/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_AES_HPP
#define ZT_AES_HPP
#include "Constants.hpp"
#include "Utils.hpp"
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#include
#include
#include
#define ZT_AES_AESNI 1
#endif
#if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__)
#include
#include
#ifndef ZT_AES_ARMNEON
#define ZT_AES_ARMNEON 1
#endif
#if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO))
#include
#endif
#endif
#define ZT_AES_KEY_SIZE 32
#define ZT_AES_BLOCK_SIZE 16
namespace ZeroTier {
/**
* AES-256 and AES-GCM AEAD
*/
class AES
{
public:
/**
* This will be true if your platform's type of AES acceleration is supported on this machine
*/
static const bool HW_ACCEL;
inline AES() {}
inline AES(const uint8_t key[32]) { this->init(key); }
inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
inline void init(const uint8_t key[32])
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_init_aesni(key);
return;
}
#endif
_initSW(key);
}
inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_encrypt_aesni(in,out);
return;
}
#endif
_encryptSW(in,out);
}
inline void decrypt(const uint8_t in[16],uint8_t out[16]) const
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_decrypt_aesni(in,out);
return;
}
#endif
_decryptSW(in,out);
}
inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
return;
}
#endif
abort(); // TODO: software
}
inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
uint8_t tagbuf[16];
_decrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tagbuf,taglen);
return Utils::secureEq(tagbuf,tag,taglen);
}
#endif
abort(); // TODO: software
return false;
}
static inline void scramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
{
if (inlen < 16)
return;
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_scramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
return;
}
#endif
}
static inline void unscramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
{
if (inlen < 16)
return;
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_unscramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
return;
}
#endif
}
private:
static const uint32_t Te0[256];
static const uint32_t Te1[256];
static const uint32_t Te2[256];
static const uint32_t Te3[256];
static const uint32_t Te4[256];
static const uint32_t Td0[256];
static const uint32_t Td1[256];
static const uint32_t Td2[256];
static const uint32_t Td3[256];
static const uint8_t Td4[256];
static const uint32_t rcon[10];
void _initSW(const uint8_t key[32]);
void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
void _decryptSW(const uint8_t in[16],uint8_t out[16]) const;
/**************************************************************************/
union {
#ifdef ZT_AES_ARMNEON
struct {
uint32x4_t k[15];
} neon;
#endif
#ifdef ZT_AES_AESNI
struct {
__m128i k[28];
__m128i h,hh,hhh,hhhh;
} ni;
#endif
struct {
uint32_t ek[60];
uint32_t dk[60];
} sw;
} _k;
/**************************************************************************/
#ifdef ZT_AES_ARMNEON /******************************************************/
static inline uint32x4_t *_aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon)
{
uint32_t round1[4], round2[4], prv1[4], prv2[4];
vst1q_u32(prv1, prev1);
vst1q_u32(prv2, prev2);
round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
return expansion;
}
inline void _init_armneon(uint8x16_t encKey)
{
uint32x4_t *schedule = _k.neon.k;
uint32x4_t *doubleRound = nullptr;
(*schedule)[0] = vld1q_u32(encKey);
(*schedule)[1] = vld1q_u32(encKey + 16);
doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
(*schedule)[2] = doubleRound[0];
(*schedule)[3] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
(*schedule)[4] = doubleRound[0];
(*schedule)[5] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
(*schedule)[6] = doubleRound[0];
(*schedule)[7] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
(*schedule)[8] = doubleRound[0];
(*schedule)[9] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
(*schedule)[10] = doubleRound[0];
(*schedule)[11] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
(*schedule)[12] = doubleRound[0];
(*schedule)[13] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
(*schedule)[14] = doubleRound[0];
}
inline void _encrypt_armneon(uint8x16_t *data) const
{
*data = veorq_u8(*data, _k.neon.k[0]);
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
*data = vaeseq_u8(*data, _k.neon.k[14]);
}
inline void _decrypt_armneon(uint8x16_t *data) const
{
*data = veorq_u8(*data, _k.neon.k[14]);
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[13]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[12]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[11]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[10]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[9]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[8]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[7]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[6]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[5]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[4]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[3]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[2]));
*data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[1]));
*data = vaesdq_u8(*data, (uint8x16_t)_k.neon.k[0]);
}
#endif /*********************************************************************/
#ifdef ZT_AES_AESNI /********************************************************/
static inline __m128i _init256_1_aesni(__m128i a,__m128i b)
{
__m128i x,y;
b = _mm_shuffle_epi32(b,0xff);
y = _mm_slli_si128(a,0x04);
x = _mm_xor_si128(a,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
x = _mm_xor_si128(x,b);
return x;
}
static inline __m128i _init256_2_aesni(__m128i a,__m128i b)
{
__m128i x,y,z;
y = _mm_aeskeygenassist_si128(a,0x00);
z = _mm_shuffle_epi32(y,0xaa);
y = _mm_slli_si128(b,0x04);
x = _mm_xor_si128(b,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
x = _mm_xor_si128(x,z);
return x;
}
inline void _init_aesni(const uint8_t key[32])
{
__m128i t1,t2;
_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
_k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
_k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
_k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
_k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
_k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
_k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
_k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
_k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
_k.ni.k[15] = _mm_aesimc_si128(_k.ni.k[13]);
_k.ni.k[16] = _mm_aesimc_si128(_k.ni.k[12]);
_k.ni.k[17] = _mm_aesimc_si128(_k.ni.k[11]);
_k.ni.k[18] = _mm_aesimc_si128(_k.ni.k[10]);
_k.ni.k[19] = _mm_aesimc_si128(_k.ni.k[9]);
_k.ni.k[20] = _mm_aesimc_si128(_k.ni.k[8]);
_k.ni.k[21] = _mm_aesimc_si128(_k.ni.k[7]);
_k.ni.k[22] = _mm_aesimc_si128(_k.ni.k[6]);
_k.ni.k[23] = _mm_aesimc_si128(_k.ni.k[5]);
_k.ni.k[24] = _mm_aesimc_si128(_k.ni.k[4]);
_k.ni.k[25] = _mm_aesimc_si128(_k.ni.k[3]);
_k.ni.k[26] = _mm_aesimc_si128(_k.ni.k[2]);
_k.ni.k[27] = _mm_aesimc_si128(_k.ni.k[1]);
__m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
h = _mm_aesenc_si128(h,_k.ni.k[1]);
h = _mm_aesenc_si128(h,_k.ni.k[2]);
h = _mm_aesenc_si128(h,_k.ni.k[3]);
h = _mm_aesenc_si128(h,_k.ni.k[4]);
h = _mm_aesenc_si128(h,_k.ni.k[5]);
h = _mm_aesenc_si128(h,_k.ni.k[6]);
h = _mm_aesenc_si128(h,_k.ni.k[7]);
h = _mm_aesenc_si128(h,_k.ni.k[8]);
h = _mm_aesenc_si128(h,_k.ni.k[9]);
h = _mm_aesenc_si128(h,_k.ni.k[10]);
h = _mm_aesenc_si128(h,_k.ni.k[11]);
h = _mm_aesenc_si128(h,_k.ni.k[12]);
h = _mm_aesenc_si128(h,_k.ni.k[13]);
h = _mm_aesenclast_si128(h,_k.ni.k[14]);
__m128i hswap = _swap128_aesni(h);
__m128i hh = _mult_block_aesni(hswap,h);
__m128i hhh = _mult_block_aesni(hswap,hh);
__m128i hhhh = _mult_block_aesni(hswap,hhh);
_k.ni.h = hswap;
_k.ni.hh = _swap128_aesni(hh);
_k.ni.hhh = _swap128_aesni(hhh);
_k.ni.hhhh = _swap128_aesni(hhhh);
}
static inline __m128i _assist128_aesni(__m128i a,__m128i b)
{
__m128i c;
b = _mm_shuffle_epi32(b ,0xff);
c = _mm_slli_si128(a, 0x04);
a = _mm_xor_si128(a, c);
c = _mm_slli_si128(c, 0x04);
a = _mm_xor_si128(a, c);
c = _mm_slli_si128(c, 0x04);
a = _mm_xor_si128(a, c);
a = _mm_xor_si128(a, b);
return a;
}
/*static inline void _expand128_aesni(__m128i schedule[10],const void *const key)
{
__m128i t;
schedule[0] = t = _mm_loadu_si128((const __m128i *)key);
schedule[1] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
schedule[2] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
schedule[3] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
schedule[4] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
schedule[5] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
schedule[6] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x20));
schedule[7] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x40));
schedule[8] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x80));
schedule[9] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x1b));
schedule[10] = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x36));
}*/
static inline void _scramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
{
__m128i t = _mm_loadu_si128((const __m128i *)key);
__m128i k0 = t;
__m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
__m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
__m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
__m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
__m128i k5 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
while (len >= 64) {
len -= 64;
__m128i d0 = _mm_loadu_si128((const __m128i *)in);
in += 16;
__m128i d1 = _mm_loadu_si128((const __m128i *)in);
in += 16;
__m128i d2 = _mm_loadu_si128((const __m128i *)in);
in += 16;
__m128i d3 = _mm_loadu_si128((const __m128i *)in);
in += 16;
d0 = _mm_xor_si128(d0,k0);
d1 = _mm_xor_si128(d1,k0);
d2 = _mm_xor_si128(d2,k0);
d3 = _mm_xor_si128(d3,k0);
d0 = _mm_aesenc_si128(d0,k1);
d1 = _mm_aesenc_si128(d1,k1);
d2 = _mm_aesenc_si128(d2,k1);
d3 = _mm_aesenc_si128(d3,k1);
d0 = _mm_aesenc_si128(d0,k2);
d1 = _mm_aesenc_si128(d1,k2);
d2 = _mm_aesenc_si128(d2,k2);
d3 = _mm_aesenc_si128(d3,k2);
d0 = _mm_aesenc_si128(d0,k3);
d1 = _mm_aesenc_si128(d1,k3);
d2 = _mm_aesenc_si128(d2,k3);
d3 = _mm_aesenc_si128(d3,k3);
d0 = _mm_aesenc_si128(d0,k4);
d1 = _mm_aesenc_si128(d1,k4);
d2 = _mm_aesenc_si128(d2,k4);
d3 = _mm_aesenc_si128(d3,k4);
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
out += 16;
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d1,k5));
out += 16;
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d2,k5));
out += 16;
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d3,k5));
out += 16;
}
while (len >= 16) {
len -= 16;
__m128i d0 = _mm_loadu_si128((const __m128i *)in);
in += 16;
d0 = _mm_xor_si128(d0,k0);
d0 = _mm_aesenc_si128(d0,k1);
d0 = _mm_aesenc_si128(d0,k2);
d0 = _mm_aesenc_si128(d0,k3);
d0 = _mm_aesenc_si128(d0,k4);
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
out += 16;
}
if (len) {
__m128i last = _mm_setzero_si128();
last = _mm_xor_si128(last,k0);
last = _mm_aesenc_si128(last,k1);
last = _mm_aesenc_si128(last,k2);
last = _mm_aesenc_si128(last,k3);
last = _mm_aesenc_si128(last,k4);
uint8_t lpad[16];
_mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,k5));
for(unsigned int i=0;i= 64) {
len -= 64;
__m128i d0 = _mm_loadu_si128((const __m128i *)in);
in += 16;
__m128i d1 = _mm_loadu_si128((const __m128i *)in);
in += 16;
__m128i d2 = _mm_loadu_si128((const __m128i *)in);
in += 16;
__m128i d3 = _mm_loadu_si128((const __m128i *)in);
in += 16;
d0 = _mm_xor_si128(d0,dk0);
d1 = _mm_xor_si128(d1,dk0);
d2 = _mm_xor_si128(d2,dk0);
d3 = _mm_xor_si128(d3,dk0);
d0 = _mm_aesdec_si128(d0,dk1);
d1 = _mm_aesdec_si128(d1,dk1);
d2 = _mm_aesdec_si128(d2,dk1);
d3 = _mm_aesdec_si128(d3,dk1);
d0 = _mm_aesdec_si128(d0,dk2);
d1 = _mm_aesdec_si128(d1,dk2);
d2 = _mm_aesdec_si128(d2,dk2);
d3 = _mm_aesdec_si128(d3,dk2);
d0 = _mm_aesdec_si128(d0,dk3);
d1 = _mm_aesdec_si128(d1,dk3);
d2 = _mm_aesdec_si128(d2,dk3);
d3 = _mm_aesdec_si128(d3,dk3);
d0 = _mm_aesdec_si128(d0,dk4);
d1 = _mm_aesdec_si128(d1,dk4);
d2 = _mm_aesdec_si128(d2,dk4);
d3 = _mm_aesdec_si128(d3,dk4);
_mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
out += 16;
_mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d1,dk5));
out += 16;
_mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d2,dk5));
out += 16;
_mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d3,dk5));
out += 16;
}
while (len >= 16) {
len -= 16;
__m128i d0 = _mm_loadu_si128((const __m128i *)in);
in += 16;
d0 = _mm_xor_si128(d0,dk0);
d0 = _mm_aesdec_si128(d0,dk1);
d0 = _mm_aesdec_si128(d0,dk2);
d0 = _mm_aesdec_si128(d0,dk3);
d0 = _mm_aesdec_si128(d0,dk4);
_mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
out += 16;
}
if (len) {
__m128i last = _mm_setzero_si128();
last = _mm_xor_si128(last,dk5); // k0
last = _mm_aesenc_si128(last,k1);
last = _mm_aesenc_si128(last,k2);
last = _mm_aesenc_si128(last,k3);
last = _mm_aesenc_si128(last,k4);
uint8_t lpad[16];
_mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,dk0)); // k5
for(unsigned int i=0;i