/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #ifndef ZT_AES_HPP #define ZT_AES_HPP #include "Constants.hpp" #include "Utils.hpp" #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64)) #include #include #include #define ZT_AES_AESNI 1 #endif #if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__) #include #include #ifndef ZT_AES_ARMNEON #define ZT_AES_ARMNEON 1 #endif #if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO)) #include #endif #endif #define ZT_AES_KEY_SIZE 32 #define ZT_AES_BLOCK_SIZE 16 namespace ZeroTier { /** * AES-256 and AES-GCM AEAD */ class AES { public: /** * This will be true if your platform's type of AES acceleration is supported on this machine */ static const bool HW_ACCEL; inline AES() {} inline AES(const uint8_t key[32]) { this->init(key); } inline ~AES() { Utils::burn(&_k,sizeof(_k)); } inline void init(const uint8_t key[32]) { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _init_aesni(key); return; } #endif _initSW(key); } inline void encrypt(const uint8_t in[16],uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _encrypt_aesni(in,out); return; } #endif _encryptSW(in,out); } inline void decrypt(const uint8_t in[16],uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _decrypt_aesni(in,out); return; } #endif _decryptSW(in,out); } inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen) { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen); return; } #endif abort(); // TODO: software } inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen) { #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { uint8_t tagbuf[16]; _decrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tagbuf,taglen); return Utils::secureEq(tagbuf,tag,taglen); } #endif abort(); // TODO: software return false; } static inline void scramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out) { if (inlen < 16) return; #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _scramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen); return; } #endif } static inline void unscramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out) { if (inlen < 16) return; #ifdef ZT_AES_AESNI if (likely(HW_ACCEL)) { _unscramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen); return; } #endif } private: static const uint32_t Te0[256]; static const uint32_t Te1[256]; static const uint32_t Te2[256]; static const uint32_t Te3[256]; static const uint32_t Te4[256]; static const uint32_t Td0[256]; static const uint32_t Td1[256]; static const uint32_t Td2[256]; static const uint32_t Td3[256]; static const uint8_t Td4[256]; static const uint32_t rcon[10]; void _initSW(const uint8_t key[32]); void _encryptSW(const uint8_t in[16],uint8_t out[16]) const; void _decryptSW(const uint8_t in[16],uint8_t out[16]) const; /**************************************************************************/ union { #ifdef ZT_AES_ARMNEON struct { uint32x4_t k[15]; } neon; #endif #ifdef ZT_AES_AESNI struct { __m128i k[28]; __m128i h,hh,hhh,hhhh; } ni; #endif struct { uint32_t ek[60]; uint32_t dk[60]; } sw; } _k; /**************************************************************************/ #ifdef ZT_AES_ARMNEON /******************************************************/ static inline uint32x4_t *_aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon) { uint32_t round1[4], round2[4], prv1[4], prv2[4]; vst1q_u32(prv1, prev1); vst1q_u32(prv2, prev2); round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0]; round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1]; round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2]; round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3]; round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0]; round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1]; round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2]; round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3]; uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)}; return expansion; } inline void _init_armneon(uint8x16_t encKey) { uint32x4_t *schedule = _k.neon.k; uint32x4_t *doubleRound = nullptr; (*schedule)[0] = vld1q_u32(encKey); (*schedule)[1] = vld1q_u32(encKey + 16); doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01); (*schedule)[2] = doubleRound[0]; (*schedule)[3] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02); (*schedule)[4] = doubleRound[0]; (*schedule)[5] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04); (*schedule)[6] = doubleRound[0]; (*schedule)[7] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08); (*schedule)[8] = doubleRound[0]; (*schedule)[9] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10); (*schedule)[10] = doubleRound[0]; (*schedule)[11] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20); (*schedule)[12] = doubleRound[0]; (*schedule)[13] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40); (*schedule)[14] = doubleRound[0]; } inline void _encrypt_armneon(uint8x16_t *data) const { *data = veorq_u8(*data, _k.neon.k[0]); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13])); *data = vaeseq_u8(*data, _k.neon.k[14]); } inline void _decrypt_armneon(uint8x16_t *data) const { *data = veorq_u8(*data, _k.neon.k[14]); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[13])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[12])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[11])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[10])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[9])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[8])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[7])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[6])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[5])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[4])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[3])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[2])); *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[1])); *data = vaesdq_u8(*data, (uint8x16_t)_k.neon.k[0]); } #endif /*********************************************************************/ #ifdef ZT_AES_AESNI /********************************************************/ static inline __m128i _init256_1_aesni(__m128i a,__m128i b) { __m128i x,y; b = _mm_shuffle_epi32(b,0xff); y = _mm_slli_si128(a,0x04); x = _mm_xor_si128(a,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); x = _mm_xor_si128(x,b); return x; } static inline __m128i _init256_2_aesni(__m128i a,__m128i b) { __m128i x,y,z; y = _mm_aeskeygenassist_si128(a,0x00); z = _mm_shuffle_epi32(y,0xaa); y = _mm_slli_si128(b,0x04); x = _mm_xor_si128(b,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); y = _mm_slli_si128(y,0x04); x = _mm_xor_si128(x,y); x = _mm_xor_si128(x,z); return x; } inline void _init_aesni(const uint8_t key[32]) { __m128i t1,t2; _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key); _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16)); _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01)); _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02)); _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04)); _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08)); _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10)); _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20)); _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2); _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40)); _k.ni.k[15] = _mm_aesimc_si128(_k.ni.k[13]); _k.ni.k[16] = _mm_aesimc_si128(_k.ni.k[12]); _k.ni.k[17] = _mm_aesimc_si128(_k.ni.k[11]); _k.ni.k[18] = _mm_aesimc_si128(_k.ni.k[10]); _k.ni.k[19] = _mm_aesimc_si128(_k.ni.k[9]); _k.ni.k[20] = _mm_aesimc_si128(_k.ni.k[8]); _k.ni.k[21] = _mm_aesimc_si128(_k.ni.k[7]); _k.ni.k[22] = _mm_aesimc_si128(_k.ni.k[6]); _k.ni.k[23] = _mm_aesimc_si128(_k.ni.k[5]); _k.ni.k[24] = _mm_aesimc_si128(_k.ni.k[4]); _k.ni.k[25] = _mm_aesimc_si128(_k.ni.k[3]); _k.ni.k[26] = _mm_aesimc_si128(_k.ni.k[2]); _k.ni.k[27] = _mm_aesimc_si128(_k.ni.k[1]); __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]); h = _mm_aesenc_si128(h,_k.ni.k[1]); h = _mm_aesenc_si128(h,_k.ni.k[2]); h = _mm_aesenc_si128(h,_k.ni.k[3]); h = _mm_aesenc_si128(h,_k.ni.k[4]); h = _mm_aesenc_si128(h,_k.ni.k[5]); h = _mm_aesenc_si128(h,_k.ni.k[6]); h = _mm_aesenc_si128(h,_k.ni.k[7]); h = _mm_aesenc_si128(h,_k.ni.k[8]); h = _mm_aesenc_si128(h,_k.ni.k[9]); h = _mm_aesenc_si128(h,_k.ni.k[10]); h = _mm_aesenc_si128(h,_k.ni.k[11]); h = _mm_aesenc_si128(h,_k.ni.k[12]); h = _mm_aesenc_si128(h,_k.ni.k[13]); h = _mm_aesenclast_si128(h,_k.ni.k[14]); __m128i hswap = _swap128_aesni(h); __m128i hh = _mult_block_aesni(hswap,h); __m128i hhh = _mult_block_aesni(hswap,hh); __m128i hhhh = _mult_block_aesni(hswap,hhh); _k.ni.h = hswap; _k.ni.hh = _swap128_aesni(hh); _k.ni.hhh = _swap128_aesni(hhh); _k.ni.hhhh = _swap128_aesni(hhhh); } static inline __m128i _assist128_aesni(__m128i a,__m128i b) { __m128i c; b = _mm_shuffle_epi32(b ,0xff); c = _mm_slli_si128(a, 0x04); a = _mm_xor_si128(a, c); c = _mm_slli_si128(c, 0x04); a = _mm_xor_si128(a, c); c = _mm_slli_si128(c, 0x04); a = _mm_xor_si128(a, c); a = _mm_xor_si128(a, b); return a; } /*static inline void _expand128_aesni(__m128i schedule[10],const void *const key) { __m128i t; schedule[0] = t = _mm_loadu_si128((const __m128i *)key); schedule[1] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01)); schedule[2] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02)); schedule[3] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04)); schedule[4] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08)); schedule[5] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10)); schedule[6] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x20)); schedule[7] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x40)); schedule[8] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x80)); schedule[9] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x1b)); schedule[10] = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x36)); }*/ static inline void _scramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len) { __m128i t = _mm_loadu_si128((const __m128i *)key); __m128i k0 = t; __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01)); __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02)); __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04)); __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08)); __m128i k5 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10)); while (len >= 64) { len -= 64; __m128i d0 = _mm_loadu_si128((const __m128i *)in); in += 16; __m128i d1 = _mm_loadu_si128((const __m128i *)in); in += 16; __m128i d2 = _mm_loadu_si128((const __m128i *)in); in += 16; __m128i d3 = _mm_loadu_si128((const __m128i *)in); in += 16; d0 = _mm_xor_si128(d0,k0); d1 = _mm_xor_si128(d1,k0); d2 = _mm_xor_si128(d2,k0); d3 = _mm_xor_si128(d3,k0); d0 = _mm_aesenc_si128(d0,k1); d1 = _mm_aesenc_si128(d1,k1); d2 = _mm_aesenc_si128(d2,k1); d3 = _mm_aesenc_si128(d3,k1); d0 = _mm_aesenc_si128(d0,k2); d1 = _mm_aesenc_si128(d1,k2); d2 = _mm_aesenc_si128(d2,k2); d3 = _mm_aesenc_si128(d3,k2); d0 = _mm_aesenc_si128(d0,k3); d1 = _mm_aesenc_si128(d1,k3); d2 = _mm_aesenc_si128(d2,k3); d3 = _mm_aesenc_si128(d3,k3); d0 = _mm_aesenc_si128(d0,k4); d1 = _mm_aesenc_si128(d1,k4); d2 = _mm_aesenc_si128(d2,k4); d3 = _mm_aesenc_si128(d3,k4); _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5)); out += 16; _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d1,k5)); out += 16; _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d2,k5)); out += 16; _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d3,k5)); out += 16; } while (len >= 16) { len -= 16; __m128i d0 = _mm_loadu_si128((const __m128i *)in); in += 16; d0 = _mm_xor_si128(d0,k0); d0 = _mm_aesenc_si128(d0,k1); d0 = _mm_aesenc_si128(d0,k2); d0 = _mm_aesenc_si128(d0,k3); d0 = _mm_aesenc_si128(d0,k4); _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5)); out += 16; } if (len) { __m128i last = _mm_setzero_si128(); last = _mm_xor_si128(last,k0); last = _mm_aesenc_si128(last,k1); last = _mm_aesenc_si128(last,k2); last = _mm_aesenc_si128(last,k3); last = _mm_aesenc_si128(last,k4); uint8_t lpad[16]; _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,k5)); for(unsigned int i=0;i= 64) { len -= 64; __m128i d0 = _mm_loadu_si128((const __m128i *)in); in += 16; __m128i d1 = _mm_loadu_si128((const __m128i *)in); in += 16; __m128i d2 = _mm_loadu_si128((const __m128i *)in); in += 16; __m128i d3 = _mm_loadu_si128((const __m128i *)in); in += 16; d0 = _mm_xor_si128(d0,dk0); d1 = _mm_xor_si128(d1,dk0); d2 = _mm_xor_si128(d2,dk0); d3 = _mm_xor_si128(d3,dk0); d0 = _mm_aesdec_si128(d0,dk1); d1 = _mm_aesdec_si128(d1,dk1); d2 = _mm_aesdec_si128(d2,dk1); d3 = _mm_aesdec_si128(d3,dk1); d0 = _mm_aesdec_si128(d0,dk2); d1 = _mm_aesdec_si128(d1,dk2); d2 = _mm_aesdec_si128(d2,dk2); d3 = _mm_aesdec_si128(d3,dk2); d0 = _mm_aesdec_si128(d0,dk3); d1 = _mm_aesdec_si128(d1,dk3); d2 = _mm_aesdec_si128(d2,dk3); d3 = _mm_aesdec_si128(d3,dk3); d0 = _mm_aesdec_si128(d0,dk4); d1 = _mm_aesdec_si128(d1,dk4); d2 = _mm_aesdec_si128(d2,dk4); d3 = _mm_aesdec_si128(d3,dk4); _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5)); out += 16; _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d1,dk5)); out += 16; _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d2,dk5)); out += 16; _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d3,dk5)); out += 16; } while (len >= 16) { len -= 16; __m128i d0 = _mm_loadu_si128((const __m128i *)in); in += 16; d0 = _mm_xor_si128(d0,dk0); d0 = _mm_aesdec_si128(d0,dk1); d0 = _mm_aesdec_si128(d0,dk2); d0 = _mm_aesdec_si128(d0,dk3); d0 = _mm_aesdec_si128(d0,dk4); _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5)); out += 16; } if (len) { __m128i last = _mm_setzero_si128(); last = _mm_xor_si128(last,dk5); // k0 last = _mm_aesenc_si128(last,k1); last = _mm_aesenc_si128(last,k2); last = _mm_aesenc_si128(last,k3); last = _mm_aesenc_si128(last,k4); uint8_t lpad[16]; _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,dk0)); // k5 for(unsigned int i=0;i