/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_AES_HPP #define ZT_AES_HPP #include "Constants.hpp" #include "Utils.hpp" #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64)) #include #include #include #define ZT_AES_AESNI 1 #endif #if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__) #include #include #ifndef ZT_AES_ARMNEON #define ZT_AES_ARMNEON 1 #endif #if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO)) #include #endif #endif #define ZT_AES_KEY_SIZE 32 #define ZT_AES_BLOCK_SIZE 16 namespace ZeroTier { /** * AES-256 and AES-GCM AEAD */ class AES { public: /** * This will be true if your platform's type of AES acceleration is supported on this machine */ static const bool HW_ACCEL; inline AES() {} inline AES(const uint8_t key[32]) { this->init(key); } inline ~AES() { Utils::burn(&_k,sizeof(_k)); } /** * Set (or re-set) this AES256 cipher's key */ inline void init(const uint8_t key[32]) { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _init_aesni(key); return; } #endif _initSW(key); } /** * Encrypt a single AES block (ECB mode) * * @param in Input block * @param out Output block (can be same as input) */ inline void encrypt(const uint8_t in[16],uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _encrypt_aesni(in,out); return; } #endif _encryptSW(in,out); } /** * Compute GMAC-AES256 (GCM without ciphertext) * * @param iv 96-bit IV * @param in Input data * @param len Length of input * @param out 128-bit authorization tag from GMAC */ inline void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _gmac_aesni(iv,(const uint8_t *)in,len,out); return; } #endif _gmacSW(iv,(const uint8_t *)in,len,out); } /** * Encrypt or decrypt (they're the same) using AES256-CTR * * The counter here is a 128-bit big-endian that starts at the IV. The code only * increments the least significant 64 bits, making it only safe to use for a * maximum of 2^64-1 bytes (much larger than we ever do). * * @param iv 128-bit CTR IV * @param in Input plaintext or ciphertext * @param len Length of input * @param out Output plaintext or ciphertext */ inline void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _crypt_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out); return; } #endif uint64_t ctr[2],cenc[2]; memcpy(ctr,iv,16); uint64_t bctr = Utils::ntoh(ctr[1]); const uint8_t *i = (const uint8_t *)in; uint8_t *o = (uint8_t *)out; while (len >= 16) { _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc); ctr[1] = Utils::hton(++bctr); for(unsigned int k=0;k<16;++k) *(o++) = *(i++) ^ ((uint8_t *)cenc)[k]; len -= 16; } if (len) { _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc); for(unsigned int k=0;k> 24); gmacIv[9] = (uint8_t)(len >> 16); gmacIv[10] = (uint8_t)(len >> 8); gmacIv[11] = (uint8_t)len; #else *((uint64_t *)gmacIv) = *((const uint64_t *)iv); *((uint32_t *)(gmacIv + 8)) = Utils::hton((uint32_t)len); #endif gmac(gmacIv,in,len,ctrIv); // Encrypt GMAC output because GMAC alone is not a PRF. encrypt(ctrIv,ctrIv); // Auth tag is the first 64 bits of AES(GMAC tag). CTR IV is this // followed by the original 64-bit IV and then encrypted. This // produces a secret, random, and one-time-use synthetic IV for // CTR that is dependent on message content (via GMAC). #ifdef ZT_NO_TYPE_PUNNING for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i]; for(unsigned int i=0;i<8;++i) ctrIv[i+8] = iv[i]; #else *((uint64_t *)tag) = *((const uint64_t *)ctrIv); *((uint64_t *)(ctrIv + 8)) = *((const uint64_t *)iv); #endif encrypt(ctrIv,ctrIv); // Encrypt input using AES256-CTR ctr(ctrIv,in,len,out); } /** * Decrypt a message encrypted with AES-256-GMAC-CTR and check its authenticity * * @param iv 64-bit message IV * @param in Message ciphertext * @param len Length of ciphertext * @param out Output buffer to receive plaintext * @param tag Authentication tag supplied with message * @return True if authentication tags match and message appears authentic */ inline bool ztGmacCtrDecrypt(const uint8_t iv[8],const void *in,unsigned int len,void *out,const uint8_t tag[8]) const { uint8_t ctrIv[16],gmacOut[16],gmacIv[12]; // Re-create the original secret synthetic AES256-CTR IV. #ifdef ZT_NO_TYPE_PUNNING for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i]; for(unsigned int i=0;i<8;++i) ctrIv[i+8] = iv[i]; #else *((uint64_t *)ctrIv) = *((const uint8_t *)tag); *((uint64_t *)(ctrIv + 8)) = *((const uint64_t *)iv); #endif encrypt(ctrIv,ctrIv); // Decrypt input using AES256-CTR and this synthetic IV. ctr(ctrIv,in,len,out); // Compute AES256-GMAC(out) using the re-created 96-bit // GMAC IV built from the message IV and the message size. #ifdef ZT_NO_TYPE_PUNNING for(unsigned int i=0;i<8;++i) gmacIv[i] = iv[i]; gmacIv[8] = (uint8_t)(len >> 24); gmacIv[9] = (uint8_t)(len >> 16); gmacIv[10] = (uint8_t)(len >> 8); gmacIv[11] = (uint8_t)len; #else *((uint64_t *)gmacIv) = *((const uint64_t *)iv); *((uint32_t *)(gmacIv + 8)) = Utils::hton((uint32_t)len); #endif gmac(gmacIv,out,len,gmacOut); // Encrypt GMAC results to get the tag that would have // resulted from this message plaintext. encrypt(gmacOut,gmacOut); // Compare authentication tags. #ifdef ZT_NO_TYPE_PUNNING return Utils::secureEq(gmacOut,tag,8); #else return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag)); #endif } private: static const uint32_t Te0[256]; static const uint32_t Te1[256]; static const uint32_t Te2[256]; static const uint32_t Te3[256]; static const uint32_t rcon[10]; void _initSW(const uint8_t key[32]); void _encryptSW(const uint8_t in[16],uint8_t out[16]) const; void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const; /**************************************************************************/ union { #ifdef ZT_AES_ARMNEON struct { uint32x4_t k[15]; } neon; #endif #ifdef ZT_AES_AESNI struct { __m128i k[15]; __m128i h,hh,hhh,hhhh; } ni; #endif struct { uint64_t h[2]; uint32_t ek[30]; } sw; } _k; /**************************************************************************/ #ifdef ZT_AES_ARMNEON /******************************************************/ static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2) { uint32_t round1[4], round2[4], prv1[4], prv2[4]; vst1q_u32(prv1, prev1); vst1q_u32(prv2, prev2); round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0]; round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1]; round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2]; round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3]; round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0]; round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1]; round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2]; round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3]; *e1 = vld1q_u3(round1); *e2 = vld1q_u3(round2); //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)}; //return expansion; } inline void _init_armneon(uint8x16_t encKey) { uint32x4_t *schedule = _k.neon.k; uint32x4_t e1,e2; (*schedule)[0] = vld1q_u32(encKey); (*schedule)[1] = vld1q_u32(encKey + 16); _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2); (*schedule)[2] = e1; (*schedule)[3] = e2; _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2); (*schedule)[4] = e1; (*schedule)[5] = e2; _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2); (*schedule)[6] = e1; (*schedule)[7] = e2; _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2); (*schedule)[8] = e1; (*schedule)[9] = e2; _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2); (*schedule)[10] = e1; (*schedule)[11] = e2; _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2); (*schedule)[12] = e1; (*schedule)[13] = e2; _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2); (*schedule)[14] = e1; /* doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01); (*schedule)[2] = doubleRound[0]; (*schedule)[3] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02); (*schedule)[4] = doubleRound[0]; (*schedule)[5] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04); (*schedule)[6] = doubleRound[0]; (*schedule)[7] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08); (*schedule)[8] = doubleRound[0]; (*schedule)[9] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10); (*schedule)[10] = doubleRound[0]; (*schedule)[11] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20); (*schedule)[12] = doubleRound[0]; (*schedule)[13] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40); (*schedule)[14] = doubleRound[0]; */ } inline void _encrypt_armneon(uint8x16_t *data) const { *data = veorq_u8(*data, _k.neon.k[0]); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13])); *data = vaeseq_u8(*data, _k.neon.k[14]); } #endif /*********************************************************************/ #ifdef ZT_AES_AESNI /********************************************************/ static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b) { __m128i x,y; b = _mm_shuffle_epi32(b,0xff); y = _mm_slli_si128(a,0x04); x = _mm_xor_si128(a,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); x = _mm_xor_si128(x,b); return x; } static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b) { __m128i x,y,z; y = _mm_aeskeygenassist_si128(a,0x00); z = _mm_shuffle_epi32(y,0xaa); y = _mm_slli_si128(b,0x04); x = _mm_xor_si128(b,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); x = _mm_xor_si128(x,z); return x; } ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32]) { __m128i t1,t2; _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key); _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16)); _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01)); _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02)); _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04)); _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08)); _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10)); _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20)); _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40)); __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]); h = _mm_aesenc_si128(h,_k.ni.k[1]); h = _mm_aesenc_si128(h,_k.ni.k[2]); h = _mm_aesenc_si128(h,_k.ni.k[3]); h = _mm_aesenc_si128(h,_k.ni.k[4]); h = _mm_aesenc_si128(h,_k.ni.k[5]); h = _mm_aesenc_si128(h,_k.ni.k[6]); h = _mm_aesenc_si128(h,_k.ni.k[7]); h = _mm_aesenc_si128(h,_k.ni.k[8]); h = _mm_aesenc_si128(h,_k.ni.k[9]); h = _mm_aesenc_si128(h,_k.ni.k[10]); h = _mm_aesenc_si128(h,_k.ni.k[11]); h = _mm_aesenc_si128(h,_k.ni.k[12]); h = _mm_aesenc_si128(h,_k.ni.k[13]); h = _mm_aesenclast_si128(h,_k.ni.k[14]); const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15); __m128i hswap = _mm_shuffle_epi8(h,shuf); __m128i hh = _mult_block_aesni(shuf,hswap,h); __m128i hhh = _mult_block_aesni(shuf,hswap,hh); __m128i hhhh = _mult_block_aesni(shuf,hswap,hhh); _k.ni.h = hswap; _k.ni.hh = _mm_shuffle_epi8(hh,shuf); _k.ni.hhh = _mm_shuffle_epi8(hhh,shuf); _k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf); } ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const { __m128i tmp; tmp = _mm_loadu_si128((const __m128i *)in); tmp = _mm_xor_si128(tmp,_k.ni.k[0]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]); _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14])); } ZT_ALWAYS_INLINE void _crypt_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const { const __m64 iv0 = (__m64)(*((const uint64_t *)iv)); uint64_t ctr = Utils::ntoh(*((const uint64_t *)(iv+8))); const __m128i k0 = _k.ni.k[0]; const __m128i k1 = _k.ni.k[1]; const __m128i k2 = _k.ni.k[2]; const __m128i k3 = _k.ni.k[3]; const __m128i k4 = _k.ni.k[4]; const __m128i k5 = _k.ni.k[5]; const __m128i k6 = _k.ni.k[6]; const __m128i k7 = _k.ni.k[7]; const __m128i k8 = _k.ni.k[8]; const __m128i k9 = _k.ni.k[9]; const __m128i k10 = _k.ni.k[10]; const __m128i k11 = _k.ni.k[11]; const __m128i k12 = _k.ni.k[12]; const __m128i k13 = _k.ni.k[13]; const __m128i k14 = _k.ni.k[14]; while (len >= 64) { __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr),iv0),k0); __m128i c1 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+1ULL)),iv0),k0); __m128i c2 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+2ULL)),iv0),k0); __m128i c3 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+3ULL)),iv0),k0); ctr += 4; c0 = _mm_aesenc_si128(c0,k1); c1 = _mm_aesenc_si128(c1,k1); c2 = _mm_aesenc_si128(c2,k1); c3 = _mm_aesenc_si128(c3,k1); c0 = _mm_aesenc_si128(c0,k2); c1 = _mm_aesenc_si128(c1,k2); c2 = _mm_aesenc_si128(c2,k2); c3 = _mm_aesenc_si128(c3,k2); c0 = _mm_aesenc_si128(c0,k3); c1 = _mm_aesenc_si128(c1,k3); c2 = _mm_aesenc_si128(c2,k3); c3 = _mm_aesenc_si128(c3,k3); c0 = _mm_aesenc_si128(c0,k4); c1 = _mm_aesenc_si128(c1,k4); c2 = _mm_aesenc_si128(c2,k4); c3 = _mm_aesenc_si128(c3,k4); c0 = _mm_aesenc_si128(c0,k5); c1 = _mm_aesenc_si128(c1,k5); c2 = _mm_aesenc_si128(c2,k5); c3 = _mm_aesenc_si128(c3,k5); c0 = _mm_aesenc_si128(c0,k6); c1 = _mm_aesenc_si128(c1,k6); c2 = _mm_aesenc_si128(c2,k6); c3 = _mm_aesenc_si128(c3,k6); c0 = _mm_aesenc_si128(c0,k7); c1 = _mm_aesenc_si128(c1,k7); c2 = _mm_aesenc_si128(c2,k7); c3 = _mm_aesenc_si128(c3,k7); c0 = _mm_aesenc_si128(c0,k8); c1 = _mm_aesenc_si128(c1,k8); c2 = _mm_aesenc_si128(c2,k8); c3 = _mm_aesenc_si128(c3,k8); c0 = _mm_aesenc_si128(c0,k9); c1 = _mm_aesenc_si128(c1,k9); c2 = _mm_aesenc_si128(c2,k9); c3 = _mm_aesenc_si128(c3,k9); c0 = _mm_aesenc_si128(c0,k10); c1 = _mm_aesenc_si128(c1,k10); c2 = _mm_aesenc_si128(c2,k10); c3 = _mm_aesenc_si128(c3,k10); c0 = _mm_aesenc_si128(c0,k11); c1 = _mm_aesenc_si128(c1,k11); c2 = _mm_aesenc_si128(c2,k11); c3 = _mm_aesenc_si128(c3,k11); c0 = _mm_aesenc_si128(c0,k12); c1 = _mm_aesenc_si128(c1,k12); c2 = _mm_aesenc_si128(c2,k12); c3 = _mm_aesenc_si128(c3,k12); c0 = _mm_aesenc_si128(c0,k13); c1 = _mm_aesenc_si128(c1,k13); c2 = _mm_aesenc_si128(c2,k13); c3 = _mm_aesenc_si128(c3,k13); _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14))); _mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,k14))); _mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,k14))); _mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,k14))); in += 64; out += 64; len -= 64; } while (len >= 16) { __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0); c0 = _mm_aesenc_si128(c0,k1); c0 = _mm_aesenc_si128(c0,k2); c0 = _mm_aesenc_si128(c0,k3); c0 = _mm_aesenc_si128(c0,k4); c0 = _mm_aesenc_si128(c0,k5); c0 = _mm_aesenc_si128(c0,k6); c0 = _mm_aesenc_si128(c0,k7); c0 = _mm_aesenc_si128(c0,k8); c0 = _mm_aesenc_si128(c0,k9); c0 = _mm_aesenc_si128(c0,k10); c0 = _mm_aesenc_si128(c0,k11); c0 = _mm_aesenc_si128(c0,k12); c0 = _mm_aesenc_si128(c0,k13); _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14))); in += 16; out += 16; len -= 16; } if (len) { __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0); c0 = _mm_aesenc_si128(c0,k1); c0 = _mm_aesenc_si128(c0,k2); c0 = _mm_aesenc_si128(c0,k3); c0 = _mm_aesenc_si128(c0,k4); c0 = _mm_aesenc_si128(c0,k5); c0 = _mm_aesenc_si128(c0,k6); c0 = _mm_aesenc_si128(c0,k7); c0 = _mm_aesenc_si128(c0,k8); c0 = _mm_aesenc_si128(c0,k9); c0 = _mm_aesenc_si128(c0,k10); c0 = _mm_aesenc_si128(c0,k11); c0 = _mm_aesenc_si128(c0,k12); c0 = _mm_aesenc_si128(c0,k13); c0 = _mm_aesenclast_si128(c0,k14); for(unsigned int i=0;i