/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_CERTIFICATEOFMEMBERSHIP_HPP #define ZT_CERTIFICATEOFMEMBERSHIP_HPP #include "Address.hpp" #include "Buffer.hpp" #include "Constants.hpp" #include "Credential.hpp" #include "ECC.hpp" #include "Identity.hpp" #include "Utils.hpp" #include #include #include #include #include /** * Maximum number of qualifiers allowed in a COM (absolute max: 65535) */ #define ZT_NETWORK_COM_MAX_QUALIFIERS 8 namespace ZeroTier { class RuntimeEnvironment; /** * Certificate of network membership * * The COM contains a sorted set of three-element tuples called qualifiers. * These contain an id, a value, and a maximum delta. * * The ID is arbitrary and should be assigned using a scheme that makes * every ID globally unique. IDs beneath 65536 are reserved for global * assignment by ZeroTier Networks. * * The value's meaning is ID-specific and isn't important here. What's * important is the value and the third member of the tuple: the maximum * delta. The maximum delta is the maximum difference permitted between * values for a given ID between certificates for the two certificates to * themselves agree. * * Network membership is checked by checking whether a peer's certificate * agrees with your own. The timestamp provides the fundamental criterion-- * each member of a private network must constantly obtain new certificates * often enough to stay within the max delta for this qualifier. But other * criteria could be added in the future for very special behaviors, things * like latitude and longitude for instance. * * This is a memcpy()'able structure and is safe (in a crash sense) to modify * without locks. */ class CertificateOfMembership : public Credential { public: static inline Credential::Type credentialType() { return Credential::CREDENTIAL_TYPE_COM; } /** * Reserved qualifier IDs * * IDs below 1024 are reserved for use as standard IDs. Others are available * for user-defined use. * * Addition of new required fields requires that code in hasRequiredFields * be updated as well. */ enum ReservedId { /** * Timestamp of certificate */ COM_RESERVED_ID_TIMESTAMP = 0, /** * Network ID for which certificate was issued */ COM_RESERVED_ID_NETWORK_ID = 1, /** * ZeroTier address to whom certificate was issued */ COM_RESERVED_ID_ISSUED_TO = 2 // IDs 3-6 reserved for full hash of identity to which this COM was issued. }; /** * Create an empty certificate of membership */ CertificateOfMembership() : _qualifierCount(0) { } /** * Create from required fields common to all networks * * @param timestamp Timestamp of certificate * @param timestampMaxDelta Maximum variation between timestamps on this net * @param nwid Network ID * @param issuedTo Certificate recipient */ CertificateOfMembership(uint64_t timestamp, uint64_t timestampMaxDelta, uint64_t nwid, const Identity& issuedTo); /** * Create from binary-serialized COM in buffer * * @param b Buffer to deserialize from * @param startAt Position to start in buffer */ template CertificateOfMembership(const Buffer& b, unsigned int startAt = 0) { deserialize(b, startAt); } /** * @return True if there's something here */ inline operator bool() const { return (_qualifierCount != 0); } /** * @return Credential ID, always 0 for COMs */ inline uint32_t id() const { return 0; } /** * @return Timestamp for this cert and maximum delta for timestamp */ inline int64_t timestamp() const { for (unsigned int i = 0; i < _qualifierCount; ++i) { if (_qualifiers[i].id == COM_RESERVED_ID_TIMESTAMP) { return _qualifiers[i].value; } } return 0; } /** * @return Address to which this cert was issued */ inline Address issuedTo() const { for (unsigned int i = 0; i < _qualifierCount; ++i) { if (_qualifiers[i].id == COM_RESERVED_ID_ISSUED_TO) { return Address(_qualifiers[i].value); } } return Address(); } /** * @return Network ID for which this cert was issued */ inline uint64_t networkId() const { for (unsigned int i = 0; i < _qualifierCount; ++i) { if (_qualifiers[i].id == COM_RESERVED_ID_NETWORK_ID) { return _qualifiers[i].value; } } return 0ULL; } /** * Compare two certificates for parameter agreement * * This compares this certificate with the other and returns true if all * parameters in this cert are present in the other and if they agree to * within this cert's max delta value for each given parameter. * * Tuples present in other but not in this cert are ignored, but any * tuples present in this cert but not in other result in 'false'. * * @param other Cert to compare with * @param otherIdentity Identity of other node * @return True if certs agree and 'other' may be communicated with */ bool agreesWith(const CertificateOfMembership& other, const Identity& otherIdentity) const; /** * Sign this certificate * * @param with Identity to sign with, must include private key * @return True if signature was successful */ bool sign(const Identity& with); /** * Verify this COM and its signature * * @param RR Runtime environment for looking up peers * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or credential */ int verify(const RuntimeEnvironment* RR, void* tPtr) const; /** * @return True if signed */ inline bool isSigned() const { return (_signedBy); } /** * @return Address that signed this certificate or null address if none */ inline const Address& signedBy() const { return _signedBy; } template inline void serialize(Buffer& b) const { b.append((uint8_t)1); b.append((uint16_t)_qualifierCount); for (unsigned int i = 0; i < _qualifierCount; ++i) { b.append(_qualifiers[i].id); b.append(_qualifiers[i].value); b.append(_qualifiers[i].maxDelta); } _signedBy.appendTo(b); if (_signedBy) { b.append(_signature.data, ZT_ECC_SIGNATURE_LEN); } } template inline unsigned int deserialize(const Buffer& b, unsigned int startAt = 0) { unsigned int p = startAt; _qualifierCount = 0; _signedBy.zero(); if (b[p++] != 1) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE; } unsigned int numq = b.template at(p); p += sizeof(uint16_t); uint64_t lastId = 0; for (unsigned int i = 0; i < numq; ++i) { const uint64_t qid = b.template at(p); if (qid < lastId) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_BAD_ENCODING; } else { lastId = qid; } if (_qualifierCount < ZT_NETWORK_COM_MAX_QUALIFIERS) { _qualifiers[_qualifierCount].id = qid; _qualifiers[_qualifierCount].value = b.template at(p + 8); _qualifiers[_qualifierCount].maxDelta = b.template at(p + 16); p += 24; ++_qualifierCount; } else { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } } _signedBy.setTo(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; if (_signedBy) { memcpy(_signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN); p += ZT_ECC_SIGNATURE_LEN; } return (p - startAt); } inline bool operator==(const CertificateOfMembership& c) const { if (_signedBy != c._signedBy) { return false; } if (_qualifierCount != c._qualifierCount) { return false; } for (unsigned int i = 0; i < _qualifierCount; ++i) { const _Qualifier& a = _qualifiers[i]; const _Qualifier& b = c._qualifiers[i]; if ((a.id != b.id) || (a.value != b.value) || (a.maxDelta != b.maxDelta)) { return false; } } return (memcmp(_signature.data, c._signature.data, ZT_ECC_SIGNATURE_LEN) == 0); } inline bool operator!=(const CertificateOfMembership& c) const { return (! (*this == c)); } private: struct _Qualifier { _Qualifier() : id(0), value(0), maxDelta(0) { } uint64_t id; uint64_t value; uint64_t maxDelta; inline bool operator<(const _Qualifier& q) const { return (id < q.id); } // sort order }; Address _signedBy; _Qualifier _qualifiers[ZT_NETWORK_COM_MAX_QUALIFIERS]; unsigned int _qualifierCount; ECC::Signature _signature; }; } // namespace ZeroTier #endif