/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2011-2014 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../Constants.hpp" #include "../Utils.hpp" #include "../Mutex.hpp" #include "LinuxEthernetTap.hpp" // ff:ff:ff:ff:ff:ff with no ADI static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff),0); // On startup, searches the path for required external utilities (which might vary by Linux distro) #define ZT_UNIX_IP_COMMAND 1 class _CommandFinder { public: _CommandFinder() { _findCmd(ZT_UNIX_IP_COMMAND,"ip"); } inline const char *operator[](int id) const throw() { std::map::const_iterator c(_paths.find(id)); if (c == _paths.end()) return (const char *)0; return c->second.c_str(); } private: inline void _findCmd(int id,const char *name) { char tmp[4096]; ZeroTier::Utils::snprintf(tmp,sizeof(tmp),"/sbin/%s",name); if (ZeroTier::Utils::fileExists(tmp)) { _paths[id] = tmp; return; } ZeroTier::Utils::snprintf(tmp,sizeof(tmp),"/usr/sbin/%s",name); if (ZeroTier::Utils::fileExists(tmp)) { _paths[id] = tmp; return; } ZeroTier::Utils::snprintf(tmp,sizeof(tmp),"/bin/%s",name); if (ZeroTier::Utils::fileExists(tmp)) { _paths[id] = tmp; return; } ZeroTier::Utils::snprintf(tmp,sizeof(tmp),"/usr/bin/%s",name); if (ZeroTier::Utils::fileExists(tmp)) { _paths[id] = tmp; return; } } std::map _paths; }; static const _CommandFinder UNIX_COMMANDS; namespace ZeroTier { // Only permit one tap to be opened concurrently across the entire process static Mutex __tapCreateLock; LinuxEthernetTap::LinuxEthernetTap( const RuntimeEnvironment *renv, const char *tryToGetDevice, const MAC &mac, unsigned int mtu, void (*handler)(void *,const MAC &,const MAC &,unsigned int,const Buffer<4096> &), void *arg) throw(std::runtime_error) : EthernetTap("LinuxEthernetTap",mac,mtu), _r(renv), _handler(handler), _arg(arg), _fd(0), _enabled(true) { char procpath[128]; struct stat sbuf; Mutex::Lock _l(__tapCreateLock); // create only one tap at a time, globally if (mtu > 4096) throw std::runtime_error("max tap MTU is 4096"); _fd = ::open("/dev/net/tun",O_RDWR); if (_fd <= 0) throw std::runtime_error(std::string("could not open TUN/TAP device: ") + strerror(errno)); struct ifreq ifr; memset(&ifr,0,sizeof(ifr)); // Try to recall our last device name, or pick an unused one if that fails. bool recalledDevice = false; if ((tryToGetDevice)&&(tryToGetDevice[0])) { Utils::scopy(ifr.ifr_name,sizeof(ifr.ifr_name),tryToGetDevice); Utils::snprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name); recalledDevice = (stat(procpath,&sbuf) != 0); } if (!recalledDevice) { int devno = 0; do { Utils::snprintf(ifr.ifr_name,sizeof(ifr.ifr_name),"zt%d",devno++); Utils::snprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name); } while (stat(procpath,&sbuf) == 0); // try zt#++ until we find one that does not exist } ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(_fd,TUNSETIFF,(void *)&ifr) < 0) { ::close(_fd); throw std::runtime_error("unable to configure TUN/TAP device for TAP operation"); } _dev = ifr.ifr_name; ioctl(_fd,TUNSETPERSIST,0); // valgrind may generate a false alarm here // Open an arbitrary socket to talk to netlink int sock = socket(AF_INET,SOCK_DGRAM,0); if (sock <= 0) { ::close(_fd); throw std::runtime_error("unable to open netlink socket"); } // Set MAC address ifr.ifr_ifru.ifru_hwaddr.sa_family = ARPHRD_ETHER; mac.copyTo(ifr.ifr_ifru.ifru_hwaddr.sa_data,6); if (ioctl(sock,SIOCSIFHWADDR,(void *)&ifr) < 0) { ::close(_fd); ::close(sock); throw std::runtime_error("unable to configure TAP hardware (MAC) address"); return; } // Set MTU ifr.ifr_ifru.ifru_mtu = (int)mtu; if (ioctl(sock,SIOCSIFMTU,(void *)&ifr) < 0) { ::close(_fd); ::close(sock); throw std::runtime_error("unable to configure TAP MTU"); } if (fcntl(_fd,F_SETFL,fcntl(_fd,F_GETFL) & ~O_NONBLOCK) == -1) { ::close(_fd); throw std::runtime_error("unable to set flags on file descriptor for TAP device"); } /* Bring interface up */ if (ioctl(sock,SIOCGIFFLAGS,(void *)&ifr) < 0) { ::close(_fd); ::close(sock); throw std::runtime_error("unable to get TAP interface flags"); } ifr.ifr_flags |= IFF_UP; if (ioctl(sock,SIOCSIFFLAGS,(void *)&ifr) < 0) { ::close(_fd); ::close(sock); throw std::runtime_error("unable to set TAP interface flags"); } ::close(sock); // Set close-on-exec so that devices cannot persist if we fork/exec for update fcntl(_fd,F_SETFD,fcntl(_fd,F_GETFD) | FD_CLOEXEC); ::pipe(_shutdownSignalPipe); _thread = Thread::start(this); } LinuxEthernetTap::~LinuxEthernetTap() { ::write(_shutdownSignalPipe[1],"\0",1); // causes thread to exit Thread::join(_thread); ::close(_fd); ::close(_shutdownSignalPipe[0]); ::close(_shutdownSignalPipe[1]); } void LinuxEthernetTap::setEnabled(bool en) { _enabled = en; // TODO: interface status change } bool LinuxEthernetTap::enabled() const { return _enabled; } static bool ___removeIp(const std::string &_dev,const InetAddress &ip) { const char *ipcmd = UNIX_COMMANDS[ZT_UNIX_IP_COMMAND]; if (!ipcmd) return false; long cpid = (long)vfork(); if (cpid == 0) { execl(ipcmd,ipcmd,"addr","del",ip.toString().c_str(),"dev",_dev.c_str(),(const char *)0); _exit(-1); } else { int exitcode = -1; waitpid(cpid,&exitcode,0); return (exitcode == 0); } } bool LinuxEthernetTap::addIP(const InetAddress &ip) { const char *ipcmd = UNIX_COMMANDS[ZT_UNIX_IP_COMMAND]; if (!ipcmd) { LOG("ERROR: could not configure IP address for %s: unable to find 'ip' command on system (checked /sbin, /bin, /usr/sbin, /usr/bin)",_dev.c_str()); return false; } if (!ip) return false; std::set allIps(ips()); if (allIps.count(ip) > 0) return true; // Remove and reconfigure if address is the same but netmask is different for(std::set::iterator i(allIps.begin());i!=allIps.end();++i) { if (i->ipsEqual(ip)) { if (___removeIp(_dev,*i)) { break; } else { LOG("WARNING: failed to remove old IP/netmask %s to replace with %s",i->toString().c_str(),ip.toString().c_str()); } } } long cpid; if ((cpid = (long)vfork()) == 0) { execl(ipcmd,ipcmd,"addr","add",ip.toString().c_str(),"dev",_dev.c_str(),(const char *)0); _exit(-1); } else if (cpid > 0) { int exitcode = -1; waitpid(cpid,&exitcode,0); return (exitcode == 0); } return false; } bool LinuxEthernetTap::removeIP(const InetAddress &ip) { if (ips().count(ip) > 0) { if (___removeIp(_dev,ip)) return true; } return false; } std::set LinuxEthernetTap::ips() const { struct ifaddrs *ifa = (struct ifaddrs *)0; if (getifaddrs(&ifa)) return std::set(); std::set r; struct ifaddrs *p = ifa; while (p) { if ((!strcmp(p->ifa_name,_dev.c_str()))&&(p->ifa_addr)&&(p->ifa_netmask)&&(p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) { switch(p->ifa_addr->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)p->ifa_addr; struct sockaddr_in *nm = (struct sockaddr_in *)p->ifa_netmask; r.insert(InetAddress(&(sin->sin_addr.s_addr),4,Utils::countBits((uint32_t)nm->sin_addr.s_addr))); } break; case AF_INET6: { struct sockaddr_in6 *sin = (struct sockaddr_in6 *)p->ifa_addr; struct sockaddr_in6 *nm = (struct sockaddr_in6 *)p->ifa_netmask; uint32_t b[4]; memcpy(b,nm->sin6_addr.s6_addr,sizeof(b)); r.insert(InetAddress(sin->sin6_addr.s6_addr,16,Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3]))); } break; } } p = p->ifa_next; } if (ifa) freeifaddrs(ifa); return r; } void LinuxEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { char putBuf[8194]; if ((_fd > 0)&&(len <= _mtu)&&(_enabled)) { to.copyTo(putBuf,6); from.copyTo(putBuf + 6,6); *((uint16_t *)(putBuf + 12)) = htons((uint16_t)etherType); memcpy(putBuf + 14,data,len); len += 14; ::write(_fd,putBuf,len); } } std::string LinuxEthernetTap::deviceName() const { return _dev; } std::string LinuxEthernetTap::persistentId() const { return std::string(); } bool LinuxEthernetTap::updateMulticastGroups(std::set &groups) { char *ptr,*ptr2; unsigned char mac[6]; std::set newGroups; int fd = ::open("/proc/net/dev_mcast",O_RDONLY); if (fd > 0) { char buf[131072]; int n = (int)::read(fd,buf,sizeof(buf)); if ((n > 0)&&(n < (int)sizeof(buf))) { buf[n] = (char)0; for(char *l=strtok_r(buf,"\r\n",&ptr);(l);l=strtok_r((char *)0,"\r\n",&ptr)) { int fno = 0; char *devname = (char *)0; char *mcastmac = (char *)0; for(char *f=strtok_r(l," \t",&ptr2);(f);f=strtok_r((char *)0," \t",&ptr2)) { if (fno == 1) devname = f; else if (fno == 4) mcastmac = f; ++fno; } if ((devname)&&(!strcmp(devname,_dev.c_str()))&&(mcastmac)&&(Utils::unhex(mcastmac,mac,6) == 6)) newGroups.insert(MulticastGroup(MAC(mac,6),0)); } } ::close(fd); } { std::set allIps(ips()); for(std::set::const_iterator i(allIps.begin());i!=allIps.end();++i) newGroups.insert(MulticastGroup::deriveMulticastGroupForAddressResolution(*i)); } bool changed = false; for(std::set::iterator mg(newGroups.begin());mg!=newGroups.end();++mg) { if (!groups.count(*mg)) { groups.insert(*mg); changed = true; } } for(std::set::iterator mg(groups.begin());mg!=groups.end();) { if ((!newGroups.count(*mg))&&(*mg != _blindWildcardMulticastGroup)) { groups.erase(mg++); changed = true; } else ++mg; } return changed; } void LinuxEthernetTap::threadMain() throw() { fd_set readfds,nullfds; MAC to,from; int n,nfds,r; char getBuf[8194]; Buffer<4096> data; // Wait for a moment after startup -- wait for Network to finish // constructing itself. Thread::sleep(500); FD_ZERO(&readfds); FD_ZERO(&nullfds); nfds = (int)std::max(_shutdownSignalPipe[0],_fd) + 1; r = 0; for(;;) { FD_SET(_shutdownSignalPipe[0],&readfds); FD_SET(_fd,&readfds); select(nfds,&readfds,&nullfds,&nullfds,(struct timeval *)0); if (FD_ISSET(_shutdownSignalPipe[0],&readfds)) // writes to shutdown pipe terminate thread break; if (FD_ISSET(_fd,&readfds)) { n = (int)::read(_fd,getBuf + r,sizeof(getBuf) - r); if (n < 0) { if ((errno != EINTR)&&(errno != ETIMEDOUT)) { TRACE("unexpected error reading from tap: %s",strerror(errno)); break; } } else { // Some tap drivers like to send the ethernet frame and the // payload in two chunks, so handle that by accumulating // data until we have at least a frame. r += n; if (r > 14) { if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms r = _mtu + 14; if (_enabled) { to.setTo(getBuf,6); from.setTo(getBuf + 6,6); unsigned int etherType = ntohs(((const uint16_t *)getBuf)[6]); data.copyFrom(getBuf + 14,(unsigned int)r - 14); _handler(_arg,from,to,etherType,data); } r = 0; } } } } } } // namespace ZeroTier