/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_WORLD_HPP #define ZT_WORLD_HPP #include "Buffer.hpp" #include "Constants.hpp" #include "ECC.hpp" #include "Identity.hpp" #include "InetAddress.hpp" #include #include /** * Maximum number of roots (sanity limit, okay to increase) * * A given root can (through multi-homing) be distributed across any number of * physical endpoints, but having more than one is good to permit total failure * of one root or its withdrawal due to compromise without taking the whole net * down. */ #define ZT_WORLD_MAX_ROOTS 4 /** * Maximum number of stable endpoints per root (sanity limit, okay to increase) */ #define ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT 32 /** * The (more than) maximum length of a serialized World */ #define ZT_WORLD_MAX_SERIALIZED_LENGTH (((1024 + (32 * ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT)) * ZT_WORLD_MAX_ROOTS) + ZT_ECC_PUBLIC_KEY_SET_LEN + ZT_ECC_SIGNATURE_LEN + 128) /** * World ID for Earth * * This is the ID for the ZeroTier World used on planet Earth. It is unrelated * to the public network 8056c2e21c000001 of the same name. It was chosen * from Earth's approximate distance from the sun in kilometers. */ #define ZT_WORLD_ID_EARTH 149604618 /** * World ID for Mars -- for future use by SpaceX or others */ #define ZT_WORLD_ID_MARS 227883110 namespace ZeroTier { /** * A world definition (formerly known as a root topology) * * Think of a World as a single data center. Within this data center a set * of distributed fault tolerant root servers provide stable anchor points * for a peer to peer network that provides VLAN service. Updates to a world * definition can be published by signing them with the previous revision's * signing key, and should be very infrequent. * * The maximum data center size is approximately 2.5 cubic light seconds, * since many protocols have issues with >5s RTT latencies. * * ZeroTier operates a World for Earth capable of encompassing the planet, its * orbits, the Moon (about 1.3 light seconds), and nearby Lagrange points. A * world ID for Mars and nearby space is defined but not yet used, and a test * world ID is provided for testing purposes. */ class World { public: /** * World type -- do not change IDs */ enum Type { TYPE_NULL = 0, TYPE_PLANET = 1, // Planets, of which there is currently one (Earth) TYPE_MOON = 127 // Moons, which are user-created and many }; /** * Upstream server definition in world/moon */ struct Root { Identity identity; std::vector stableEndpoints; inline bool operator==(const Root& r) const { return ((identity == r.identity) && (stableEndpoints == r.stableEndpoints)); } inline bool operator!=(const Root& r) const { return (! (*this == r)); } inline bool operator<(const Root& r) const { return (identity < r.identity); } // for sorting }; /** * Construct an empty / null World */ World() : _id(0), _ts(0), _type(TYPE_NULL) { } /** * @return Root servers for this world and their stable endpoints */ inline const std::vector& roots() const { return _roots; } /** * @return World type: planet or moon */ inline Type type() const { return _type; } /** * @return World unique identifier */ inline uint64_t id() const { return _id; } /** * @return World definition timestamp */ inline uint64_t timestamp() const { return _ts; } /** * @return C25519 signature */ inline const ECC::Signature& signature() const { return _signature; } /** * @return Public key that must sign next update */ inline const ECC::Public& updatesMustBeSignedBy() const { return _updatesMustBeSignedBy; } /** * Check whether a world update should replace this one * * @param update Candidate update * @return True if update is newer than current, matches its ID and type, and is properly signed (or if current is NULL) */ inline bool shouldBeReplacedBy(const World& update) { if ((_id == 0) || (_type == TYPE_NULL)) { return true; } if ((_id == update._id) && (_ts < update._ts) && (_type == update._type)) { Buffer tmp; update.serialize(tmp, true); return ECC::verify(_updatesMustBeSignedBy, tmp.data(), tmp.size(), update._signature); } return false; } /** * @return True if this World is non-empty */ inline operator bool() const { return (_type != TYPE_NULL); } template inline void serialize(Buffer& b, bool forSign = false) const { if (forSign) { b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); } b.append((uint8_t)_type); b.append((uint64_t)_id); b.append((uint64_t)_ts); b.append(_updatesMustBeSignedBy.data, ZT_ECC_PUBLIC_KEY_SET_LEN); if (! forSign) { b.append(_signature.data, ZT_ECC_SIGNATURE_LEN); } b.append((uint8_t)_roots.size()); for (std::vector::const_iterator r(_roots.begin()); r != _roots.end(); ++r) { r->identity.serialize(b); b.append((uint8_t)r->stableEndpoints.size()); for (std::vector::const_iterator ep(r->stableEndpoints.begin()); ep != r->stableEndpoints.end(); ++ep) { ep->serialize(b); } } if (_type == TYPE_MOON) { b.append((uint16_t)0); // no attached dictionary (for future use) } if (forSign) { b.append((uint64_t)0xf7f7f7f7f7f7f7f7ULL); } } template inline unsigned int deserialize(const Buffer& b, unsigned int startAt = 0) { unsigned int p = startAt; _roots.clear(); switch ((Type)b[p++]) { case TYPE_NULL: // shouldn't ever really happen in serialized data but it's not invalid _type = TYPE_NULL; break; case TYPE_PLANET: _type = TYPE_PLANET; break; case TYPE_MOON: _type = TYPE_MOON; break; default: throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE; } _id = b.template at(p); p += 8; _ts = b.template at(p); p += 8; memcpy(_updatesMustBeSignedBy.data, b.field(p, ZT_ECC_PUBLIC_KEY_SET_LEN), ZT_ECC_PUBLIC_KEY_SET_LEN); p += ZT_ECC_PUBLIC_KEY_SET_LEN; memcpy(_signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN); p += ZT_ECC_SIGNATURE_LEN; const unsigned int numRoots = (unsigned int)b[p++]; if (numRoots > ZT_WORLD_MAX_ROOTS) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } for (unsigned int k = 0; k < numRoots; ++k) { _roots.push_back(Root()); Root& r = _roots.back(); p += r.identity.deserialize(b, p); unsigned int numStableEndpoints = b[p++]; if (numStableEndpoints > ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } for (unsigned int kk = 0; kk < numStableEndpoints; ++kk) { r.stableEndpoints.push_back(InetAddress()); p += r.stableEndpoints.back().deserialize(b, p); } } if (_type == TYPE_MOON) { p += b.template at(p) + 2; } return (p - startAt); } inline bool operator==(const World& w) const { return ( (_id == w._id) && (_ts == w._ts) && (memcmp(_updatesMustBeSignedBy.data, w._updatesMustBeSignedBy.data, ZT_ECC_PUBLIC_KEY_SET_LEN) == 0) && (memcmp(_signature.data, w._signature.data, ZT_ECC_SIGNATURE_LEN) == 0) && (_roots == w._roots) && (_type == w._type)); } inline bool operator!=(const World& w) const { return (! (*this == w)); } /** * Create a World object signed with a key pair * * @param t World type * @param id World ID * @param ts World timestamp / revision * @param sk Key that must be used to sign the next future update to this world * @param roots Roots and their stable endpoints * @param signWith Key to sign this World with (can have the same public as the next-update signing key, but doesn't have to) * @return Signed World object */ static inline World make(World::Type t, uint64_t id, uint64_t ts, const ECC::Public& sk, const std::vector& roots, const ECC::Pair& signWith) { World w; w._id = id; w._ts = ts; w._type = t; w._updatesMustBeSignedBy = sk; w._roots = roots; Buffer tmp; w.serialize(tmp, true); w._signature = ECC::sign(signWith, tmp.data(), tmp.size()); return w; } protected: uint64_t _id; uint64_t _ts; Type _type; ECC::Public _updatesMustBeSignedBy; ECC::Signature _signature; std::vector _roots; }; } // namespace ZeroTier #endif