/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_IDENTITY_HPP
#define ZT_IDENTITY_HPP
#include
#include
#include "Constants.hpp"
#include "Utils.hpp"
#include "Address.hpp"
#include "C25519.hpp"
#include "Buffer.hpp"
#include "SHA512.hpp"
#include "ECC384.hpp"
#define ZT_IDENTITY_STRING_BUFFER_LENGTH 384
namespace ZeroTier {
/**
* A ZeroTier identity
*
* An identity consists of a public key, a 40-bit ZeroTier address computed
* from that key in a collision-resistant fashion, and a self-signature.
*
* The address derivation algorithm makes it computationally very expensive to
* search for a different public key that duplicates an existing address. (See
* code for deriveAddress() for this algorithm.)
*/
class Identity
{
public:
/**
* Identity type -- numeric values of these enums are protocol constants
*/
enum Type
{
C25519 = ZT_CRYPTO_ALG_C25519, // Type 0 -- Curve25519 and Ed25519 (1.0 and 2.0, default)
P384 = ZT_CRYPTO_ALG_P384 // Type 1 -- NIST P-384 ECDH and ECDSA (2.0+ only)
};
inline Identity() { memset(reinterpret_cast(this),0,sizeof(Identity)); }
inline Identity(const Identity &id) { memcpy(reinterpret_cast(this),&id,sizeof(Identity)); }
inline Identity(const char *str)
{
if (!fromString(str))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
template
inline Identity(const Buffer &b,unsigned int startAt = 0) { deserialize(b,startAt); }
inline ~Identity() { Utils::burn(reinterpret_cast(this),sizeof(Identity)); }
inline void zero() { Utils::burn(reinterpret_cast(this),sizeof(Identity)); }
inline Identity &operator=(const Identity &id)
{
memcpy(reinterpret_cast(this),&id,sizeof(Identity));
return *this;
}
/**
* @return Identity type
*/
inline Type type() const { return _type; }
/**
* Generate a new identity (address, key pair)
*
* This is a time consuming operation.
*
* @param t Type of identity to generate
*/
void generate(const Type t);
/**
* Check the validity of this identity's pairing of key to address
*
* @return True if validation check passes
*/
bool locallyValidate() const;
/**
* @return True if this identity contains a private key
*/
inline bool hasPrivate() const { return _hasPrivate; }
/**
* Compute the SHA512 hash of our private key (if we have one)
*
* @param sha Buffer to receive SHA512 (MUST be ZT_SHA512_DIGEST_LEN (64) bytes in length)
* @return True on success, false if no private key
*/
inline bool sha512PrivateKey(void *sha) const
{
if (_hasPrivate) {
switch(_type) {
case C25519:
SHA512(sha,_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
return true;
case P384:
SHA512(sha,_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE);
return true;
}
}
return false;
}
/**
* Compute the SHA512 hash of our public key
*
* @param sha Buffer to receive hash bytes
* @return True on success, false if identity is empty or invalid
*/
inline bool sha512PublicKey(void *sha) const
{
if (_hasPrivate) {
switch(_type) {
case C25519:
SHA512(sha,_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
return true;
case P384:
SHA512(sha,_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE);
return true;
}
}
return false;
}
/**
* Sign a message with this identity (private key required)
*
* The signature buffer should be large enough for the largest
* signature, which is currently 96 bytes.
*
* @param data Data to sign
* @param len Length of data
* @param sig Buffer to receive signature
* @param siglen Length of buffer
* @return Number of bytes actually written to sig or 0 on error
*/
inline unsigned int sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
uint8_t h[48];
if (!_hasPrivate)
return 0;
switch(_type) {
case C25519:
if (siglen < ZT_C25519_SIGNATURE_LEN)
return 0;
C25519::sign(_k.t0.priv,_k.t0.pub,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
case P384:
if (siglen < ZT_ECC384_SIGNATURE_SIZE)
return 0;
SHA384(h,data,len);
ECC384ECDSASign(_k.t1.priv,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
return 0;
}
/**
* Verify a message signature against this identity
*
* @param data Data to check
* @param len Length of data
* @param signature Signature bytes
* @param siglen Length of signature in bytes
* @return True if signature validates and data integrity checks
*/
inline bool verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(_type) {
case C25519:
return C25519::verify(_k.t0.pub,data,len,sig,siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len);
return ECC384ECDSAVerify(_k.t1.pub,h,(const uint8_t *)sig);
}
break;
}
return false;
}
/**
* Shortcut method to perform key agreement with another identity
*
* This identity must have a private key. (Check hasPrivate())
*
* @param id Identity to agree with
* @param key Result parameter to fill with key bytes
* @param klen Length of key in bytes
* @return Was agreement successful?
*/
inline bool agree(const Identity &id,void *key,unsigned int klen) const
{
uint8_t ecc384RawSecret[ZT_ECC384_SHARED_SECRET_SIZE];
uint8_t h[48];
if (_hasPrivate) {
switch(_type) {
case C25519:
C25519::agree(_k.t0.priv,id._k.t0.pub,key,klen);
return true;
case P384:
ECC384ECDH(id._k.t1.pub,_k.t1.priv,ecc384RawSecret);
SHA384(h,ecc384RawSecret,sizeof(ecc384RawSecret));
for(unsigned int i=0,hi=0;i
inline void serialize(Buffer &b,bool includePrivate = false) const
{
_address.appendTo(b);
switch(_type) {
case C25519:
b.append((uint8_t)C25519);
b.append(_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
if ((_hasPrivate)&&(includePrivate)) {
b.append((uint8_t)ZT_C25519_PRIVATE_KEY_LEN);
b.append(_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
} else {
b.append((uint8_t)0);
}
break;
case P384:
b.append((uint8_t)P384);
b.append(_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE);
if ((_hasPrivate)&&(includePrivate)) {
b.append((uint8_t)ZT_ECC384_PRIVATE_KEY_SIZE);
b.append(_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE);
} else {
b.append((uint8_t)0);
}
break;
}
}
/**
* Deserialize a binary serialized identity
*
* If an exception is thrown, the Identity object is left in an undefined
* state and should not be used.
*
* @param b Buffer containing serialized data
* @param startAt Index within buffer of serialized data (default: 0)
* @return Length of serialized data read from buffer
* @throws std::out_of_range Serialized data invalid
* @throws std::invalid_argument Serialized data invalid
*/
template
inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0)
{
_hasPrivate = false;
unsigned int p = startAt;
unsigned int pkl;
_address.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
p += ZT_ADDRESS_LENGTH;
_type = (Type)b[p++];
switch(_type) {
case C25519:
memcpy(_k.t0.pub.data,b.field(p,ZT_C25519_PUBLIC_KEY_LEN),ZT_C25519_PUBLIC_KEY_LEN);
p += ZT_C25519_PUBLIC_KEY_LEN;
pkl = (unsigned int)b[p++];
if (pkl) {
if (pkl != ZT_C25519_PRIVATE_KEY_LEN)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_hasPrivate = true;
memcpy(_k.t0.priv.data,b.field(p,ZT_C25519_PRIVATE_KEY_LEN),ZT_C25519_PRIVATE_KEY_LEN);
p += ZT_C25519_PRIVATE_KEY_LEN;
} else {
memset(_k.t0.priv.data,0,ZT_C25519_PRIVATE_KEY_LEN);
_hasPrivate = false;
}
break;
case P384:
memcpy(_k.t0.pub.data,b.field(p,ZT_ECC384_PUBLIC_KEY_SIZE),ZT_ECC384_PUBLIC_KEY_SIZE);
p += ZT_ECC384_PUBLIC_KEY_SIZE;
pkl = (unsigned int)b[p++];
if (pkl) {
if (pkl != ZT_ECC384_PRIVATE_KEY_SIZE)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_hasPrivate = true;
memcpy(_k.t1.priv,b.field(p,ZT_ECC384_PRIVATE_KEY_SIZE),ZT_ECC384_PRIVATE_KEY_SIZE);
p += ZT_ECC384_PRIVATE_KEY_SIZE;
} else {
memset(_k.t1.priv,0,ZT_ECC384_PRIVATE_KEY_SIZE);
_hasPrivate = false;
}
break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
return (p - startAt);
}
/**
* Serialize to a more human-friendly string
*
* @param includePrivate If true, include private key (if it exists)
* @param buf Buffer to store string
* @return ASCII string representation of identity
*/
char *toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const;
/**
* Deserialize a human-friendly string
*
* Note: validation is for the format only. The locallyValidate() method
* must be used to check signature and address/key correspondence.
*
* @param str String to deserialize
* @return True if deserialization appears successful
*/
bool fromString(const char *str);
/**
* @return True if this identity contains something
*/
inline operator bool() const { return (_address); }
inline bool operator==(const Identity &id) const
{
if ((_address == id._address)&&(_type == id._type)) {
switch(_type) {
case C25519:
return (memcmp(_k.t0.pub.data,id._k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN) == 0);
case P384:
return (memcmp(_k.t1.pub,id._k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE) == 0);
default:
return false;
}
}
return false;
}
inline bool operator<(const Identity &id) const
{
if (_address < id._address)
return true;
if (_address == id._address) {
if ((int)_type < (int)id._type)
return true;
if (_type == id._type) {
switch(_type) {
case C25519:
return (memcmp(_k.t0.pub.data,id._k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN) < 0);
case P384:
return (memcmp(_k.t1.pub,id._k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE) < 0);
}
}
}
return false;
}
inline bool operator!=(const Identity &id) const { return !(*this == id); }
inline bool operator>(const Identity &id) const { return (id < *this); }
inline bool operator<=(const Identity &id) const { return !(id < *this); }
inline bool operator>=(const Identity &id) const { return !(*this < id); }
inline unsigned long hashCode() const { return (unsigned long)_address.toInt(); }
private:
Address _address;
union {
struct {
C25519::Public pub;
C25519::Private priv;
} t0;
struct {
uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE];
uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE];
} t1;
} _k;
Type _type;
bool _hasPrivate;
};
} // namespace ZeroTier
#endif