/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_BINDER_HPP #define ZT_BINDER_HPP #include "../node/Constants.hpp" #include #include #include #include #ifdef __WINDOWS__ #include #include #include #include #include #else #include #include #include #include #include #ifdef __LINUX__ #include #include #endif #endif #include #include #include #include #include #include #include #include "../node/InetAddress.hpp" #include "../node/Mutex.hpp" #include "../node/Utils.hpp" #include "Phy.hpp" #include "OSUtils.hpp" // Period between refreshes of bindings #define ZT_BINDER_REFRESH_PERIOD 30000 // Max number of bindings #define ZT_BINDER_MAX_BINDINGS 256 namespace ZeroTier { /** * Enumerates local devices and binds to all potential ZeroTier path endpoints * * This replaces binding to wildcard (0.0.0.0 and ::0) with explicit binding * as part of the path to default gateway support. Under the hood it uses * different queries on different OSes to enumerate devices, and also exposes * device enumeration and endpoint IP data for use elsewhere. * * On OSes that do not support local port enumeration or where this is not * meaningful, this degrades to binding to wildcard. */ class Binder { private: struct _Binding { _Binding() : udpSock((PhySocket *)0),tcpListenSock((PhySocket *)0) {} PhySocket *udpSock; PhySocket *tcpListenSock; InetAddress address; }; public: Binder() : _bindingCount(0) {} /** * Close all bound ports, should be called on shutdown * * @param phy Physical interface */ template void closeAll(Phy &phy) { Mutex::Lock _l(_lock); for(unsigned int b=0,c=_bindingCount;b template * @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method */ template void refresh(Phy &phy,unsigned int *ports,unsigned int portCount,const std::vector explicitBind,INTERFACE_CHECKER &ifChecker) { std::map localIfAddrs; PhySocket *udps,*tcps; Mutex::Lock _l(_lock); bool interfacesEnumerated = true; if (explicitBind.empty()) { #ifdef __WINDOWS__ char aabuf[32768]; ULONG aalen = sizeof(aabuf); if (GetAdaptersAddresses(AF_UNSPEC,GAA_FLAG_SKIP_ANYCAST|GAA_FLAG_SKIP_MULTICAST|GAA_FLAG_SKIP_DNS_SERVER,(void *)0,reinterpret_cast(aabuf),&aalen) == NO_ERROR) { PIP_ADAPTER_ADDRESSES a = reinterpret_cast(aabuf); while (a) { PIP_ADAPTER_UNICAST_ADDRESS ua = a->FirstUnicastAddress; while (ua) { InetAddress ip(ua->Address.lpSockaddr); if (ifChecker.shouldBindInterface("",ip)) { switch(ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for(int x=0;x<(int)portCount;++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip,std::string())); } break; } } ua = ua->Next; } a = a->Next; } } else { interfacesEnumerated = false; } #else // not __WINDOWS__ /* On Linux we use an alternative method if available since getifaddrs() * gets very slow when there are lots of network namespaces. This won't * work unless /proc/PID/net/if_inet6 exists and it may not on some * embedded systems, so revert to getifaddrs() there. */ #ifdef __LINUX__ char fn[256],tmp[256]; std::set ifnames; const unsigned long pid = (unsigned long)getpid(); // Get all device names OSUtils::ztsnprintf(fn,sizeof(fn),"/proc/%lu/net/dev",pid); FILE *procf = fopen(fn,"r"); if (procf) { while (fgets(tmp,sizeof(tmp),procf)) { tmp[255] = 0; char *saveptr = (char *)0; for(char *f=Utils::stok(tmp," \t\r\n:|",&saveptr);(f);f=Utils::stok((char *)0," \t\r\n:|",&saveptr)) { if ((strcmp(f,"Inter-") != 0)&&(strcmp(f,"face") != 0)&&(f[0] != 0)) ifnames.insert(f); break; // we only want the first field } } fclose(procf); } else { interfacesEnumerated = false; } // Get IPv6 addresses (and any device names we don't already know) OSUtils::ztsnprintf(fn,sizeof(fn),"/proc/%lu/net/if_inet6",pid); procf = fopen(fn,"r"); if (procf) { while (fgets(tmp,sizeof(tmp),procf)) { tmp[255] = 0; char *saveptr = (char *)0; unsigned char ipbits[16]; memset(ipbits,0,sizeof(ipbits)); char *devname = (char *)0; int n = 0; for(char *f=Utils::stok(tmp," \t\r\n",&saveptr);(f);f=Utils::stok((char *)0," \t\r\n",&saveptr)) { switch(n++) { case 0: // IP in hex Utils::unhex(f,32,ipbits,16); break; case 5: // device name devname = f; break; } } if (devname) { ifnames.insert(devname); InetAddress ip(ipbits,16,0); if (ifChecker.shouldBindInterface(devname,ip)) { switch(ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for(int x=0;x<(int)portCount;++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip,std::string(devname))); } break; } } } } fclose(procf); } // Get IPv4 addresses for each device if (ifnames.size() > 0) { const int controlfd = (int)socket(AF_INET,SOCK_DGRAM,0); struct ifconf configuration; configuration.ifc_len = 0; configuration.ifc_buf = nullptr; if (controlfd < 0) goto ip4_address_error; if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error; configuration.ifc_buf = (char*)malloc(configuration.ifc_len); if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error; for (int i=0; i < (int)(configuration.ifc_len / sizeof(ifreq)); i ++) { struct ifreq& request = configuration.ifc_req[i]; struct sockaddr* addr = &request.ifr_ifru.ifru_addr; if (addr->sa_family != AF_INET) continue; std::string ifname = request.ifr_ifrn.ifrn_name; // name can either be just interface name or interface name followed by ':' and arbitrary label if (ifname.find(':') != std::string::npos) ifname = ifname.substr(0, ifname.find(':')); InetAddress ip(&(((struct sockaddr_in *)addr)->sin_addr),4,0); if (ifChecker.shouldBindInterface(ifname.c_str(), ip)) { switch(ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for(int x=0;x<(int)portCount;++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip,ifname)); } break; } } } ip4_address_error: free(configuration.ifc_buf); if (controlfd > 0) close(controlfd); } const bool gotViaProc = (localIfAddrs.size() > 0); #else const bool gotViaProc = false; #endif #if !defined(ZT_SDK) || !defined(__ANDROID__) // getifaddrs() freeifaddrs() not available on Android if (!gotViaProc) { struct ifaddrs *ifatbl = (struct ifaddrs *)0; struct ifaddrs *ifa; if ((getifaddrs(&ifatbl) == 0)&&(ifatbl)) { ifa = ifatbl; while (ifa) { if ((ifa->ifa_name)&&(ifa->ifa_addr)) { InetAddress ip = *(ifa->ifa_addr); if (ifChecker.shouldBindInterface(ifa->ifa_name,ip)) { switch(ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for(int x=0;x<(int)portCount;++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip,std::string(ifa->ifa_name))); } break; } } } ifa = ifa->ifa_next; } freeifaddrs(ifatbl); } else { interfacesEnumerated = false; } } #endif #endif } else { for(std::vector::const_iterator i(explicitBind.begin());i!=explicitBind.end();++i) localIfAddrs.insert(std::pair(*i,std::string())); } // Default to binding to wildcard if we can't enumerate addresses if (!interfacesEnumerated && localIfAddrs.empty()) { for(int x=0;x<(int)portCount;++x) { localIfAddrs.insert(std::pair(InetAddress((uint32_t)0,ports[x]),std::string())); localIfAddrs.insert(std::pair(InetAddress((const void *)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,ports[x]),std::string())); } } const unsigned int oldBindingCount = _bindingCount; _bindingCount = 0; // Save bindings that are still valid, close those that are not for(unsigned int b=0;b::const_iterator ii(localIfAddrs.begin());ii!=localIfAddrs.end();++ii) { linkIfNames.insert(ii->second); } for (std::set::iterator si(linkIfNames.begin());si!=linkIfNames.end();) { bool bFoundMatch = false; for(std::map::const_iterator ii(localIfAddrs.begin());ii!=localIfAddrs.end();++ii) { if (ii->second == *si) { bFoundMatch = true; break; } } if (!bFoundMatch) { linkIfNames.erase(si++); } else { ++si; } } // Create new bindings for those not already bound for(std::map::const_iterator ii(localIfAddrs.begin());ii!=localIfAddrs.end();++ii) { unsigned int bi = 0; while (bi != _bindingCount) { if (_bindings[bi].address == ii->first) break; ++bi; } if (bi == _bindingCount) { udps = phy.udpBind(reinterpret_cast(&(ii->first)),(void *)0,ZT_UDP_DESIRED_BUF_SIZE); tcps = phy.tcpListen(reinterpret_cast(&(ii->first)),(void *)0); if ((udps)&&(tcps)) { #ifdef __LINUX__ // Bind Linux sockets to their device so routes that we manage do not override physical routes (wish all platforms had this!) if (ii->second.length() > 0) { char tmp[256]; Utils::scopy(tmp,sizeof(tmp),ii->second.c_str()); int fd = (int)Phy::getDescriptor(udps); if (fd >= 0) setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp)); fd = (int)Phy::getDescriptor(tcps); if (fd >= 0) setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp)); } #endif // __LINUX__ if (_bindingCount < ZT_BINDER_MAX_BINDINGS) { _bindings[_bindingCount].udpSock = udps; _bindings[_bindingCount].tcpListenSock = tcps; _bindings[_bindingCount].address = ii->first; phy.setIfName(udps,(char*)ii->second.c_str(),(int)ii->second.length()); ++_bindingCount; } } else { phy.close(udps,false); phy.close(tcps,false); } } } } /** * @return All currently bound local interface addresses */ inline std::vector allBoundLocalInterfaceAddresses() const { std::vector aa; Mutex::Lock _l(_lock); for(unsigned int b=0,c=_bindingCount;b inline bool udpSendAll(Phy &phy,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl) { bool r = false; Mutex::Lock _l(_lock); for(unsigned int b=0,c=_bindingCount;b getLinkInterfaceNames() { Mutex::Lock _l(_lock); return linkIfNames; } private: std::set linkIfNames; _Binding _bindings[ZT_BINDER_MAX_BINDINGS]; std::atomic _bindingCount; Mutex _lock; }; } // namespace ZeroTier #endif