/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "EllipticCurveKey.hpp"
#include "EllipticCurveKeyPair.hpp"
namespace ZeroTier {
class _EC_Group
{
public:
_EC_Group()
{
g = EC_GROUP_new_by_curve_name(ZT_EC_OPENSSL_CURVE);
}
~_EC_Group() {}
EC_GROUP *g;
};
static _EC_Group ZT_EC_GROUP;
/**
* Key derivation function
*
* TODO:
* If/when we document the protocol, this will have to be documented as
* well. It's a fairly standard KDF that uses SHA-256 to transform the
* raw EC key. It's generally considered good crypto practice to do this
* to eliminate the possibility of leaking information from EC exchange to
* downstream algorithms.
*
* In our code it is used to produce a two 32-bit keys. One key is used
* for Salsa20 and the other for HMAC-SHA-256. They are generated together
* as a single 64-bit key.
*/
static void *_zt_EC_KDF(const void *in,size_t inlen,void *out,size_t *outlen)
{
SHA256_CTX sha;
unsigned char dig[SHA256_DIGEST_LENGTH];
SHA256_Init(&sha);
SHA256_Update(&sha,(const unsigned char *)in,inlen);
SHA256_Final(dig,&sha);
for(unsigned long i=0,k=0;i<(unsigned long)*outlen;) {
if (k == SHA256_DIGEST_LENGTH) {
k = 0;
SHA256_Init(&sha);
SHA256_Update(&sha,(const unsigned char *)in,inlen);
SHA256_Update(&sha,dig,SHA256_DIGEST_LENGTH);
SHA256_Final(dig,&sha);
}
((unsigned char *)out)[i++] = dig[k++];
}
return out;
}
EllipticCurveKeyPair::EllipticCurveKeyPair() :
_pub(),
_priv(),
_internal_key((void *)0)
{
}
EllipticCurveKeyPair::EllipticCurveKeyPair(const EllipticCurveKeyPair &pair) :
_pub(pair._pub),
_priv(pair._priv),
_internal_key((void *)0)
{
}
EllipticCurveKeyPair::EllipticCurveKeyPair(const EllipticCurveKey &pubk,const EllipticCurveKey &privk) :
_pub(pubk),
_priv(privk),
_internal_key((void *)0)
{
}
EllipticCurveKeyPair::~EllipticCurveKeyPair()
{
if (_internal_key)
EC_KEY_free((EC_KEY *)_internal_key);
}
const EllipticCurveKeyPair &EllipticCurveKeyPair::operator=(const EllipticCurveKeyPair &pair)
{
if (_internal_key)
EC_KEY_free((EC_KEY *)_internal_key);
_pub = pair._pub;
_priv = pair._priv;
_internal_key = (void *)0;
return *this;
}
bool EllipticCurveKeyPair::generate()
{
unsigned char tmp[16384];
EC_KEY *key;
int len;
// Make sure OpenSSL libcrypto has sufficient randomness (on most
// platforms it auto-seeds, so this is a sanity check).
if (!RAND_status()) {
#if defined(__APPLE__) || defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux)
FILE *rf = fopen("/dev/urandom","r");
if (rf) {
fread(tmp,sizeof(tmp),1,rf);
fclose(rf);
} else {
fprintf(stderr,"FATAL: could not open /dev/urandom\n");
exit(-1);
}
RAND_seed(tmp,sizeof(tmp));
#else
#ifdef _WIN32
error need win32;
#else
error;
#endif
#endif
}
key = EC_KEY_new();
if (!key) return false;
if (!EC_KEY_set_group(key,ZT_EC_GROUP.g)) {
EC_KEY_free(key);
return false;
}
if (!EC_KEY_generate_key(key)) {
EC_KEY_free(key);
return false;
}
memset(_priv._key,0,sizeof(_priv._key));
len = BN_num_bytes(EC_KEY_get0_private_key(key));
if ((len > ZT_EC_PRIME_BYTES)||(len < 0)) {
EC_KEY_free(key);
return false;
}
BN_bn2bin(EC_KEY_get0_private_key(key),&(_priv._key[ZT_EC_PRIME_BYTES - len]));
_priv._bytes = ZT_EC_PRIME_BYTES;
memset(_pub._key,0,sizeof(_pub._key));
len = EC_POINT_point2oct(ZT_EC_GROUP.g,EC_KEY_get0_public_key(key),POINT_CONVERSION_COMPRESSED,_pub._key,sizeof(_pub._key),0);
if (len != ZT_EC_PUBLIC_KEY_BYTES) {
EC_KEY_free(key);
return false;
}
_pub._bytes = ZT_EC_PUBLIC_KEY_BYTES;
if (_internal_key)
EC_KEY_free((EC_KEY *)_internal_key);
_internal_key = key;
return true;
}
bool EllipticCurveKeyPair::agree(const EllipticCurveKey &theirPublicKey,unsigned char *agreedUponKey,unsigned int agreedUponKeyLength) const
{
if (theirPublicKey._bytes != ZT_EC_PUBLIC_KEY_BYTES)
return false;
if (!_internal_key) {
if (!(const_cast (this))->initInternalKey())
return false;
}
EC_POINT *pub = EC_POINT_new(ZT_EC_GROUP.g);
if (!pub)
return false;
EC_POINT_oct2point(ZT_EC_GROUP.g,pub,theirPublicKey._key,ZT_EC_PUBLIC_KEY_BYTES,0);
int i = ECDH_compute_key(agreedUponKey,agreedUponKeyLength,pub,(EC_KEY *)_internal_key,&_zt_EC_KDF);
EC_POINT_free(pub);
return (i == (int)agreedUponKeyLength);
}
std::string EllipticCurveKeyPair::sign(const void *sha256) const
{
unsigned char buf[256];
std::string sigbin;
if (!_internal_key) {
if (!(const_cast (this))->initInternalKey())
return std::string();
}
ECDSA_SIG *sig = ECDSA_do_sign((const unsigned char *)sha256,SHA256_DIGEST_LENGTH,(EC_KEY *)_internal_key);
if (!sig)
return std::string();
int rlen = BN_num_bytes(sig->r);
if ((rlen > 255)||(rlen <= 0)) {
ECDSA_SIG_free(sig);
return std::string();
}
sigbin.push_back((char)rlen);
BN_bn2bin(sig->r,buf);
sigbin.append((const char *)buf,rlen);
int slen = BN_num_bytes(sig->s);
if ((slen > 255)||(slen <= 0)) {
ECDSA_SIG_free(sig);
return std::string();
}
sigbin.push_back((char)slen);
BN_bn2bin(sig->s,buf);
sigbin.append((const char *)buf,slen);
ECDSA_SIG_free(sig);
return sigbin;
}
std::string EllipticCurveKeyPair::sign(const void *data,unsigned int len) const
{
SHA256_CTX sha;
unsigned char dig[SHA256_DIGEST_LENGTH];
SHA256_Init(&sha);
SHA256_Update(&sha,(const unsigned char *)data,len);
SHA256_Final(dig,&sha);
return sign(dig);
}
bool EllipticCurveKeyPair::verify(const void *sha256,const EllipticCurveKey &pk,const void *sigbytes,unsigned int siglen)
{
bool result = false;
ECDSA_SIG *sig = (ECDSA_SIG *)0;
EC_POINT *pub = (EC_POINT *)0;
EC_KEY *key = (EC_KEY *)0;
int rlen,slen;
if (!siglen)
goto verify_sig_return;
rlen = ((const unsigned char *)sigbytes)[0];
if (!rlen)
goto verify_sig_return;
if (siglen < (unsigned int)(rlen + 2))
goto verify_sig_return;
slen = ((const unsigned char *)sigbytes)[rlen + 1];
if (!slen)
goto verify_sig_return;
if (siglen < (unsigned int)(rlen + slen + 2))
goto verify_sig_return;
sig = ECDSA_SIG_new();
if (!sig)
goto verify_sig_return;
BN_bin2bn((const unsigned char *)sigbytes + 1,rlen,sig->r);
BN_bin2bn((const unsigned char *)sigbytes + (1 + rlen + 1),slen,sig->s);
pub = EC_POINT_new(ZT_EC_GROUP.g);
if (!pub)
goto verify_sig_return;
EC_POINT_oct2point(ZT_EC_GROUP.g,pub,pk._key,ZT_EC_PUBLIC_KEY_BYTES,0);
key = EC_KEY_new();
if (!key)
goto verify_sig_return;
if (!EC_KEY_set_group(key,ZT_EC_GROUP.g))
goto verify_sig_return;
EC_KEY_set_public_key(key,pub);
result = (ECDSA_do_verify((const unsigned char *)sha256,SHA256_DIGEST_LENGTH,sig,key) == 1);
verify_sig_return:
if (key)
EC_KEY_free(key);
if (pub)
EC_POINT_free(pub);
if (sig)
ECDSA_SIG_free(sig);
return result;
}
bool EllipticCurveKeyPair::verify(const void *data,unsigned int len,const EllipticCurveKey &pk,const void *sigbytes,unsigned int siglen)
{
SHA256_CTX sha;
unsigned char dig[SHA256_DIGEST_LENGTH];
SHA256_Init(&sha);
SHA256_Update(&sha,(const unsigned char *)data,len);
SHA256_Final(dig,&sha);
return verify(dig,pk,sigbytes,siglen);
}
bool EllipticCurveKeyPair::initInternalKey()
{
EC_KEY *key;
EC_POINT *kxy;
BIGNUM *pn;
if (_priv._bytes != ZT_EC_PRIME_BYTES) return false;
if (_pub._bytes != ZT_EC_PUBLIC_KEY_BYTES) return false;
key = EC_KEY_new();
if (!key) return false;
if (!EC_KEY_set_group(key,ZT_EC_GROUP.g)) {
EC_KEY_free(key);
return false;
}
pn = BN_new();
if (!pn) {
EC_KEY_free(key);
return false;
}
if (!BN_bin2bn(_priv._key,ZT_EC_PRIME_BYTES,pn)) {
BN_free(pn);
EC_KEY_free(key);
return false;
}
if (!EC_KEY_set_private_key(key,pn)) {
BN_free(pn);
EC_KEY_free(key);
return false;
}
BN_free(pn);
kxy = EC_POINT_new(ZT_EC_GROUP.g);
if (!kxy) {
EC_KEY_free(key);
return false;
}
EC_POINT_oct2point(ZT_EC_GROUP.g,kxy,_pub._key,ZT_EC_PUBLIC_KEY_BYTES,0);
if (!EC_KEY_set_public_key(key,kxy)) {
EC_POINT_free(kxy);
EC_KEY_free(key);
return false;
}
EC_POINT_free(kxy);
if (_internal_key)
EC_KEY_free((EC_KEY *)_internal_key);
_internal_key = key;
return true;
}
} // namespace ZeroTier