/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef ZT_CAPABILITY_HPP #define ZT_CAPABILITY_HPP #include #include #include #include "Constants.hpp" #include "Address.hpp" #include "C25519.hpp" #include "Utils.hpp" #include "Buffer.hpp" #include "Identity.hpp" #include "../include/ZeroTierOne.h" namespace ZeroTier { class RuntimeEnvironment; /** * A set of grouped and signed network flow rules * * On the sending side the sender does the following for each packet: * * (1) Evaluates its capabilities in ascending order of ID to determine * which capability allows it to transmit this packet. * (2) If it has not done so lately, it then sends this capability to the * receving peer ("presents" it). * (3) The sender then sends the packet. * * On the receiving side the receiver evaluates the capabilities presented * by the sender. If any valid un-expired capability allows this packet it * is accepted. * * Note that this is after evaluation of network scope rules and only if * network scope rules do not deliver an explicit match. */ class Capability { public: Capability() { memset(this,0,sizeof(Capability)); } /** * @param id Capability ID * @param nwid Network ID * @param ts Timestamp (at controller) * @param mccl Maximum custody chain length (1 to create non-transferrable capability) * @param rules Network flow rules for this capability * @param ruleCount Number of flow rules */ Capability(uint32_t id,uint64_t nwid,uint64_t ts,unsigned int mccl,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount) { memset(this,0,sizeof(Capability)); _nwid = nwid; _ts = ts; _id = id; _maxCustodyChainLength = (mccl > 0) ? ((mccl < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) ? mccl : (unsigned int)ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) : 1; _ruleCount = (ruleCount < ZT_MAX_CAPABILITY_RULES) ? ruleCount : ZT_MAX_CAPABILITY_RULES; if (_ruleCount) memcpy(_rules,rules,sizeof(ZT_VirtualNetworkRule) * _ruleCount); } /** * @return Rules -- see ruleCount() for size of array */ inline const ZT_VirtualNetworkRule *rules() const { return _rules; } /** * @return Number of rules in rules() */ inline unsigned int ruleCount() const { return _ruleCount; } /** * @return ID and evaluation order of this capability in network */ inline uint32_t id() const { return _id; } /** * @return Network ID for which this capability was issued */ inline uint64_t networkId() const { return _nwid; } /** * @return Timestamp */ inline uint64_t timestamp() const { return _ts; } /** * @return Last 'to' address in chain of custody */ inline Address issuedTo() const { Address i2; for(unsigned int i=0;i tmp; this->serialize(tmp,true); _custody[i].to = to; _custody[i].from = from.address(); _custody[i].signature = from.sign(tmp.data(),tmp.size()); return true; } } } catch ( ... ) {} return false; } /** * Verify this capability's chain of custody and signatures * * @param RR Runtime environment to provide for peer lookup, etc. * @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or chain */ int verify(const RuntimeEnvironment *RR) const; template static inline void serializeRules(Buffer &b,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount) { for(unsigned int i=0;i static inline void deserializeRules(const Buffer &b,unsigned int &p,ZT_VirtualNetworkRule *rules,unsigned int &ruleCount,const unsigned int maxRuleCount) { while ((ruleCount < maxRuleCount)&&(p < b.size())) { rules[ruleCount].t = (uint8_t)b[p++]; const unsigned int fieldLen = (unsigned int)b[p++]; switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) { default: break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: rules[ruleCount].v.fwd.address = b.template at(p); rules[ruleCount].v.fwd.flags = b.template at(p + 8); rules[ruleCount].v.fwd.length = b.template at(p + 12); break; case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: rules[ruleCount].v.zt = Address(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt(); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: rules[ruleCount].v.vlanId = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: rules[ruleCount].v.vlanPcp = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: rules[ruleCount].v.vlanDei = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: memcpy(rules[ruleCount].v.mac,b.field(p,6),6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: memcpy(&(rules[ruleCount].v.ipv4.ip),b.field(p,4),4); rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4]; break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: memcpy(rules[ruleCount].v.ipv6.ip,b.field(p,16),16); rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16]; break; case ZT_NETWORK_RULE_MATCH_IP_TOS: rules[ruleCount].v.ipTos.mask = (uint8_t)b[p]; rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p+1]; rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p+2]; break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: rules[ruleCount].v.ipProtocol = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: rules[ruleCount].v.etherType = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_ICMP: rules[ruleCount].v.icmp.type = (uint8_t)b[p]; rules[ruleCount].v.icmp.code = (uint8_t)b[p+1]; rules[ruleCount].v.icmp.flags = (uint8_t)b[p+2]; break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: rules[ruleCount].v.port[0] = b.template at(p); rules[ruleCount].v.port[1] = b.template at(p + 2); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: rules[ruleCount].v.characteristics = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: rules[ruleCount].v.frameSize[0] = b.template at(p); rules[ruleCount].v.frameSize[1] = b.template at(p + 2); break; case ZT_NETWORK_RULE_MATCH_RANDOM: rules[ruleCount].v.randomProbability = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: rules[ruleCount].v.tag.id = b.template at(p); rules[ruleCount].v.tag.value = b.template at(p + 4); break; } p += fieldLen; ++ruleCount; } } template inline void serialize(Buffer &b,const bool forSign = false) const { if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); // These are the same between Tag and Capability b.append(_nwid); b.append(_ts); b.append(_id); b.append((uint16_t)_ruleCount); serializeRules(b,_rules,_ruleCount); b.append((uint8_t)_maxCustodyChainLength); if (!forSign) { for(unsigned int i=0;;++i) { if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) { _custody[i].to.appendTo(b); _custody[i].from.appendTo(b); b.append((uint8_t)1); // 1 == Ed25519 signature b.append((uint16_t)ZT_C25519_SIGNATURE_LEN); // length of signature b.append(_custody[i].signature.data,ZT_C25519_SIGNATURE_LEN); } else { b.append((unsigned char)0,ZT_ADDRESS_LENGTH); // zero 'to' terminates chain break; } } } // This is the size of any additional fields, currently 0. b.append((uint16_t)0); if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); } template inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0) { memset(this,0,sizeof(Capability)); unsigned int p = startAt; // These are the same between Tag and Capability _nwid = b.template at(p); p += 8; _ts = b.template at(p); p += 8; _id = b.template at(p); p += 4; const unsigned int rc = b.template at(p); p += 2; if (rc > ZT_MAX_CAPABILITY_RULES) throw std::runtime_error("rule overflow"); deserializeRules(b,p,_rules,_ruleCount,rc); _maxCustodyChainLength = (unsigned int)b[p++]; if ((_maxCustodyChainLength < 1)||(_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) throw std::runtime_error("invalid max custody chain length"); for(unsigned int i=0;;++i) { const Address to(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; if (!to) break; if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) throw std::runtime_error("unterminated custody chain"); _custody[i].to = to; _custody[i].from.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; if (b[p++] == 1) { if (b.template at(p) != ZT_C25519_SIGNATURE_LEN) throw std::runtime_error("invalid signature"); p += 2; memcpy(_custody[i].signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN; } else { p += 2 + b.template at(p); } } p += 2 + b.template at(p); if (p > b.size()) throw std::runtime_error("extended field overflow"); return (p - startAt); } // Provides natural sort order by ID inline bool operator<(const Capability &c) const { return (_id < c._id); } inline bool operator==(const Capability &c) const { return (memcmp(this,&c,sizeof(Capability)) == 0); } inline bool operator!=(const Capability &c) const { return (memcmp(this,&c,sizeof(Capability)) != 0); } private: uint64_t _nwid; uint64_t _ts; uint32_t _id; unsigned int _maxCustodyChainLength; unsigned int _ruleCount; ZT_VirtualNetworkRule _rules[ZT_MAX_CAPABILITY_RULES]; struct { Address to; Address from; C25519::Signature signature; } _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH]; }; } // namespace ZeroTier #endif