if (KISSDB_put(&_dbm,p->identity().address().data(),b.data())) { TRACE("error writing %s to peerdb",p->address().toString().c_str()); } else p->getAndResetDirty(); _dbm_m.unlock(); } catch ( ... ) { TRACE("unexpected exception flushing to peerdb"); } } } // namespace ZeroTier