/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifdef ZT_ENABLE_NETCON
#include
#include
#include
#include "NetconEthernetTap.hpp"
#include "../node/Utils.hpp"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Phy.hpp"
#include "lwip/tcp_impl.h"
#include "netif/etharp.h"
#include "lwip/ip.h"
#include "lwip/ip_addr.h"
#include "lwip/ip_frag.h"
#include "lwip/tcp.h"
#include "LWIPStack.hpp"
#include "NetconService.hpp"
#include "Intercept.h"
#include "NetconUtilities.hpp"
#define APPLICATION_POLL_FREQ 1
namespace ZeroTier {
NetconEthernetTap::NetconEthernetTap(
const char *homePath,
const MAC &mac,
unsigned int mtu,
unsigned int metric,
uint64_t nwid,
const char *friendlyName,
void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
void *arg) :
_phy(this,false,true),
_unixListenSocket((PhySocket *)0),
_handler(handler),
_arg(arg),
_nwid(nwid),
_mac(mac),
_homePath(homePath),
_mtu(mtu),
_enabled(true),
_run(true)
{
char sockPath[4096];
Utils::snprintf(sockPath,sizeof(sockPath),"/tmp/.ztnc_%.16llx",(unsigned long long)nwid);
_dev = sockPath;
lwipstack = new LWIPStack("ext/bin/lwip/liblwip.so"); // ext/bin/liblwip.so.debug for debug symbols
if(!lwipstack) // TODO double check this check
throw std::runtime_error("unable to load lwip lib.");
lwipstack->lwip_init();
_unixListenSocket = _phy.unixListen(sockPath,(void *)this);
if (!_unixListenSocket)
throw std::runtime_error(std::string("unable to bind to ")+sockPath);
_thread = Thread::start(this);
}
NetconEthernetTap::~NetconEthernetTap()
{
_run = false;
_phy.whack();
_phy.whack();
Thread::join(_thread);
_phy.close(_unixListenSocket,false);
delete lwipstack;
}
void NetconEthernetTap::setEnabled(bool en)
{
_enabled = en;
}
bool NetconEthernetTap::enabled() const
{
return _enabled;
}
bool NetconEthernetTap::addIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) {
_ips.push_back(ip);
std::sort(_ips.begin(),_ips.end());
if (ip.isV4()) {
// Set IP
static ip_addr_t ipaddr, netmask, gw;
IP4_ADDR(&gw,192,168,0,1);
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
// Set up the lwip-netif for LWIP's sake
lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input);
interface.state = this;
interface.output = lwipstack->_etharp_output;
_mac.copyTo(interface.hwaddr, 6);
interface.mtu = _mtu;
interface.name[0] = 't';
interface.name[1] = 'p';
interface.linkoutput = low_level_output;
interface.hwaddr_len = 6;
interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP;
lwipstack->netif_set_default(&interface);
lwipstack->netif_set_up(&interface);
}
}
return true;
}
bool NetconEthernetTap::removeIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip));
if (i == _ips.end())
return false;
_ips.erase(i);
if (ip.isV4()) {
// TODO: dealloc from LWIP
}
return true;
}
std::vector NetconEthernetTap::ips() const
{
Mutex::Lock _l(_ips_m);
return _ips;
}
void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
struct pbuf *p,*q;
if (!_enabled)
return;
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
// We allocate a pbuf chain of pbufs from the pool.
p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
if (p != NULL) {
const char *dataptr = reinterpret_cast(data);
// First pbuf gets ethernet header at start
q = p;
if (q->len < sizeof(ethhdr)) {
fprintf(stderr,"_put(): Dropped packet: first pbuf smaller than ethernet header\n");
return;
}
memcpy(q->payload,ðhdr,sizeof(ethhdr));
memcpy(q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
dataptr += q->len - sizeof(ethhdr);
// Remaining pbufs (if any) get rest of data
while ((q = q->next)) {
memcpy(q->payload,dataptr,q->len);
dataptr += q->len;
}
} else {
fprintf(stderr, "_put(): Dropped packet: no pbufs available\n");
return;
}
{
Mutex::Lock _l2(lwipstack->_lock);
if(interface.input(p, &interface) != ERR_OK) {
fprintf(stderr, "_put(): Error while RXing packet (netif->input)\n");
}
}
}
std::string NetconEthernetTap::deviceName() const
{
return _dev;
}
void NetconEthernetTap::setFriendlyName(const char *friendlyName)
{
}
void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed)
{
std::vector newGroups;
Mutex::Lock _l(_multicastGroups_m);
// TODO: get multicast subscriptions from LWIP
std::vector allIps(ips());
for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip)
newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
std::sort(newGroups.begin(),newGroups.end());
std::unique(newGroups.begin(),newGroups.end());
for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) {
if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
added.push_back(*m);
}
for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
removed.push_back(*m);
}
_multicastGroups.swap(newGroups);
}
TcpConnection *NetconEthernetTap::getConnectionByPCB(struct tcp_pcb *pcb)
{
for(size_t i=0; ipcb == pcb)
return tcp_connections[i];
}
return NULL;
}
TcpConnection *NetconEthernetTap::getConnectionByTheirFD(PhySocket *sock, int fd)
{
for(size_t i=0; iperceived_fd == fd && tcp_connections[i]->rpcSock == sock)
return tcp_connections[i];
}
return NULL;
}
/*
* Closes a TcpConnection and associated LWIP PCB strcuture.
*/
void NetconEthernetTap::closeConnection(TcpConnection *conn)
{
//fprintf(stderr, "closeConnection(): closing: conn->type = %d, fd=%d\n", conn->type, _phy.getDescriptor(conn->sock));
lwipstack->_tcp_arg(conn->pcb, NULL);
lwipstack->_tcp_sent(conn->pcb, NULL);
lwipstack->_tcp_recv(conn->pcb, NULL);
lwipstack->_tcp_err(conn->pcb, NULL);
lwipstack->_tcp_poll(conn->pcb, NULL, 0);
lwipstack->_tcp_close(conn->pcb);
close(_phy.getDescriptor(conn->dataSock));
close(conn->their_fd);
_phy.close(conn->dataSock);
for(int i=0; i= ZT_LWIP_TCP_TIMER_INTERVAL) {
prev_tcp_time = now;
lwipstack->tcp_tmr();
} else {
tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
}
if (since_etharp >= ARP_TMR_INTERVAL) {
prev_etharp_time = now;
lwipstack->etharp_tmr();
} else {
etharp_remaining = ARP_TMR_INTERVAL - since_etharp;
}
_phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining));
}
closeAll();
// TODO: cleanup -- destroy LWIP state, kill any clients, unload .so, etc.
}
void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr)
{
// FIXME: What do?
}
/*
* Handles data on a client's data buffer. Data is sent to LWIP to be enqueued.
*/
void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable)
{
if(readable) {
TcpConnection *conn = (TcpConnection*)*uptr;
Mutex::Lock _l(lwipstack->_lock);
handle_write(conn);
}
else {
fprintf(stderr, "phyOnFileDescriptorActivity(): PhySocket not readable\n");
}
}
// Unused -- no UDP or TCP from this thread/Phy<>
void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {}
void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {}
void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {}
/*
* Add a new PhySocket for the client connection
*/
void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {
rpc_sockets.push_back(sockN);
}
/*
* Processes incoming data on a client-specific RPC connection
*/
void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len)
{
unsigned char *buf = (unsigned char*)data;
switch(buf[0])
{
case RPC_SOCKET:
fprintf(stderr, "RPC_SOCKET\n");
struct socket_st socket_rpc;
memcpy(&socket_rpc, &buf[1], sizeof(struct socket_st));
handle_socket(sock, uptr, &socket_rpc);
break;
case RPC_LISTEN:
fprintf(stderr, "RPC_LISTEN\n");
struct listen_st listen_rpc;
memcpy(&listen_rpc, &buf[1], sizeof(struct listen_st));
handle_listen(sock, uptr, &listen_rpc);
break;
case RPC_BIND:
fprintf(stderr, "RPC_BIND\n");
struct bind_st bind_rpc;
memcpy(&bind_rpc, &buf[1], sizeof(struct bind_st));
handle_bind(sock, uptr, &bind_rpc);
break;
case RPC_KILL_INTERCEPT:
fprintf(stderr, "RPC_KILL_INTERCEPT\n");
break;
case RPC_CONNECT:
fprintf(stderr, "RPC_CONNECT\n");
struct connect_st connect_rpc;
memcpy(&connect_rpc, &buf[1], sizeof(struct connect_st));
handle_connect(sock, uptr, &connect_rpc);
break;
case RPC_FD_MAP_COMPLETION:
fprintf(stderr, "RPC_FD_MAP_COMPLETION\n");
handle_retval(sock, uptr, buf);
break;
default:
break;
}
}
/*
* Send a return value to the client for an RPC
*/
int NetconEthernetTap::send_return_value(TcpConnection *conn, int retval, int _errno = 0)
{
if(conn) {
int n = send_return_value(_phy.getDescriptor(conn->rpcSock), retval, _errno);
if(n > 0)
conn->pending = false;
else {
fprintf(stderr, "Unable to send return value to the intercept. Closing connection\n");
closeConnection(conn);
}
return n;
}
return -1;
}
int NetconEthernetTap::send_return_value(int fd, int retval, int _errno = 0)
{
int sz = sizeof(char) + sizeof(retval) + sizeof(errno);
char retmsg[sz];
memset(&retmsg, '\0', sizeof(retmsg));
retmsg[0]=RPC_RETVAL;
memcpy(&retmsg[1], &retval, sizeof(retval));
memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno));
return write(fd, &retmsg, sz);
}
/*------------------------------------------------------------------------------
--------------------------------- LWIP callbacks -------------------------------
------------------------------------------------------------------------------*/
// NOTE: these are called from within LWIP, meaning that lwipstack->_lock is ALREADY
// locked in this case!
/*
* Callback from LWIP for when a connection has been accepted and the PCB has been
* put into an ACCEPT state.
*
* A socketpair is created, one end is kept and wrapped into a PhySocket object
* for use in the main ZT I/O loop, and one end is sent to the client. The client
* is then required to tell the service what new file descriptor it has allocated
* for this connection. After the mapping is complete, the accepted socket can be
* used.
*
* @param associated service state object
* @param newly allocated PCB
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
[ ] EAGAIN or EWOULDBLOCK - The socket is marked nonblocking and no connections are present
to be accepted. POSIX.1-2001 allows either error to be returned for
this case, and does not require these constants to have the same value,
so a portable application should check for both possibilities.
[I] EBADF - The descriptor is invalid.
[I] ECONNABORTED - A connection has been aborted.
[i] EFAULT - The addr argument is not in a writable part of the user address space.
[ ] EINTR - The system call was interrupted by a signal that was caught before a valid connection arrived; see signal(7).
[ ] EINVAL - Socket is not listening for connections, or addrlen is invalid (e.g., is negative).
[ ] EINVAL - (accept4()) invalid value in flags.
[I] EMFILE - The per-process limit of open file descriptors has been reached.
[ ] ENFILE - The system limit on the total number of open files has been reached.
[ ] ENOBUFS, ENOMEM - Not enough free memory. This often means that the memory allocation is
limited by the socket buffer limits, not by the system memory.
[i] ENOTSOCK - The descriptor references a file, not a socket.
[I] EOPNOTSUPP - The referenced socket is not of type SOCK_STREAM.
[ ] EPROTO - Protocol error.
*
*/
err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newpcb, err_t err)
{
fprintf(stderr, "nc_accept()\n");
Larg *l = (Larg*)arg;
TcpConnection *conn = l->conn;
NetconEthernetTap *tap = l->tap;
int larg_fd = tap->_phy.getDescriptor(conn->dataSock);
if(conn) {
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
l->tap->send_return_value(conn, -1, errno);
return ERR_MEM;
}
}
TcpConnection *new_tcp_conn = new TcpConnection();
new_tcp_conn->dataSock = tap->_phy.wrapSocket(fds[0], new_tcp_conn);
new_tcp_conn->rpcSock = conn->rpcSock;
new_tcp_conn->pcb = newpcb;
new_tcp_conn->their_fd = fds[1];
tap->tcp_connections.push_back(new_tcp_conn);
int send_fd = tap->_phy.getDescriptor(conn->rpcSock);
int n = write(larg_fd, "z", 1); // accept() in library waits for this byte
if(n > 0) {
if(sock_fd_write(send_fd, fds[1]) > 0) {
new_tcp_conn->pending = true;
}
else {
fprintf(stderr, "nc_accept(%d): unable to send fd to client\n", larg_fd);
}
}
else {
fprintf(stderr, "nc_accept(%d): error writing signal byte (send_fd = %d, perceived_fd = %d)\n", larg_fd, send_fd, fds[1]);
return -1;
}
tap->lwipstack->_tcp_arg(newpcb, new Larg(tap, new_tcp_conn));
tap->lwipstack->_tcp_recv(newpcb, nc_recved);
tap->lwipstack->_tcp_err(newpcb, nc_err);
tap->lwipstack->_tcp_sent(newpcb, nc_sent);
tap->lwipstack->_tcp_poll(newpcb, nc_poll, 0.5);
tcp_accepted(conn->pcb); // Let lwIP know that it can queue additional incoming connections
return ERR_OK;
}
else {
fprintf(stderr, "nc_accept(%d): can't locate Connection object for PCB.\n", larg_fd);
}
return -1;
}
/*
* Callback from LWIP for when data is available to be read from the network.
*
* Data is in the form of a linked list of struct pbufs, it is then recombined and
* send to the client over the associated unix socket.
*
* @param associated service state object
* @param allocated PCB
* @param chain of pbufs
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err)
{
fprintf(stderr, "nc_recved()\n");
Larg *l = (Larg*)arg;
int n;
struct pbuf* q = p;
if(!l->conn) {
fprintf(stderr, "nc_recved(): no connection object\n");
return ERR_OK; // ?
}
if(p == NULL) {
if(l->conn) {
fprintf(stderr, "nc_recved(): closing connection\n");
l->tap->closeConnection(l->conn);
}
else {
fprintf(stderr, "nc_recved(): can't locate connection via (arg)\n");
}
return err;
}
q = p;
while(p != NULL) { // Cycle through pbufs and write them to the socket
if(p->len <= 0)
break; // ?
if((n = l->tap->_phy.streamSend(l->conn->dataSock,p->payload, p->len)) > 0) {
if(n < p->len) {
fprintf(stderr, "nc_recved(): unable to write entire pbuf to buffer\n");
}
l->tap->lwipstack->_tcp_recved(tpcb, n); // TODO: would it be more efficient to call this once at the end?
}
else {
fprintf(stderr, "nc_recved(): No data written to intercept buffer\n");
}
p = p->next;
}
l->tap->lwipstack->_pbuf_free(q); // free pbufs
return ERR_OK;
}
/*
* Callback from LWIP when an internal error is associtated with the given (arg)
*
* Since the PCB related to this error might no longer exist, only its perviously
* associated (arg) is provided to us.
*
* @param associated service state object
* @param error code
*
*/
void NetconEthernetTap::nc_err(void *arg, err_t err)
{
Larg *l = (Larg*)arg;
//fprintf(stderr, "larg = %x, nc_err() = %d\n", l, err);
if(!l->conn)
fprintf(stderr, "nc_err(): Connection is NULL!\n");
if(l->conn) {
switch(err)
{
// FIXME: Check if connection is pending first?
case ERR_MEM:
fprintf(stderr, "nc_err(): ERR_MEM->ENOMEM\n");
l->tap->send_return_value(l->conn, -1, ENOMEM);
break;
case ERR_BUF:
fprintf(stderr, "nc_err(): ERR_BUF->ENOBUFS\n");
l->tap->send_return_value(l->conn, -1, ENOBUFS);
break;
case ERR_TIMEOUT:
fprintf(stderr, "nc_err(): ERR_TIMEOUT->ETIMEDOUT\n");
l->tap->send_return_value(l->conn, -1, ETIMEDOUT);
break;
case ERR_RTE:
fprintf(stderr, "nc_err(): ERR_RTE->ENETUNREACH\n");
l->tap->send_return_value(l->conn, -1, ENETUNREACH);
break;
case ERR_INPROGRESS:
fprintf(stderr, "nc_err(): ERR_INPROGRESS->EINPROGRESS\n");
l->tap->send_return_value(l->conn, -1, EINPROGRESS);
break;
case ERR_VAL:
fprintf(stderr, "nc_err(): ERR_VAL->EINVAL\n");
l->tap->send_return_value(l->conn, -1, EINVAL);
break;
case ERR_WOULDBLOCK:
fprintf(stderr, "nc_err(): ERR_WOULDBLOCK->EWOULDBLOCK\n");
l->tap->send_return_value(l->conn, -1, EWOULDBLOCK);
break;
case ERR_USE:
fprintf(stderr, "nc_err(): ERR_USE->EADDRINUSE\n");
l->tap->send_return_value(l->conn, -1, EADDRINUSE);
break;
case ERR_ISCONN:
fprintf(stderr, "nc_err(): ERR_ISCONN->EISCONN\n");
l->tap->send_return_value(l->conn, -1, EISCONN);
break;
case ERR_ABRT:
fprintf(stderr, "nc_err(): ERR_ABRT->ECONNREFUSED\n");
l->tap->send_return_value(l->conn, -1, ECONNREFUSED);
break;
// FIXME: Below are errors which don't have a standard errno correlate
case ERR_RST:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_CLSD:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_CONN:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_ARG:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_IF:
l->tap->send_return_value(l->conn, -1, -1);
break;
default:
break;
}
fprintf(stderr, "nc_err(): closing connection\n");
l->tap->closeConnection(l->conn);
}
else {
fprintf(stderr, "nc_err(): can't locate connection object for PCB\n");
}
}
/*
* Callback from LWIP to do whatever work we might need to do.
*
* @param associated service state object
* @param PCB we're polling on
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *tpcb)
{
/*
Larg *l = (Larg*)arg;
TcpConnection *conn = l->conn;
NetconEthernetTap *tap = l->tap;
if(conn && conn->idx) // if valid connection and non-zero index (indicating data present)
tap->handle_write(conn);
*/
return ERR_OK;
}
/*
* Callback from LWIP to signal that 'len' bytes have successfully been sent.
* As a result, we should put our socket back into a notify-on-readability state
* since there is now room on the PCB buffer to write to.
*
* NOTE: This could be used to track the amount of data sent by a connection.
*
* @param associated service state object
* @param relevant PCB
* @param length of data sent
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *tpcb, u16_t len)
{
Larg *l = (Larg*)arg;
if(len) {
//fprintf(stderr, "ACKING len = %d, setting read-notify = true, (sndbuf = %d)\n", len, l->conn->pcb->snd_buf);
l->tap->_phy.setNotifyReadable(l->conn->dataSock, true);
//uint64_t now = OSUtils::now();
//fprintf(stderr, "nc_sent(): now = %u\n", now);
l->tap->_phy.whack();
}
return ERR_OK;
}
/*
* Callback from LWIP which sends a return value to the client to signal that
* a connection was established for this PCB
*
* @param associated service state object
* @param relevant PCB
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *tpcb, err_t err)
{
Larg *l = (Larg*)arg;
l->tap->send_return_value(l->conn, ERR_OK);
return ERR_OK;
}
/*------------------------------------------------------------------------------
----------------------------- RPC Handler functions ----------------------------
------------------------------------------------------------------------------*/
/**
* Handles a return value (client's perceived fd) and completes a mapping
* so that we know what connection an RPC call should be associated with.
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_retval(PhySocket *sock, void **uptr, unsigned char* buf)
{
TcpConnection *conn = (TcpConnection*)*uptr;
if(conn->pending) {
memcpy(&(conn->perceived_fd), &buf[1], sizeof(int));
//fprintf(stderr, "handle_retval(): Mapping [our=%d -> their=%d]\n",
//_phy.getDescriptor(conn->dataSock), conn->perceived_fd);
conn->pending = false;
}
}
/*
* Handles an RPC to bind an LWIP PCB to a given address and port
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
[ ] EACCES - The address is protected, and the user is not the superuser.
[X] EADDRINUSE - The given address is already in use.
[X] EBADF - sockfd is not a valid descriptor.
[X] EINVAL - The socket is already bound to an address.
[i] ENOTSOCK - sockfd is a descriptor for a file, not a socket.
[-] The following errors are specific to UNIX domain (AF_UNIX) sockets:
[-] EACCES - Search permission is denied on a component of the path prefix. (See also path_resolution(7).)
[-] EADDRNOTAVAIL - A nonexistent interface was requested or the requested address was not local.
[-] EFAULT - addr points outside the user's accessible address space.
[-] EINVAL - The addrlen is wrong, or the socket was not in the AF_UNIX family.
[-] ELOOP - Too many symbolic links were encountered in resolving addr.
[-] ENAMETOOLONG - s addr is too long.
[-] ENOENT - The file does not exist.
[X] ENOMEM - Insufficient kernel memory was available.
[-] ENOTDIR - A component of the path prefix is not a directory.
[-] EROFS - The socket inode would reside on a read-only file system.
*/
void NetconEthernetTap::handle_bind(PhySocket *sock, void **uptr, struct bind_st *bind_rpc)
{
struct sockaddr_in *connaddr;
connaddr = (struct sockaddr_in *) &bind_rpc->addr;
int conn_port = lwipstack->ntohs(connaddr->sin_port);
ip_addr_t conn_addr;
conn_addr.addr = *((u32_t *)_ips[0].rawIpData());
TcpConnection *conn = getConnectionByTheirFD(sock, bind_rpc->sockfd);
if(conn) {
if(conn->pcb->state == CLOSED){
int err = lwipstack->tcp_bind(conn->pcb, &conn_addr, conn_port);
if(err != ERR_OK) {
int ip = connaddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
fprintf(stderr, "handle_bind(): error binding to %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], conn_port);
if(err == ERR_USE)
send_return_value(conn, -1, EADDRINUSE);
if(err == ERR_MEM)
send_return_value(conn, -1, ENOMEM); // FIXME: Likely won't happen
if(err == ERR_BUF)
send_return_value(conn, -1, ENOMEM);
}
else {
send_return_value(conn, ERR_OK, ERR_OK); // Success
}
}
else {
fprintf(stderr, "handle_bind(): PCB not in CLOSED state. Ignoring BIND request.\n");
send_return_value(conn, -1, EINVAL);
}
}
//else {
// fprintf(stderr, "handle_bind(): can't locate connection for PCB\n");
// send_return_value(conn, -1, EBADF); // FIXME: This makes no sense
//}
}
/*
* Handles an RPC to put an LWIP PCB into LISTEN mode
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
[?] EADDRINUSE - Another socket is already listening on the same port.
[X] EBADF - The argument sockfd is not a valid descriptor.
[i] ENOTSOCK - The argument sockfd is not a socket.
[i] EOPNOTSUPP - The socket is not of a type that supports the listen() operation.
*/
void NetconEthernetTap::handle_listen(PhySocket *sock, void **uptr, struct listen_st *listen_rpc)
{
TcpConnection *conn = getConnectionByTheirFD(sock, listen_rpc->sockfd);
if(conn) {
if(conn->pcb->state == LISTEN) {
fprintf(stderr, "handle_listen(): PCB is already in listening state.\n");
return;
}
struct tcp_pcb* listening_pcb = lwipstack->tcp_listen(conn->pcb);
if(listening_pcb != NULL) {
conn->pcb = listening_pcb;
lwipstack->tcp_accept(listening_pcb, nc_accept);
lwipstack->tcp_arg(listening_pcb, new Larg(this, conn));
/* we need to wait for the client to send us the fd allocated on their end
for this listening socket */
conn->pending = true;
send_return_value(conn, ERR_OK, ERR_OK);
}
else {
fprintf(stderr, "handle_listen(): unable to allocate memory for new listening PCB\n");
send_return_value(conn, -1, ENOMEM); // FIXME: This does not have an equivalent errno value
}
}
else {
// We can't find a connection mapped to the socket fd provided
fprintf(stderr, "handle_listen(): can't locate connection for PCB\n");
send_return_value(conn, -1, EBADF);
}
}
/*
* Handles an RPC to create a socket (LWIP PCB and associated socketpair)
*
* A socketpair is created, one end is kept and wrapped into a PhySocket object
* for use in the main ZT I/O loop, and one end is sent to the client. The client
* is then required to tell the service what new file descriptor it has allocated
* for this connection. After the mapping is complete, the socket can be used.
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
TODO: set errno appropriately
[-] EACCES - Permission to create a socket of the specified type and/or protocol is denied.
[?] EAFNOSUPPORT - The implementation does not support the specified address family.
[?] EINVAL - Unknown protocol, or protocol family not available.
[?] EINVAL - Invalid flags in type.
[i] EMFILE - Process file table overflow.
[i] ENFILE - The system limit on the total number of open files has been reached.
[X] ENOBUFS or ENOMEM - Insufficient memory is available. The socket cannot be created until sufficient resources are freed.
[?] EPROTONOSUPPORT - The protocol type or the specified protocol is not supported within this domain.
*/
void NetconEthernetTap::handle_socket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
struct tcp_pcb *newpcb = lwipstack->tcp_new();
if(newpcb != NULL) {
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
send_return_value(_phy.getDescriptor(sock), -1, errno);
return;
}
}
TcpConnection *new_conn = new TcpConnection();
new_conn->dataSock = _phy.wrapSocket(fds[0], new_conn);
*uptr = new_conn;
new_conn->rpcSock = sock;
new_conn->pcb = newpcb;
new_conn->their_fd = fds[1];
tcp_connections.push_back(new_conn);
sock_fd_write(_phy.getDescriptor(sock), fds[1]);
// Once the client tells us what its fd is for the other end, we can then complete the mapping
new_conn->pending = true;
}
else {
int rpc_fd = _phy.getDescriptor(sock);
sock_fd_write(rpc_fd, -1); // Send a bad fd, to signal error
fprintf(stderr, "handle_socket(): Memory not available for new PCB\n");
if(send_return_value(rpc_fd, -1, ENOMEM) < 0) {
fprintf(stderr, "handle_socket(): Unable to send return value\n");
}
}
}
/*
* Handles an RPC to connect to a given address and port
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
--- Error handling in this method will only catch problems which are immeidately
apprent. Some errors will need to be caught in the nc_connected(0 callback
[i] EACCES - For UNIX domain sockets, which are identified by pathname: Write permission is denied ...
[ ] EACCES, EPERM - The user tried to connect to a broadcast address without having the socket broadcast flag enabled ...
[i] EADDRINUSE - Local address is already in use.
[?] EAFNOSUPPORT - The passed address didn't have the correct address family in its sa_family field.
[ ] EAGAIN - No more free local ports or insufficient entries in the routing cache.
[ ] EALREADY - The socket is nonblocking and a previous connection attempt has not yet been completed.
[ ] EBADF - The file descriptor is not a valid index in the descriptor table.
[ ] ECONNREFUSED - No-one listening on the remote address.
[i] EFAULT - The socket structure address is outside the user's address space.
[ ] EINPROGRESS - The socket is nonblocking and the connection cannot be completed immediately.
[?] EINTR - The system call was interrupted by a signal that was caught.
[X] EISCONN - The socket is already connected.
[?] ENETUNREACH - Network is unreachable.
[ ] ENOTSOCK - The file descriptor is not associated with a socket.
[X] ETIMEDOUT - Timeout while attempting connection.
*
*/
void NetconEthernetTap::handle_connect(PhySocket *sock, void **uptr, struct connect_st* connect_rpc)
{
TcpConnection *conn = (TcpConnection*)*uptr;
struct sockaddr_in *connaddr;
connaddr = (struct sockaddr_in *) &connect_rpc->__addr;
int conn_port = lwipstack->ntohs(connaddr->sin_port);
ip_addr_t conn_addr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr);
if(conn != NULL) {
lwipstack->tcp_sent(conn->pcb, nc_sent); // FIXME: Move?
lwipstack->tcp_recv(conn->pcb, nc_recved);
lwipstack->tcp_err(conn->pcb, nc_err);
lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->tcp_arg(conn->pcb, new Larg(this, conn));
int err = 0;
if((err = lwipstack->tcp_connect(conn->pcb,&conn_addr,conn_port, nc_connected)) < 0)
{
if(err == ERR_USE) {
send_return_value(conn, -1, EISCONN); // Already in use
return;
}
if(err == ERR_VAL) {
send_return_value(conn, -1, EAFNOSUPPORT); // FIXME: Invalid arguments?
return;
}
if(err == ERR_RTE) {
send_return_value(conn, -1, ENETUNREACH); // FIXME: Host unreachable
return;
}
if(err == ERR_BUF)
{
// FIXME
}
if(err == ERR_MEM)
{
// FIXME: return value originates from tcp_enqueue_flags()
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
fprintf(stderr, "handle_connect(): unable to connect\n");
send_return_value(conn, -1, err); // FIXME: Only catch unhandled errors
}
// Everything seems to be ok, but we don't have enough info to retval
conn->pending=true;
}
else {
fprintf(stderr, "could not locate PCB based on their fd\n");
}
}
void NetconEthernetTap::handle_write(TcpConnection *conn)
{
float max = (float)TCP_SND_BUF;
int r;
if(!conn) {
fprintf(stderr, "handle_write(): could not locate connection for this fd\n");
return;
}
if(conn->idx < max) {
int sndbuf = conn->pcb->snd_buf; // How much we are currently allowed to write to the connection
/* PCB send buffer is full,turn off readability notifications for the
corresponding PhySocket until nc_sent() is called and confirms that there is
now space on the buffer */
if(sndbuf == 0) {
_phy.setNotifyReadable(conn->dataSock, false);
lwipstack->_tcp_output(conn->pcb);
return;
}
int read_fd = _phy.getDescriptor(conn->dataSock);
if((r = read(read_fd, (&conn->buf)+conn->idx, sndbuf)) > 0) {
conn->idx += r;
/* Writes data pulled from the client's socket buffer to LWIP. This merely sends the
* data to LWIP to be enqueued and eventually sent to the network. */
if(r > 0) {
int sz;
// NOTE: this assumes that lwipstack->_lock is locked, either
// because we are in a callback or have locked it manually.
int err = lwipstack->_tcp_write(conn->pcb, &conn->buf, r, TCP_WRITE_FLAG_COPY);
if(err != ERR_OK) {
fprintf(stderr, "handle_write(): error while writing to PCB\n");
return;
}
else {
sz = (conn->idx)-r;
if(sz) {
memmove(&conn->buf, (conn->buf+r), sz);
}
conn->idx -= r;
return;
}
}
else {
fprintf(stderr, "handle_write(): LWIP stack full\n");
return;
}
}
}
}
} // namespace ZeroTier
#endif // ZT_ENABLE_NETCON