/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include #include #include #include #include "../include/ZeroTierDebug.h" #include "Constants.hpp" #include "Network.hpp" #include "RuntimeEnvironment.hpp" #include "MAC.hpp" #include "Address.hpp" #include "InetAddress.hpp" #include "Switch.hpp" #include "Buffer.hpp" #include "Packet.hpp" #include "NetworkController.hpp" #include "Node.hpp" #include "Peer.hpp" #include "Trace.hpp" #include namespace ZeroTier { namespace { // Returns true if packet appears valid; pos and proto will be set static bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int &pos,unsigned int &proto) { if (frameLen < 40) return false; pos = 40; proto = frameData[6]; while (pos <= frameLen) { switch(proto) { case 0: // hop-by-hop options case 43: // routing case 60: // destination options case 135: // mobility options if ((pos + 8) > frameLen) return false; // invalid! proto = frameData[pos]; pos += ((unsigned int)frameData[pos + 1] * 8) + 8; break; //case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway //case 50: //case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff default: return true; } } return false; // overflow == invalid } enum _doZtFilterResult { DOZTFILTER_NO_MATCH, DOZTFILTER_DROP, DOZTFILTER_REDIRECT, DOZTFILTER_ACCEPT, DOZTFILTER_SUPER_ACCEPT }; static _doZtFilterResult _doZtFilter( const RuntimeEnvironment *RR, Trace::RuleResultLog &rrl, const NetworkConfig &nconf, const Membership *membership, // can be NULL const bool inbound, const Address &ztSource, Address &ztDest, // MUTABLE -- is changed on REDIRECT actions const MAC &macSource, const MAC &macDest, const uint8_t *const frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId, const ZT_VirtualNetworkRule *rules, // cannot be NULL const unsigned int ruleCount, Address &cc, // MUTABLE -- set to TEE destination if TEE action is taken or left alone otherwise unsigned int &ccLength, // MUTABLE -- set to length of packet payload to TEE bool &ccWatch, // MUTABLE -- set to true for WATCH target as opposed to normal TEE uint8_t &qosBucket) // MUTABLE -- set to the value of the argument provided to PRIORITY { // Set to true if we are a TEE/REDIRECT/WATCH target bool superAccept = false; // The default match state for each set of entries starts as 'true' since an // ACTION with no MATCH entries preceding it is always taken. uint8_t thisSetMatches = 1; rrl.clear(); for(unsigned int rn=0;rn= 0 || rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority) return DOZTFILTER_ACCEPT; case ZT_NETWORK_RULE_ACTION_DROP: return DOZTFILTER_DROP; case ZT_NETWORK_RULE_ACTION_ACCEPT: return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet // These are initially handled together since preliminary logic is common case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: { const Address fwdAddr(rules[rn].v.fwd.address); if (fwdAddr == ztSource) { // Skip as no-op since source is target } else if (fwdAddr == RR->identity.address()) { if (inbound) { return DOZTFILTER_SUPER_ACCEPT; } else { } } else if (fwdAddr == ztDest) { } else { if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) { ztDest = fwdAddr; return DOZTFILTER_REDIRECT; } else { cc = fwdAddr; ccLength = (rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen; ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH); } } } continue; case ZT_NETWORK_RULE_ACTION_BREAK: return DOZTFILTER_NO_MATCH; // Unrecognized ACTIONs are ignored as no-ops default: continue; } } else { // If this is an incoming packet and we are a TEE or REDIRECT target, we should // super-accept if we accept at all. This will cause us to accept redirected or // tee'd packets in spite of MAC and ZT addressing checks. if (inbound) { switch(rt) { case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: if (RR->identity.address() == rules[rn].v.fwd.address) superAccept = true; break; default: break; } } thisSetMatches = 1; // reset to default true for next batch of entries continue; } } // Circuit breaker: no need to evaluate an AND if the set's match state // is currently false since anything AND false is false. if ((!thisSetMatches)&&(!(rules[rn].t & 0x40))) { rrl.logSkipped(rn,thisSetMatches); continue; } // If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result]) uint8_t thisRuleMatches = 0; uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed switch(rt) { case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt()); break; case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt()); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: // NOT SUPPORTED YET thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0); break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: // NOT SUPPORTED YET thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac,6) == macSource); break; case ZT_NETWORK_RULE_MATCH_MAC_DEST: thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac,6) == macDest); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12),4,0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IPV4_DEST: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16),4,0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8),16,0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IPV6_DEST: if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24),16,0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IP_TOS: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask; thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1])); } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { const uint8_t tosMasked = (((frameData[0] << 4) & 0xf0) | ((frameData[1] >> 4) & 0x0f)) & rules[rn].v.ipTos.mask; thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1])); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto); } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType); break; case ZT_NETWORK_RULE_MATCH_ICMP: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if (frameData[9] == 0x01) { // IP protocol == ICMP const unsigned int ihl = (frameData[0] & 0xf) * 4; if (frameLen >= (ihl + 2)) { if (rules[rn].v.icmp.type == frameData[ihl]) { if ((rules[rn].v.icmp.flags & 0x01) != 0) { thisRuleMatches = (uint8_t)(frameData[ihl+1] == rules[rn].v.icmp.code); } else { thisRuleMatches = 1; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if ((proto == 0x3a)&&(frameLen >= (pos+2))) { if (rules[rn].v.icmp.type == frameData[pos]) { if ((rules[rn].v.icmp.flags & 0x01) != 0) { thisRuleMatches = (uint8_t)(frameData[pos+1] == rules[rn].v.icmp.code); } else { thisRuleMatches = 1; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { const unsigned int headerLen = 4 * (frameData[0] & 0xf); int p = -1; switch(frameData[9]) { // IP protocol number // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (headerLen + 4)) { unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0); p = (int)frameData[pos++] << 8; p |= (int)frameData[pos]; } break; } thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0; } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { int p = -1; switch(proto) { // IP protocol number // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (pos + 4)) { if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) pos += 2; p = (int)frameData[pos++] << 8; p |= (int)frameData[pos]; } break; } thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0; } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: { uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL; if (macDest.isMulticast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST; if (macDest.isBroadcast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST; if (ownershipVerificationMask == 1) { ownershipVerificationMask = 0; InetAddress src; if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { src.set((const void *)(frameData + 12),4,0); } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { // IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local. if ( (frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87)||(frameData[40] == 0x88)) ) { if (frameData[40] == 0x87) { // Neighbor solicitations contain no reliable source address, so we implement a small // hack by considering them authenticated. Otherwise you would pretty much have to do // this manually in the rule set for IPv6 to work at all. ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; } else { // Neighbor advertisements on the other hand can absolutely be authenticated. src.set((const void *)(frameData + 40 + 8),16,0); } } else { // Other IPv6 packets can be handled normally src.set((const void *)(frameData + 8),16,0); } } else if ((etherType == ZT_ETHERTYPE_ARP)&&(frameLen >= 28)) { src.set((const void *)(frameData + 14),4,0); } if (inbound) { if (membership) { if ((src)&&(membership->peerOwnsAddress(nconf,src))) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; if (membership->peerOwnsAddress(nconf,macSource)) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED; } } else { for(unsigned int i=0;i= 20)&&(frameData[9] == 0x06)) { const unsigned int headerLen = 4 * (frameData[0] & 0xf); cf |= (uint64_t)frameData[headerLen + 13]; cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0f)) << 8); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if ((proto == 0x06)&&(frameLen > (pos + 14))) { cf |= (uint64_t)frameData[pos + 13]; cf |= (((uint64_t)(frameData[pos + 12] & 0x0f)) << 8); } } } thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0); } break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0])&&(frameLen <= (unsigned int)rules[rn].v.frameSize[1])); break; case ZT_NETWORK_RULE_MATCH_RANDOM: thisRuleMatches = (uint8_t)((uint32_t)(RR->node->prng() & 0xffffffffULL) <= rules[rn].v.randomProbability); break; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: { const Tag *const localTag = std::lower_bound(&(nconf.tags[0]),&(nconf.tags[nconf.tagCount]),rules[rn].v.tag.id,Tag::IdComparePredicate()); if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) { const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0); if (remoteTag) { const uint32_t ltv = localTag->value(); const uint32_t rtv = remoteTag->value(); if (rt == ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE) { const uint32_t diff = (ltv > rtv) ? (ltv - rtv) : (rtv - ltv); thisRuleMatches = (uint8_t)(diff <= rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) { thisRuleMatches = (uint8_t)((ltv & rtv) == rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) { thisRuleMatches = (uint8_t)((ltv | rtv) == rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) { thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) { thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value)&&(rtv == rules[rn].v.tag.value)); } else { // sanity check, can't really happen thisRuleMatches = 0; } } else { if ((inbound)&&(!superAccept)) { thisRuleMatches = 0; } else { // Outbound side is not strict since if we have to match both tags and // we are sending a first packet to a recipient, we probably do not know // about their tags yet. They will filter on inbound and we will filter // once we get their tag. If we are a tee/redirect target we are also // not strict since we likely do not have these tags. thisRuleMatches = 1; } } } else { thisRuleMatches = 0; } } break; case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: { if (superAccept) { thisRuleMatches = 1; } else if ( ((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER)&&(inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER)&&(!inbound)) ) { const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0); if (remoteTag) { thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value); } else { if (rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) { // If we are checking the receiver and this is an outbound packet, we // can't be strict since we may not yet know the receiver's tag. thisRuleMatches = 1; } else { thisRuleMatches = 0; } } } else { // sender and outbound or receiver and inbound const Tag *const localTag = std::lower_bound(&(nconf.tags[0]),&(nconf.tags[nconf.tagCount]),rules[rn].v.tag.id,Tag::IdComparePredicate()); if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) { thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value); } else { thisRuleMatches = 0; } } } break; case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: { uint64_t integer = 0; const unsigned int bits = (rules[rn].v.intRange.format & 63) + 1; const unsigned int bytes = ((bits + 8 - 1) / 8); // integer ceiling of division by 8 if ((rules[rn].v.intRange.format & 0x80) == 0) { // Big-endian unsigned int idx = rules[rn].v.intRange.idx + (8 - bytes); const unsigned int eof = idx + bytes; if (eof <= frameLen) { while (idx < eof) { integer <<= 8; integer |= frameData[idx++]; } } integer &= 0xffffffffffffffffULL >> (64 - bits); } else { // Little-endian unsigned int idx = rules[rn].v.intRange.idx; const unsigned int eof = idx + bytes; if (eof <= frameLen) { while (idx < eof) { integer >>= 8; integer |= ((uint64_t)frameData[idx++]) << 56; } } integer >>= (64 - bits); } thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start)&&(integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end))); } break; // The result of an unsupported MATCH is configurable at the network // level via a flag. default: thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0); break; } rrl.log(rn,thisRuleMatches,thisSetMatches); if ((rules[rn].t & 0x40)) thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1)); else thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1)); } return DOZTFILTER_NO_MATCH; } } // anonymous namespace const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL),0); Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,void *uptr,const NetworkConfig *nconf) : RR(renv), _uPtr(uptr), _id(nwid), _lastAnnouncedMulticastGroupsUpstream(0), _mac(renv->identity.address(),nwid), _portInitialized(false), _lastConfigUpdate(0), _destroyed(false), _netconfFailure(NETCONF_FAILURE_NONE), _portError(0) { for(int i=0;isetConfiguration(tPtr,*nconf,false); _lastConfigUpdate = 0; // still want to re-request since it's likely outdated } else { uint64_t tmp[2]; tmp[0] = nwid; tmp[1] = 0; bool got = false; Dictionary *dict = new Dictionary(); try { int n = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,dict->unsafeData(),ZT_NETWORKCONFIG_DICT_CAPACITY - 1); if (n > 1) { NetworkConfig *nconf = new NetworkConfig(); try { if (nconf->fromDictionary(*dict)) { this->setConfiguration(tPtr,*nconf,false); _lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated got = true; } } catch ( ... ) {} delete nconf; } } catch ( ... ) {} delete dict; if (!got) RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,"\n",1); } if (!_portInitialized) { ZT_VirtualNetworkConfig ctmp; _externalConfig(&ctmp); _portError = RR->node->configureVirtualNetworkPort(tPtr,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP,&ctmp); _portInitialized = true; } } Network::~Network() { ZT_VirtualNetworkConfig ctmp; _externalConfig(&ctmp); if (_destroyed) { // This is done in Node::leave() so we can pass tPtr properly //RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp); } else { RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN,&ctmp); } } bool Network::filterOutgoingPacket( void *tPtr, const bool noTee, const Address &ztSource, const Address &ztDest, const MAC &macSource, const MAC &macDest, const uint8_t *frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId, uint8_t &qosBucket) { Address ztFinalDest(ztDest); int localCapabilityIndex = -1; int accept = 0; Trace::RuleResultLog rrl,crrl; Address cc; unsigned int ccLength = 0; bool ccWatch = false; Mutex::Lock _l(_lock); Membership *const membership = (ztDest) ? _memberships.get(ztDest) : (Membership *)0; switch(_doZtFilter(RR,rrl,_config,membership,false,ztSource,ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.rules,_config.ruleCount,cc,ccLength,ccWatch,qosBucket)) { case DOZTFILTER_NO_MATCH: { for(unsigned int c=0;c<_config.capabilityCount;++c) { ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match Address cc2; unsigned int ccLength2 = 0; bool ccWatch2 = false; switch (_doZtFilter(RR,crrl,_config,membership,false,ztSource,ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.capabilities[c].rules(),_config.capabilities[c].ruleCount(),cc2,ccLength2,ccWatch2,qosBucket)) { case DOZTFILTER_NO_MATCH: case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern break; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side in capabilities localCapabilityIndex = (int)c; accept = 1; if ((!noTee)&&(cc2)) { Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch2 ? 0x16 : 0x02)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength2); outp.compress(); RR->sw->send(tPtr,outp,true); } break; } if (accept) break; } } break; case DOZTFILTER_DROP: if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(Trace::RuleResultLog *)0,(Capability *)0,ztSource,ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,noTee,false,0); return false; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; break; } if (accept) { if ((!noTee)&&(cc)) { Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch ? 0x16 : 0x02)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength); outp.compress(); RR->sw->send(tPtr,outp,true); } if ((ztDest != ztFinalDest)&&(ztFinalDest)) { Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)0x04); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,frameLen); outp.compress(); RR->sw->send(tPtr,outp,true); if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(localCapabilityIndex >= 0) ? &crrl : (Trace::RuleResultLog *)0,(localCapabilityIndex >= 0) ? &(_config.capabilities[localCapabilityIndex]) : (Capability *)0,ztSource,ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,noTee,false,0); return false; // DROP locally, since we redirected } else { if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(localCapabilityIndex >= 0) ? &crrl : (Trace::RuleResultLog *)0,(localCapabilityIndex >= 0) ? &(_config.capabilities[localCapabilityIndex]) : (Capability *)0,ztSource,ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,noTee,false,1); return true; } } else { if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(localCapabilityIndex >= 0) ? &crrl : (Trace::RuleResultLog *)0,(localCapabilityIndex >= 0) ? &(_config.capabilities[localCapabilityIndex]) : (Capability *)0,ztSource,ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,noTee,false,0); return false; } } int Network::filterIncomingPacket( void *tPtr, const SharedPtr &sourcePeer, const Address &ztDest, const MAC &macSource, const MAC &macDest, const uint8_t *frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId) { Address ztFinalDest(ztDest); Trace::RuleResultLog rrl,crrl; int accept = 0; Address cc; unsigned int ccLength = 0; bool ccWatch = false; const Capability *c = (Capability *)0; uint8_t qosBucket = 255; // For incoming packets this is a dummy value Mutex::Lock _l(_lock); Membership &membership = _memberships[sourcePeer->address()]; switch (_doZtFilter(RR,rrl,_config,&membership,true,sourcePeer->address(),ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.rules,_config.ruleCount,cc,ccLength,ccWatch,qosBucket)) { case DOZTFILTER_NO_MATCH: { Membership::CapabilityIterator mci(membership,_config); while ((c = mci.next())) { ztFinalDest = ztDest; // sanity check, should be unmodified if there was no match Address cc2; unsigned int ccLength2 = 0; bool ccWatch2 = false; switch(_doZtFilter(RR,crrl,_config,&membership,true,sourcePeer->address(),ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,c->rules(),c->ruleCount(),cc2,ccLength2,ccWatch2,qosBucket)) { case DOZTFILTER_NO_MATCH: case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern break; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; // ACCEPT break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; // super-ACCEPT break; } if (accept) { if (cc2) { Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch2 ? 0x1c : 0x08)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength2); outp.compress(); RR->sw->send(tPtr,outp,true); } break; } } } break; case DOZTFILTER_DROP: if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(Trace::RuleResultLog *)0,(Capability *)0,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0); return 0; // DROP case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; // ACCEPT break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; // super-ACCEPT break; } if (accept) { if (cc) { Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch ? 0x1c : 0x08)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength); outp.compress(); RR->sw->send(tPtr,outp,true); } if ((ztDest != ztFinalDest)&&(ztFinalDest)) { Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)0x0a); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,frameLen); outp.compress(); RR->sw->send(tPtr,outp,true); if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0); return 0; // DROP locally, since we redirected } } if (_config.remoteTraceTarget) RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,accept); return accept; } uint64_t Network::handleConfigChunk(void *tPtr,const uint64_t packetId,const Address &source,const Buffer &chunk,unsigned int ptr) { if (_destroyed) return 0; const unsigned int start = ptr; ptr += 8; // skip network ID, which is already obviously known const unsigned int chunkLen = chunk.at(ptr); ptr += 2; const void *chunkData = chunk.field(ptr,chunkLen); ptr += chunkLen; NetworkConfig *nc = (NetworkConfig *)0; uint64_t configUpdateId; { Mutex::Lock _l(_lock); _IncomingConfigChunk *c = (_IncomingConfigChunk *)0; uint64_t chunkId = 0; unsigned long totalLength,chunkIndex; if (ptr < chunk.size()) { const bool fastPropagate = ((chunk[ptr++] & 0x01) != 0); configUpdateId = chunk.at(ptr); ptr += 8; totalLength = chunk.at(ptr); ptr += 4; chunkIndex = chunk.at(ptr); ptr += 4; if (((chunkIndex + chunkLen) > totalLength)||(totalLength >= ZT_NETWORKCONFIG_DICT_CAPACITY)) // >= since we need room for a null at the end return 0; if ((chunk[ptr] != 1)||(chunk.at(ptr + 1) != ZT_C25519_SIGNATURE_LEN)) return 0; const uint8_t *sig = reinterpret_cast(chunk.field(ptr + 3,ZT_C25519_SIGNATURE_LEN)); // We can use the signature, which is unique per chunk, to get a per-chunk ID for local deduplication use for(unsigned int i=0;i<16;++i) reinterpret_cast(&chunkId)[i & 7] ^= sig[i]; // Find existing or new slot for this update and check if this is a duplicate chunk for(int i=0;ihaveChunks;++j) { if (c->haveChunkIds[j] == chunkId) return 0; } break; } else if ((!c)||(_incomingConfigChunks[i].ts < c->ts)) { c = &(_incomingConfigChunks[i]); } } // If it's not a duplicate, check chunk signature const Identity controllerId(RR->topology->getIdentity(tPtr,controller())); if (!controllerId) // we should always have the controller identity by now, otherwise how would we have queried it the first time? return 0; if (!controllerId.verify(chunk.field(start,ptr - start),ptr - start,sig,ZT_C25519_SIGNATURE_LEN)) return 0; // New properly verified chunks can be flooded "virally" through the network if (fastPropagate) { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if ((*a != source)&&(*a != controller())) { Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CONFIG); outp.append(reinterpret_cast(chunk.data()) + start,chunk.size() - start); RR->sw->send(tPtr,outp,true); } } } } else if ((source == controller())||(!source)) { // since old chunks aren't signed, only accept from controller itself (or via cluster backplane) // Legacy support for OK(NETWORK_CONFIG_REQUEST) from older controllers chunkId = packetId; configUpdateId = chunkId; totalLength = chunkLen; chunkIndex = 0; if (totalLength >= ZT_NETWORKCONFIG_DICT_CAPACITY) return 0; for(int i=0;its)) c = &(_incomingConfigChunks[i]); } } else { // Single-chunk unsigned legacy configs are only allowed from the controller itself return 0; } ++c->ts; // newer is higher, that's all we need if (c->updateId != configUpdateId) { c->updateId = configUpdateId; c->haveChunks = 0; c->haveBytes = 0; } if (c->haveChunks >= ZT_NETWORK_MAX_UPDATE_CHUNKS) return false; c->haveChunkIds[c->haveChunks++] = chunkId; memcpy(c->data.unsafeData() + chunkIndex,chunkData,chunkLen); c->haveBytes += chunkLen; if (c->haveBytes == totalLength) { c->data.unsafeData()[c->haveBytes] = (char)0; // ensure null terminated nc = new NetworkConfig(); try { if (!nc->fromDictionary(c->data)) { delete nc; nc = (NetworkConfig *)0; } } catch ( ... ) { delete nc; nc = (NetworkConfig *)0; } } } if (nc) { this->setConfiguration(tPtr,*nc,true); delete nc; return configUpdateId; } else { return 0; } return 0; } int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToDisk) { if (_destroyed) return 0; // _lock is NOT locked when this is called try { if ((nconf.issuedTo != RR->identity.address())||(nconf.networkId != _id)) return 0; // invalid config that is not for us or not for this network if (_config == nconf) return 1; // OK config, but duplicate of what we already have ZT_VirtualNetworkConfig ctmp; bool oldPortInitialized; { // do things that require lock here, but unlock before calling callbacks Mutex::Lock _l(_lock); _config = nconf; _lastConfigUpdate = RR->node->now(); _netconfFailure = NETCONF_FAILURE_NONE; oldPortInitialized = _portInitialized; _portInitialized = true; _externalConfig(&ctmp); } _portError = RR->node->configureVirtualNetworkPort(tPtr,_id,&_uPtr,(oldPortInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP,&ctmp); if (saveToDisk) { Dictionary *const d = new Dictionary(); try { if (nconf.toDictionary(*d,false)) { uint64_t tmp[2]; tmp[0] = _id; tmp[1] = 0; RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,d->data(),d->sizeBytes()); } } catch ( ... ) {} delete d; } return 2; // OK and configuration has changed } catch ( ... ) {} // ignore invalid configs return 0; } void Network::requestConfiguration(void *tPtr) { if (_destroyed) return; if ((_id >> 56) == 0xff) { if ((_id & 0xffffff) == 0) { const uint16_t startPortRange = (uint16_t)((_id >> 40) & 0xffff); const uint16_t endPortRange = (uint16_t)((_id >> 24) & 0xffff); if (endPortRange >= startPortRange) { NetworkConfig *const nconf = new NetworkConfig(); nconf->networkId = _id; nconf->timestamp = RR->node->now(); nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA; nconf->revision = 1; nconf->issuedTo = RR->identity.address(); nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION; nconf->mtu = ZT_DEFAULT_MTU; nconf->multicastLimit = 0; nconf->staticIpCount = 1; nconf->ruleCount = 14; nconf->staticIps[0] = InetAddress::makeIpv66plane(_id,RR->identity.address().toInt()); // Drop everything but IPv6 nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE | 0x80; // NOT nconf->rules[0].v.etherType = 0x86dd; // IPv6 nconf->rules[1].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP; // Allow ICMPv6 nconf->rules[2].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL; nconf->rules[2].v.ipProtocol = 0x3a; // ICMPv6 nconf->rules[3].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Allow destination ports within range nconf->rules[4].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL; nconf->rules[4].v.ipProtocol = 0x11; // UDP nconf->rules[5].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL | 0x40; // OR nconf->rules[5].v.ipProtocol = 0x06; // TCP nconf->rules[6].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE; nconf->rules[6].v.port[0] = startPortRange; nconf->rules[6].v.port[1] = endPortRange; nconf->rules[7].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Allow non-SYN TCP packets to permit non-connection-initiating traffic nconf->rules[8].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS | 0x80; // NOT nconf->rules[8].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN; nconf->rules[9].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Also allow SYN+ACK which are replies to SYN nconf->rules[10].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS; nconf->rules[10].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN; nconf->rules[11].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS; nconf->rules[11].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_ACK; nconf->rules[12].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; nconf->rules[13].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP; nconf->type = ZT_NETWORK_TYPE_PUBLIC; nconf->name[0] = 'a'; nconf->name[1] = 'd'; nconf->name[2] = 'h'; nconf->name[3] = 'o'; nconf->name[4] = 'c'; nconf->name[5] = '-'; Utils::hex((uint16_t)startPortRange,nconf->name + 6); nconf->name[10] = '-'; Utils::hex((uint16_t)endPortRange,nconf->name + 11); nconf->name[15] = (char)0; this->setConfiguration(tPtr,*nconf,false); delete nconf; } else { this->setNotFound(); } } else if ((_id & 0xff) == 0x01) { // ffAAaaaaaaaaaa01 -- where AA is the IPv4 /8 to use and aaaaaaaaaa is the anchor node for multicast gather and replication const uint64_t myAddress = RR->identity.address().toInt(); const uint64_t networkHub = (_id >> 8) & 0xffffffffffULL; uint8_t ipv4[4]; ipv4[0] = (uint8_t)((_id >> 48) & 0xff); ipv4[1] = (uint8_t)((myAddress >> 16) & 0xff); ipv4[2] = (uint8_t)((myAddress >> 8) & 0xff); ipv4[3] = (uint8_t)(myAddress & 0xff); char v4ascii[24]; Utils::decimal(ipv4[0],v4ascii); NetworkConfig *const nconf = new NetworkConfig(); nconf->networkId = _id; nconf->timestamp = RR->node->now(); nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA; nconf->revision = 1; nconf->issuedTo = RR->identity.address(); nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION; nconf->mtu = ZT_DEFAULT_MTU; nconf->multicastLimit = 1024; nconf->specialistCount = (networkHub == 0) ? 0 : 1; nconf->staticIpCount = 2; nconf->ruleCount = 1; if (networkHub != 0) nconf->specialists[0] = networkHub; nconf->staticIps[0] = InetAddress::makeIpv66plane(_id,myAddress); nconf->staticIps[1].set(ipv4,4,8); nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; nconf->type = ZT_NETWORK_TYPE_PUBLIC; nconf->name[0] = 'a'; nconf->name[1] = 'd'; nconf->name[2] = 'h'; nconf->name[3] = 'o'; nconf->name[4] = 'c'; nconf->name[5] = '-'; unsigned long nn = 6; while ((nconf->name[nn] = v4ascii[nn - 6])) ++nn; nconf->name[nn++] = '.'; nconf->name[nn++] = '0'; nconf->name[nn++] = '.'; nconf->name[nn++] = '0'; nconf->name[nn++] = '.'; nconf->name[nn++] = '0'; nconf->name[nn++] = (char)0; this->setConfiguration(tPtr,*nconf,false); delete nconf; } return; } const Address ctrl(controller()); Dictionary rmd; rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION,(uint64_t)ZT_NETWORKCONFIG_VERSION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR,(uint64_t)ZT_VENDOR_ZEROTIER); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,(uint64_t)ZT_PROTO_VERSION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MAJOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MINOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,(uint64_t)ZEROTIER_ONE_VERSION_REVISION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES,(uint64_t)ZT_MAX_NETWORK_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES,(uint64_t)ZT_MAX_NETWORK_CAPABILITIES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES,(uint64_t)ZT_MAX_CAPABILITY_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS,(uint64_t)ZT_MAX_NETWORK_TAGS); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS,(uint64_t)0); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV,(uint64_t)ZT_RULES_ENGINE_REVISION); RR->t->networkConfigRequestSent(tPtr,*this,ctrl); if (ctrl == RR->identity.address()) { if (RR->localNetworkController) { RR->localNetworkController->request(_id,InetAddress(),0xffffffffffffffffULL,RR->identity,rmd); } else { this->setNotFound(); } return; } Packet outp(ctrl,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append((uint64_t)_id); const unsigned int rmdSize = rmd.sizeBytes(); outp.append((uint16_t)rmdSize); outp.append((const void *)rmd.data(),rmdSize); if (_config) { outp.append((uint64_t)_config.revision); outp.append((uint64_t)_config.timestamp); } else { outp.append((unsigned char)0,16); } outp.compress(); RR->node->expectReplyTo(outp.packetId()); RR->sw->send(tPtr,outp,true); } bool Network::gate(void *tPtr,const SharedPtr &peer) { const int64_t now = RR->node->now(); Mutex::Lock _l(_lock); try { if (_config) { Membership *m = _memberships.get(peer->address()); if ( (_config.isPublic()) || ((m)&&(m->isAllowedOnNetwork(_config))) ) { if (!m) m = &(_memberships[peer->address()]); if (m->multicastLikeGate(now)) _announceMulticastGroupsTo(tPtr,peer->address(),_allMulticastGroups()); return true; } } } catch ( ... ) {} return false; } bool Network::recentlyAssociatedWith(const Address &addr) { Mutex::Lock _l(_lock); const Membership *m = _memberships.get(addr); return ((m)&&(m->recentlyAssociated(RR->node->now()))); } void Network::clean() { const int64_t now = RR->node->now(); Mutex::Lock _l(_lock); if (_destroyed) return; { Hashtable< MulticastGroup,uint64_t >::Iterator i(_multicastGroupsBehindMe); MulticastGroup *mg = (MulticastGroup *)0; uint64_t *ts = (uint64_t *)0; while (i.next(mg,ts)) { if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2)) _multicastGroupsBehindMe.erase(*mg); } } { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { m->clean(now,_config); } } } void Network::learnBridgeRoute(const MAC &mac,const Address &addr) { Mutex::Lock _l(_lock); _remoteBridgeRoutes[mac] = addr; // Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes while (_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) { Hashtable< Address,unsigned long > counts; Address maxAddr; unsigned long maxCount = 0; MAC *m = (MAC *)0; Address *a = (Address *)0; // Find the address responsible for the most entries { Hashtable::Iterator i(_remoteBridgeRoutes); while (i.next(m,a)) { const unsigned long c = ++counts[*a]; if (c > maxCount) { maxCount = c; maxAddr = *a; } } } // Kill this address from our table, since it's most likely spamming us { Hashtable::Iterator i(_remoteBridgeRoutes); while (i.next(m,a)) { if (*a == maxAddr) _remoteBridgeRoutes.erase(*m); } } } } Membership::AddCredentialResult Network::addCredential(void *tPtr,const CertificateOfMembership &com) { if (com.networkId() != _id) return Membership::ADD_REJECTED; Mutex::Lock _l(_lock); return _memberships[com.issuedTo()].addCredential(RR,tPtr,_config,com); } Membership::AddCredentialResult Network::addCredential(void *tPtr,const Address &sentFrom,const Revocation &rev) { if (rev.networkId() != _id) return Membership::ADD_REJECTED; Mutex::Lock _l(_lock); Membership &m = _memberships[rev.target()]; const Membership::AddCredentialResult result = m.addCredential(RR,tPtr,_config,rev); if ((result == Membership::ADD_ACCEPTED_NEW)&&(rev.fastPropagate())) { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if ((*a != sentFrom)&&(*a != rev.signer())) { Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); outp.append((uint8_t)0x00); // no COM outp.append((uint16_t)0); // no capabilities outp.append((uint16_t)0); // no tags outp.append((uint16_t)1); // one revocation! rev.serialize(outp); outp.append((uint16_t)0); // no certificates of ownership RR->sw->send(tPtr,outp,true); } } } return result; } void Network::destroy() { Mutex::Lock _l(_lock); _destroyed = true; } ZT_VirtualNetworkStatus Network::_status() const { // assumes _lock is locked if (_portError) return ZT_NETWORK_STATUS_PORT_ERROR; switch(_netconfFailure) { case NETCONF_FAILURE_ACCESS_DENIED: return ZT_NETWORK_STATUS_ACCESS_DENIED; case NETCONF_FAILURE_NOT_FOUND: return ZT_NETWORK_STATUS_NOT_FOUND; case NETCONF_FAILURE_NONE: return ((_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION); default: return ZT_NETWORK_STATUS_PORT_ERROR; } } void Network::_externalConfig(ZT_VirtualNetworkConfig *ec) const { // assumes _lock is locked ec->nwid = _id; ec->mac = _mac.toInt(); if (_config) Utils::scopy(ec->name,sizeof(ec->name),_config.name); else ec->name[0] = (char)0; ec->status = _status(); ec->type = (_config) ? (_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE; ec->mtu = (_config) ? _config.mtu : ZT_DEFAULT_MTU; ec->dhcp = 0; std::vector
ab(_config.activeBridges()); ec->bridge = (std::find(ab.begin(),ab.end(),RR->identity.address()) != ab.end()) ? 1 : 0; ec->broadcastEnabled = (_config) ? (_config.enableBroadcast() ? 1 : 0) : 0; ec->portError = _portError; ec->netconfRevision = (_config) ? (unsigned long)_config.revision : 0; ec->assignedAddressCount = 0; for(unsigned int i=0;iassignedAddresses[i]),&(_config.staticIps[i]),sizeof(struct sockaddr_storage)); ++ec->assignedAddressCount; } else { memset(&(ec->assignedAddresses[i]),0,sizeof(struct sockaddr_storage)); } } ec->routeCount = 0; for(unsigned int i=0;iroutes[i]),&(_config.routes[i]),sizeof(ZT_VirtualNetworkRoute)); ++ec->routeCount; } else { memset(&(ec->routes[i]),0,sizeof(ZT_VirtualNetworkRoute)); } } ec->multicastSubscriptionCount = (unsigned int)_myMulticastGroups.size(); for(unsigned long i=0;i<(unsigned long)_myMulticastGroups.size();++i) { ec->multicastSubscriptions[i].mac = _myMulticastGroups[i].mac().toInt(); ec->multicastSubscriptions[i].adi = _myMulticastGroups[i].adi(); } } void Network::_sendUpdatesToMembers(void *tPtr) { // Assumes _lock is locked const std::vector groups(_allMulticastGroups()); _announceMulticastGroupsTo(tPtr,controller(),groups); { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if (m->isAllowedOnNetwork(_config)) _announceMulticastGroupsTo(tPtr,*a,groups); } } } void Network::_announceMulticastGroupsTo(void *tPtr,const Address &peer,const std::vector &allMulticastGroups) { // Assumes _lock is locked Packet *const outp = new Packet(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE); for(std::vector::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) { if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) { outp->compress(); RR->sw->send(tPtr,*outp,true); outp->reset(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE); } // network ID, MAC, ADI outp->append((uint64_t)_id); mg->mac().appendTo(*outp); outp->append((uint32_t)mg->adi()); } if (outp->size() > ZT_PROTO_MIN_PACKET_LENGTH) { outp->compress(); RR->sw->send(tPtr,*outp,true); } delete outp; } std::vector Network::_allMulticastGroups() const { // Assumes _lock is locked std::vector mgs; mgs.reserve(_myMulticastGroups.size() + _multicastGroupsBehindMe.size() + 1); mgs.insert(mgs.end(),_myMulticastGroups.begin(),_myMulticastGroups.end()); _multicastGroupsBehindMe.appendKeys(mgs); if ((_config)&&(_config.enableBroadcast())) mgs.push_back(Network::BROADCAST); std::sort(mgs.begin(),mgs.end()); mgs.erase(std::unique(mgs.begin(),mgs.end()),mgs.end()); return mgs; } } // namespace ZeroTier