/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #ifndef ZT_PATH_HPP #define ZT_PATH_HPP #include #include #include #include #include #include "Constants.hpp" #include "InetAddress.hpp" #include "SharedPtr.hpp" #include "AtomicCounter.hpp" #include "Utils.hpp" #include "RingBuffer.hpp" #include "Packet.hpp" #include "../osdep/Phy.hpp" /** * Maximum return value of preferenceRank() */ #define ZT_PATH_MAX_PREFERENCE_RANK ((ZT_INETADDRESS_MAX_SCOPE << 1) | 1) namespace ZeroTier { class RuntimeEnvironment; /** * A path across the physical network */ class Path { friend class SharedPtr; Phy *_phy; public: /** * Efficient unique key for paths in a Hashtable */ class HashKey { public: HashKey() {} HashKey(const int64_t l,const InetAddress &r) { if (r.ss_family == AF_INET) { _k[0] = (uint64_t)reinterpret_cast(&r)->sin_addr.s_addr; _k[1] = (uint64_t)reinterpret_cast(&r)->sin_port; _k[2] = (uint64_t)l; } else if (r.ss_family == AF_INET6) { memcpy(_k,reinterpret_cast(&r)->sin6_addr.s6_addr,16); _k[2] = ((uint64_t)reinterpret_cast(&r)->sin6_port << 32) ^ (uint64_t)l; } else { memcpy(_k,&r,std::min(sizeof(_k),sizeof(InetAddress))); _k[2] += (uint64_t)l; } } inline unsigned long hashCode() const { return (unsigned long)(_k[0] + _k[1] + _k[2]); } inline bool operator==(const HashKey &k) const { return ( (_k[0] == k._k[0]) && (_k[1] == k._k[1]) && (_k[2] == k._k[2]) ); } inline bool operator!=(const HashKey &k) const { return (!(*this == k)); } private: uint64_t _k[3]; }; Path() : _lastOut(0), _lastIn(0), _lastTrustEstablishedPacketReceived(0), _lastPathQualityComputeTime(0), _localSocket(-1), _latency(0xffff), _addr(), _ipScope(InetAddress::IP_SCOPE_NONE), _lastAck(0), _lastThroughputEstimation(0), _lastQoSMeasurement(0), _lastQoSRecordPurge(0), _unackedBytes(0), _expectingAckAsOf(0), _packetsReceivedSinceLastAck(0), _packetsReceivedSinceLastQoS(0), _maxLifetimeThroughput(0), _lastComputedMeanThroughput(0), _bytesAckedSinceLastThroughputEstimation(0), _lastComputedMeanLatency(0.0), _lastComputedPacketDelayVariance(0.0), _lastComputedPacketErrorRatio(0.0), _lastComputedPacketLossRatio(0), _lastComputedStability(0.0), _lastComputedRelativeQuality(0), _lastComputedThroughputDistCoeff(0.0), _lastAllocation(0) { memset(_ifname, 0, 16); memset(_addrString, 0, sizeof(_addrString)); } Path(const int64_t localSocket,const InetAddress &addr) : _lastOut(0), _lastIn(0), _lastTrustEstablishedPacketReceived(0), _lastPathQualityComputeTime(0), _localSocket(localSocket), _latency(0xffff), _addr(addr), _ipScope(addr.ipScope()), _lastAck(0), _lastThroughputEstimation(0), _lastQoSMeasurement(0), _lastQoSRecordPurge(0), _unackedBytes(0), _expectingAckAsOf(0), _packetsReceivedSinceLastAck(0), _packetsReceivedSinceLastQoS(0), _maxLifetimeThroughput(0), _lastComputedMeanThroughput(0), _bytesAckedSinceLastThroughputEstimation(0), _lastComputedMeanLatency(0.0), _lastComputedPacketDelayVariance(0.0), _lastComputedPacketErrorRatio(0.0), _lastComputedPacketLossRatio(0), _lastComputedStability(0.0), _lastComputedRelativeQuality(0), _lastComputedThroughputDistCoeff(0.0), _lastAllocation(0) { memset(_ifname, 0, 16); memset(_addrString, 0, sizeof(_addrString)); _phy->getIfName((PhySocket *)((uintptr_t)_localSocket), _ifname, 16); } /** * Called when a packet is received from this remote path, regardless of content * * @param t Time of receive */ inline void received(const uint64_t t) { _lastIn = t; } /** * Set time last trusted packet was received (done in Peer::received()) */ inline void trustedPacketReceived(const uint64_t t) { _lastTrustEstablishedPacketReceived = t; } /** * Send a packet via this path (last out time is also updated) * * @param RR Runtime environment * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param data Packet data * @param len Packet length * @param now Current time * @return True if transport reported success */ bool send(const RuntimeEnvironment *RR,void *tPtr,const void *data,unsigned int len,int64_t now); /** * Manually update last sent time * * @param t Time of send */ inline void sent(const int64_t t) { _lastOut = t; } /** * Update path latency with a new measurement * * @param l Measured latency */ inline void updateLatency(const unsigned int l, int64_t now) { unsigned int pl = _latency; if (pl < 0xffff) { _latency = (pl + l) / 2; } else { _latency = l; } _latencySamples.push(l); } /** * @return Local socket as specified by external code */ inline int64_t localSocket() const { return _localSocket; } /** * @return Physical address */ inline const InetAddress &address() const { return _addr; } /** * @return IP scope -- faster shortcut for address().ipScope() */ inline InetAddress::IpScope ipScope() const { return _ipScope; } /** * @return True if path has received a trust established packet (e.g. common network membership) in the past ZT_TRUST_EXPIRATION ms */ inline bool trustEstablished(const int64_t now) const { return ((now - _lastTrustEstablishedPacketReceived) < ZT_TRUST_EXPIRATION); } /** * @return Preference rank, higher == better */ inline unsigned int preferenceRank() const { // This causes us to rank paths in order of IP scope rank (see InetAdddress.hpp) but // within each IP scope class to prefer IPv6 over IPv4. return ( ((unsigned int)_ipScope << 1) | (unsigned int)(_addr.ss_family == AF_INET6) ); } /** * Check whether this address is valid for a ZeroTier path * * This checks the address type and scope against address types and scopes * that we currently support for ZeroTier communication. * * @param a Address to check * @return True if address is good for ZeroTier path use */ static inline bool isAddressValidForPath(const InetAddress &a) { if ((a.ss_family == AF_INET)||(a.ss_family == AF_INET6)) { switch(a.ipScope()) { /* Note: we don't do link-local at the moment. Unfortunately these * cause several issues. The first is that they usually require a * device qualifier, which we don't handle yet and can't portably * push in PUSH_DIRECT_PATHS. The second is that some OSes assign * these very ephemerally or otherwise strangely. So we'll use * private, pseudo-private, shared (e.g. carrier grade NAT), or * global IP addresses. */ case InetAddress::IP_SCOPE_PRIVATE: case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_GLOBAL: if (a.ss_family == AF_INET6) { // TEMPORARY HACK: for now, we are going to blacklist he.net IPv6 // tunnels due to very spotty performance and low MTU issues over // these IPv6 tunnel links. const uint8_t *ipd = reinterpret_cast(reinterpret_cast(&a)->sin6_addr.s6_addr); if ((ipd[0] == 0x20)&&(ipd[1] == 0x01)&&(ipd[2] == 0x04)&&(ipd[3] == 0x70)) return false; } return true; default: return false; } } return false; } /** * @return Latency or 0xffff if unknown */ inline unsigned int latency() const { return _latency; } /** * @return Path quality -- lower is better */ inline long quality(const int64_t now) const { const int l = (long)_latency; const int age = (long)std::min((now - _lastIn),(int64_t)(ZT_PATH_HEARTBEAT_PERIOD * 10)); // set an upper sanity limit to avoid overflow return (((age < (ZT_PATH_HEARTBEAT_PERIOD + 5000)) ? l : (l + 0xffff + age)) * (long)((ZT_INETADDRESS_MAX_SCOPE - _ipScope) + 1)); } /** * Record statistics on outgoing packets. Used later to estimate QoS metrics. * * @param now Current time * @param packetId ID of packet * @param payloadLength Length of payload * @param verb Packet verb */ inline void recordOutgoingPacket(int64_t now, int64_t packetId, uint16_t payloadLength, Packet::Verb verb) { Mutex::Lock _l(_statistics_m); if (verb != Packet::VERB_ACK && verb != Packet::VERB_QOS_MEASUREMENT) { if ((packetId & (ZT_PATH_QOS_ACK_PROTOCOL_DIVISOR - 1)) == 0) { _unackedBytes += payloadLength; // Take note that we're expecting a VERB_ACK on this path as of a specific time _expectingAckAsOf = ackAge(now) > ZT_PATH_ACK_INTERVAL ? _expectingAckAsOf : now; if (_outQoSRecords.size() < ZT_PATH_MAX_OUTSTANDING_QOS_RECORDS) { _outQoSRecords[packetId] = now; } } } } /** * Record statistics on incoming packets. Used later to estimate QoS metrics. * * @param now Current time * @param packetId ID of packet * @param payloadLength Length of payload * @param verb Packet verb */ inline void recordIncomingPacket(int64_t now, int64_t packetId, uint16_t payloadLength, Packet::Verb verb) { Mutex::Lock _l(_statistics_m); if (verb != Packet::VERB_ACK && verb != Packet::VERB_QOS_MEASUREMENT) { if ((packetId & (ZT_PATH_QOS_ACK_PROTOCOL_DIVISOR - 1)) == 0) { _inACKRecords[packetId] = payloadLength; _packetsReceivedSinceLastAck++; _inQoSRecords[packetId] = now; _packetsReceivedSinceLastQoS++; } _packetValiditySamples.push(true); } } /** * Record that we've received a VERB_ACK on this path, also compute throughput if required. * * @param now Current time * @param ackedBytes Number of bytes acknowledged by other peer */ inline void receivedAck(int64_t now, int32_t ackedBytes) { _expectingAckAsOf = 0; _unackedBytes = (ackedBytes > _unackedBytes) ? 0 : _unackedBytes - ackedBytes; int64_t timeSinceThroughputEstimate = (now - _lastThroughputEstimation); if (timeSinceThroughputEstimate >= ZT_PATH_THROUGHPUT_MEASUREMENT_INTERVAL) { uint64_t throughput = (float)(_bytesAckedSinceLastThroughputEstimation * 8) / ((float)timeSinceThroughputEstimate / (float)1000); _throughputSamples.push(throughput); _maxLifetimeThroughput = throughput > _maxLifetimeThroughput ? throughput : _maxLifetimeThroughput; _lastThroughputEstimation = now; _bytesAckedSinceLastThroughputEstimation = 0; } else { _bytesAckedSinceLastThroughputEstimation += ackedBytes; } } /** * @return Number of bytes this peer is responsible for ACKing since last ACK */ inline int32_t bytesToAck() { Mutex::Lock _l(_statistics_m); int32_t bytesToAck = 0; std::map::iterator it = _inACKRecords.begin(); while (it != _inACKRecords.end()) { bytesToAck += it->second; it++; } return bytesToAck; } /** * @return Number of bytes thus far sent that have not been acknowledged by the remote peer */ inline int64_t unackedSentBytes() { return _unackedBytes; } /** * Account for the fact that an ACK was just sent. Reset counters, timers, and clear statistics buffers * * @param Current time */ inline void sentAck(int64_t now) { Mutex::Lock _l(_statistics_m); _inACKRecords.clear(); _packetsReceivedSinceLastAck = 0; _lastAck = now; } /** * Receive QoS data, match with recorded egress times from this peer, compute latency * estimates. * * @param now Current time * @param count Number of records * @param rx_id table of packet IDs * @param rx_ts table of holding times */ inline void receivedQoS(int64_t now, int count, uint64_t *rx_id, uint16_t *rx_ts) { Mutex::Lock _l(_statistics_m); // Look up egress times and compute latency values for each record std::map::iterator it; for (int j=0; jsecond); uint16_t rtt_compensated = rtt - rx_ts[j]; float latency = rtt_compensated / 2.0; updateLatency(latency, now); _outQoSRecords.erase(it); } } } /** * Generate the contents of a VERB_QOS_MEASUREMENT packet. * * @param now Current time * @param qosBuffer destination buffer * @return Size of payload */ inline int32_t generateQoSPacket(int64_t now, char *qosBuffer) { Mutex::Lock _l(_statistics_m); int32_t len = 0; std::map::iterator it = _inQoSRecords.begin(); int i=0; while (i<_packetsReceivedSinceLastQoS && it != _inQoSRecords.end()) { uint64_t id = it->first; memcpy(qosBuffer, &id, sizeof(uint64_t)); qosBuffer+=sizeof(uint64_t); uint16_t holdingTime = (now - it->second); memcpy(qosBuffer, &holdingTime, sizeof(uint16_t)); qosBuffer+=sizeof(uint16_t); len+=sizeof(uint64_t)+sizeof(uint16_t); _inQoSRecords.erase(it++); i++; } return len; } /** * Account for the fact that a VERB_QOS_MEASUREMENT was just sent. Reset timers. * * @param Current time */ inline void sentQoS(int64_t now) { _packetsReceivedSinceLastQoS = 0; _lastQoSMeasurement = now; } /** * @param now Current time * @return Whether an ACK (VERB_ACK) packet needs to be emitted at this time */ inline bool needsToSendAck(int64_t now) { return ((now - _lastAck) >= ZT_PATH_ACK_INTERVAL || (_packetsReceivedSinceLastAck == ZT_PATH_QOS_TABLE_SIZE)) && _packetsReceivedSinceLastAck; } /** * @param now Current time * @return Whether a QoS (VERB_QOS_MEASUREMENT) packet needs to be emitted at this time */ inline bool needsToSendQoS(int64_t now) { return ((_packetsReceivedSinceLastQoS >= ZT_PATH_QOS_TABLE_SIZE) || ((now - _lastQoSMeasurement) > ZT_PATH_QOS_INTERVAL)) && _packetsReceivedSinceLastQoS; } /** * How much time has elapsed since we've been expecting a VERB_ACK on this path. This value * is used to determine a more relevant path "age". This lets us penalize paths which are no * longer ACKing, but not those that simple aren't being used to carry traffic at the * current time. */ inline int64_t ackAge(int64_t now) { return _expectingAckAsOf ? now - _expectingAckAsOf : 0; } /** * The maximum observed throughput (in bits/s) for this path */ inline uint64_t maxLifetimeThroughput() { return _maxLifetimeThroughput; } /** * @return The mean throughput (in bits/s) of this link */ inline uint64_t meanThroughput() { return _lastComputedMeanThroughput; } /** * Assign a new relative quality value for this path in the aggregate link * * @param rq Quality of this path in comparison to other paths available to this peer */ inline void updateRelativeQuality(float rq) { _lastComputedRelativeQuality = rq; } /** * @return Quality of this path compared to others in the aggregate link */ inline float relativeQuality() { return _lastComputedRelativeQuality; } /** * Assign a new allocation value for this path in the aggregate link * * @param allocation Percentage of traffic to be sent over this path to a peer */ inline void updateComponentAllocationOfAggregateLink(unsigned char allocation) { _lastAllocation = allocation; } /** * @return Percentage of traffic allocated to this path in the aggregate link */ inline unsigned char allocation() { return _lastAllocation; } /** * @return Stability estimates can become expensive to compute, we cache the most recent result. */ inline float lastComputedStability() { return _lastComputedStability; } /** * @return A pointer to a cached copy of the human-readable name of the interface this Path's localSocket is bound to */ inline char *getName() { return _ifname; } /** * @return Packet delay variance */ inline float packetDelayVariance() { return _lastComputedPacketDelayVariance; } /** * @return Previously-computed mean latency */ inline float meanLatency() { return _lastComputedMeanLatency; } /** * @return Packet loss rate (PLR) */ inline float packetLossRatio() { return _lastComputedPacketLossRatio; } /** * @return Packet error ratio (PER) */ inline float packetErrorRatio() { return _lastComputedPacketErrorRatio; } /** * Record an invalid incoming packet. This packet failed MAC/compression/cipher checks and will now * contribute to a Packet Error Ratio (PER). */ inline void recordInvalidPacket() { _packetValiditySamples.push(false); } /** * @return A pointer to a cached copy of the address string for this Path (For debugging only) */ inline char *getAddressString() { return _addrString; } /** * @return The current throughput disturbance coefficient */ inline float throughputDisturbanceCoefficient() { return _lastComputedThroughputDistCoeff; } /** * Compute and cache stability and performance metrics. The resultant stability coefficient is a measure of how "well behaved" * this path is. This figure is substantially different from (but required for the estimation of the path's overall "quality". * * @param now Current time */ inline void processBackgroundPathMeasurements(const int64_t now) { if (now - _lastPathQualityComputeTime > ZT_PATH_QUALITY_COMPUTE_INTERVAL) { Mutex::Lock _l(_statistics_m); _lastPathQualityComputeTime = now; address().toString(_addrString); _lastComputedMeanLatency = _latencySamples.mean(); _lastComputedPacketDelayVariance = _latencySamples.stddev(); // Similar to "jitter" (SEE: RFC 3393, RFC 4689) _lastComputedMeanThroughput = (uint64_t)_throughputSamples.mean(); // If no packet validity samples, assume PER==0 _lastComputedPacketErrorRatio = 1 - (_packetValiditySamples.count() ? _packetValiditySamples.mean() : 1); // Compute path stability // Normalize measurements with wildly different ranges into a reasonable range float normalized_pdv = Utils::normalize(_lastComputedPacketDelayVariance, 0, ZT_PATH_MAX_PDV, 0, 10); float normalized_la = Utils::normalize(_lastComputedMeanLatency, 0, ZT_PATH_MAX_MEAN_LATENCY, 0, 10); float throughput_cv = _throughputSamples.mean() > 0 ? _throughputSamples.stddev() / _throughputSamples.mean() : 1; // Form an exponential cutoff and apply contribution weights float pdv_contrib = exp((-1)*normalized_pdv) * ZT_PATH_CONTRIB_PDV; float latency_contrib = exp((-1)*normalized_la) * ZT_PATH_CONTRIB_LATENCY; // Throughput Disturbance Coefficient float throughput_disturbance_contrib = exp((-1)*throughput_cv) * ZT_PATH_CONTRIB_THROUGHPUT_DISTURBANCE; _throughputDisturbanceSamples.push(throughput_cv); _lastComputedThroughputDistCoeff = _throughputDisturbanceSamples.mean(); // Obey user-defined ignored contributions pdv_contrib = ZT_PATH_CONTRIB_PDV > 0.0 ? pdv_contrib : 1; latency_contrib = ZT_PATH_CONTRIB_LATENCY > 0.0 ? latency_contrib : 1; throughput_disturbance_contrib = ZT_PATH_CONTRIB_THROUGHPUT_DISTURBANCE > 0.0 ? throughput_disturbance_contrib : 1; // Stability _lastComputedStability = pdv_contrib + latency_contrib + throughput_disturbance_contrib; _lastComputedStability *= 1 - _lastComputedPacketErrorRatio; // Prevent QoS records from sticking around for too long std::map::iterator it = _outQoSRecords.begin(); while (it != _outQoSRecords.end()) { // Time since egress of tracked packet if ((now - it->second) >= ZT_PATH_QOS_TIMEOUT) { _outQoSRecords.erase(it++); } else { it++; } } } } /** * @return True if this path is alive (receiving heartbeats) */ inline bool alive(const int64_t now) const { return ((now - _lastIn) < (ZT_PATH_HEARTBEAT_PERIOD + 5000)); } /** * @return True if this path needs a heartbeat */ inline bool needsHeartbeat(const int64_t now) const { return ((now - _lastOut) >= ZT_PATH_HEARTBEAT_PERIOD); } /** * @return Last time we sent something */ inline int64_t lastOut() const { return _lastOut; } /** * @return Last time we received anything */ inline int64_t lastIn() const { return _lastIn; } /** * @return Time last trust-established packet was received */ inline int64_t lastTrustEstablishedPacketReceived() const { return _lastTrustEstablishedPacketReceived; } private: Mutex _statistics_m; volatile int64_t _lastOut; volatile int64_t _lastIn; volatile int64_t _lastTrustEstablishedPacketReceived; volatile int64_t _lastPathQualityComputeTime; int64_t _localSocket; volatile unsigned int _latency; InetAddress _addr; InetAddress::IpScope _ipScope; // memoize this since it's a computed value checked often AtomicCounter __refCount; std::map _outQoSRecords; // id:egress_time std::map _inQoSRecords; // id:now std::map _inACKRecords; // id:len int64_t _lastAck; int64_t _lastThroughputEstimation; int64_t _lastQoSMeasurement; int64_t _lastQoSRecordPurge; int64_t _unackedBytes; int64_t _expectingAckAsOf; int16_t _packetsReceivedSinceLastAck; int16_t _packetsReceivedSinceLastQoS; uint64_t _maxLifetimeThroughput; uint64_t _lastComputedMeanThroughput; uint64_t _bytesAckedSinceLastThroughputEstimation; float _lastComputedMeanLatency; float _lastComputedPacketDelayVariance; float _lastComputedPacketErrorRatio; float _lastComputedPacketLossRatio; // cached estimates float _lastComputedStability; float _lastComputedRelativeQuality; float _lastComputedThroughputDistCoeff; unsigned char _lastAllocation; // cached human-readable strings for tracing purposes char _ifname[16]; char _addrString[256]; RingBuffer _throughputSamples; RingBuffer _latencySamples; RingBuffer _packetValiditySamples; RingBuffer _throughputDisturbanceSamples; }; } // namespace ZeroTier #endif