/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../version.h" #include "../include/ZeroTierOne.h" #include "../node/Constants.hpp" #include "../node/Mutex.hpp" #include "../node/Node.hpp" #include "../node/Utils.hpp" #include "../node/InetAddress.hpp" #include "../node/MAC.hpp" #include "../node/Identity.hpp" #include "../node/World.hpp" #include "../node/Salsa20.hpp" #include "../node/Poly1305.hpp" #include "../node/SHA512.hpp" #include "../osdep/Phy.hpp" #include "../osdep/Thread.hpp" #include "../osdep/OSUtils.hpp" #include "../osdep/Http.hpp" #include "../osdep/PortMapper.hpp" #include "../osdep/Binder.hpp" #include "../osdep/ManagedRoute.hpp" #include "../osdep/BlockingQueue.hpp" #include "OneService.hpp" #include "SoftwareUpdater.hpp" #ifdef __WINDOWS__ #include #include #include #include #include //#include #define stat _stat #else #include #include #include #include #include #include #endif #ifdef ZT_USE_SYSTEM_HTTP_PARSER #include #else #include "../ext/http-parser/http_parser.h" #endif #if ZT_VAULT_SUPPORT extern "C" { #include } #endif #include "../ext/json/json.hpp" using json = nlohmann::json; #include "../controller/EmbeddedNetworkController.hpp" #include "../controller/RabbitMQ.hpp" #ifdef ZT_USE_TEST_TAP #include "../osdep/TestEthernetTap.hpp" namespace ZeroTier { typedef TestEthernetTap EthernetTap; } #else #ifdef ZT_SDK #include "../controller/EmbeddedNetworkController.hpp" #include "../node/Node.hpp" // Use the virtual netcon endpoint instead of a tun/tap port driver #include "../include/VirtualTap.hpp" namespace ZeroTier { typedef VirtualTap EthernetTap; } #else #include "../osdep/EthernetTap.hpp" #endif // ZT_SDK #endif // ZT_USE_TEST_TAP #ifndef ZT_SOFTWARE_UPDATE_DEFAULT #define ZT_SOFTWARE_UPDATE_DEFAULT "disable" #endif // Sanity limits for HTTP #define ZT_MAX_HTTP_MESSAGE_SIZE (1024 * 1024 * 64) #define ZT_MAX_HTTP_CONNECTIONS 65536 // Interface metric for ZeroTier taps -- this ensures that if we are on WiFi and also // bridged via ZeroTier to the same LAN traffic will (if the OS is sane) prefer WiFi. #define ZT_IF_METRIC 5000 // How often to check for new multicast subscriptions on a tap device #define ZT_TAP_CHECK_MULTICAST_INTERVAL 5000 // TCP fallback relay (run by ZeroTier, Inc. -- this will eventually go away) #ifndef ZT_SDK #define ZT_TCP_FALLBACK_RELAY "204.80.128.1/443" #endif // Frequency at which we re-resolve the TCP fallback relay #define ZT_TCP_FALLBACK_RERESOLVE_DELAY 86400000 // Attempt to engage TCP fallback after this many ms of no reply to packets sent to global-scope IPs #define ZT_TCP_FALLBACK_AFTER 60000 // How often to check for local interface addresses #define ZT_LOCAL_INTERFACE_CHECK_INTERVAL 60000 // Maximum write buffer size for outgoing TCP connections (sanity limit) #define ZT_TCP_MAX_WRITEQ_SIZE 33554432 // TCP activity timeout #define ZT_TCP_ACTIVITY_TIMEOUT 60000 #if ZT_VAULT_SUPPORT size_t curlResponseWrite(void *ptr, size_t size, size_t nmemb, std::string *data) { data->append((char*)ptr, size * nmemb); return size * nmemb; } #endif namespace ZeroTier { namespace { static const InetAddress NULL_INET_ADDR; // Fake TLS hello for TCP tunnel outgoing connections (TUNNELED mode) static const char ZT_TCP_TUNNEL_HELLO[9] = { 0x17,0x03,0x03,0x00,0x04,(char)ZEROTIER_ONE_VERSION_MAJOR,(char)ZEROTIER_ONE_VERSION_MINOR,(char)((ZEROTIER_ONE_VERSION_REVISION >> 8) & 0xff),(char)(ZEROTIER_ONE_VERSION_REVISION & 0xff) }; static std::string _trimString(const std::string &s) { unsigned long end = (unsigned long)s.length(); while (end) { char c = s[end - 1]; if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t')) --end; else break; } unsigned long start = 0; while (start < end) { char c = s[start]; if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t')) ++start; else break; } return s.substr(start,end - start); } static void _networkToJson(nlohmann::json &nj,const ZT_VirtualNetworkConfig *nc,const std::string &portDeviceName,const OneService::NetworkSettings &localSettings) { char tmp[256]; const char *nstatus = "",*ntype = ""; switch(nc->status) { case ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION: nstatus = "REQUESTING_CONFIGURATION"; break; case ZT_NETWORK_STATUS_OK: nstatus = "OK"; break; case ZT_NETWORK_STATUS_ACCESS_DENIED: nstatus = "ACCESS_DENIED"; break; case ZT_NETWORK_STATUS_NOT_FOUND: nstatus = "NOT_FOUND"; break; case ZT_NETWORK_STATUS_PORT_ERROR: nstatus = "PORT_ERROR"; break; case ZT_NETWORK_STATUS_CLIENT_TOO_OLD: nstatus = "CLIENT_TOO_OLD"; break; } switch(nc->type) { case ZT_NETWORK_TYPE_PRIVATE: ntype = "PRIVATE"; break; case ZT_NETWORK_TYPE_PUBLIC: ntype = "PUBLIC"; break; } OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",nc->nwid); nj["id"] = tmp; nj["nwid"] = tmp; OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",(unsigned int)((nc->mac >> 40) & 0xff),(unsigned int)((nc->mac >> 32) & 0xff),(unsigned int)((nc->mac >> 24) & 0xff),(unsigned int)((nc->mac >> 16) & 0xff),(unsigned int)((nc->mac >> 8) & 0xff),(unsigned int)(nc->mac & 0xff)); nj["mac"] = tmp; nj["name"] = nc->name; nj["status"] = nstatus; nj["type"] = ntype; nj["mtu"] = nc->mtu; nj["dhcp"] = (bool)(nc->dhcp != 0); nj["bridge"] = (bool)(nc->bridge != 0); nj["broadcastEnabled"] = (bool)(nc->broadcastEnabled != 0); nj["portError"] = nc->portError; nj["netconfRevision"] = nc->netconfRevision; nj["portDeviceName"] = portDeviceName; nj["allowManaged"] = localSettings.allowManaged; nj["allowGlobal"] = localSettings.allowGlobal; nj["allowDefault"] = localSettings.allowDefault; nlohmann::json aa = nlohmann::json::array(); for(unsigned int i=0;iassignedAddressCount;++i) { aa.push_back(reinterpret_cast(&(nc->assignedAddresses[i]))->toString(tmp)); } nj["assignedAddresses"] = aa; nlohmann::json ra = nlohmann::json::array(); for(unsigned int i=0;irouteCount;++i) { nlohmann::json rj; rj["target"] = reinterpret_cast(&(nc->routes[i].target))->toString(tmp); if (nc->routes[i].via.ss_family == nc->routes[i].target.ss_family) rj["via"] = reinterpret_cast(&(nc->routes[i].via))->toIpString(tmp); else rj["via"] = nlohmann::json(); rj["flags"] = (int)nc->routes[i].flags; rj["metric"] = (int)nc->routes[i].metric; ra.push_back(rj); } nj["routes"] = ra; nlohmann::json mca = nlohmann::json::array(); for(unsigned int i=0;imulticastSubscriptionCount;++i) { nlohmann::json m; m["mac"] = MAC(nc->multicastSubscriptions[i].mac).toString(tmp); m["adi"] = nc->multicastSubscriptions[i].adi; mca.push_back(m); } nj["multicastSubscriptions"] = mca; } static void _peerToJson(nlohmann::json &pj,const ZT_Peer *peer) { char tmp[256]; const char *prole = ""; switch(peer->role) { case ZT_PEER_ROLE_LEAF: prole = "LEAF"; break; case ZT_PEER_ROLE_MOON: prole = "MOON"; break; case ZT_PEER_ROLE_PLANET: prole = "PLANET"; break; } OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.10llx",peer->address); pj["address"] = tmp; pj["versionMajor"] = peer->versionMajor; pj["versionMinor"] = peer->versionMinor; pj["versionRev"] = peer->versionRev; OSUtils::ztsnprintf(tmp,sizeof(tmp),"%d.%d.%d",peer->versionMajor,peer->versionMinor,peer->versionRev); pj["version"] = tmp; pj["latency"] = peer->latency; pj["role"] = prole; nlohmann::json pa = nlohmann::json::array(); for(unsigned int i=0;ipathCount;++i) { int64_t lastSend = peer->paths[i].lastSend; int64_t lastReceive = peer->paths[i].lastReceive; nlohmann::json j; j["address"] = reinterpret_cast(&(peer->paths[i].address))->toString(tmp); j["lastSend"] = (lastSend < 0) ? 0 : lastSend; j["lastReceive"] = (lastReceive < 0) ? 0 : lastReceive; j["trustedPathId"] = peer->paths[i].trustedPathId; j["active"] = (bool)(peer->paths[i].expired == 0); j["expired"] = (bool)(peer->paths[i].expired != 0); j["preferred"] = (bool)(peer->paths[i].preferred != 0); pa.push_back(j); } pj["paths"] = pa; } static void _peerAggregateLinkToJson(nlohmann::json &pj,const ZT_Peer *peer) { char tmp[256]; OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.10llx",peer->address); pj["aggregateLinkLatency"] = peer->latency; nlohmann::json pa = nlohmann::json::array(); for(unsigned int i=0;ipathCount;++i) { int64_t lastSend = peer->paths[i].lastSend; int64_t lastReceive = peer->paths[i].lastReceive; nlohmann::json j; j["address"] = reinterpret_cast(&(peer->paths[i].address))->toString(tmp); j["lastSend"] = (lastSend < 0) ? 0 : lastSend; j["lastReceive"] = (lastReceive < 0) ? 0 : lastReceive; //j["trustedPathId"] = peer->paths[i].trustedPathId; //j["active"] = (bool)(peer->paths[i].expired == 0); //j["expired"] = (bool)(peer->paths[i].expired != 0); //j["preferred"] = (bool)(peer->paths[i].preferred != 0); j["latency"] = peer->paths[i].latency; j["pdv"] = peer->paths[i].packetDelayVariance; //j["throughputDisturbCoeff"] = peer->paths[i].throughputDisturbCoeff; //j["packetErrorRatio"] = peer->paths[i].packetErrorRatio; //j["packetLossRatio"] = peer->paths[i].packetLossRatio; j["stability"] = peer->paths[i].stability; j["throughput"] = peer->paths[i].throughput; //j["maxThroughput"] = peer->paths[i].maxThroughput; j["allocation"] = peer->paths[i].allocation; j["ifname"] = peer->paths[i].ifname; pa.push_back(j); } pj["paths"] = pa; } static void _moonToJson(nlohmann::json &mj,const World &world) { char tmp[4096]; OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",world.id()); mj["id"] = tmp; mj["timestamp"] = world.timestamp(); mj["signature"] = Utils::hex(world.signature().data,ZT_C25519_SIGNATURE_LEN,tmp); mj["updatesMustBeSignedBy"] = Utils::hex(world.updatesMustBeSignedBy().data,ZT_C25519_PUBLIC_KEY_LEN,tmp); nlohmann::json ra = nlohmann::json::array(); for(std::vector::const_iterator r(world.roots().begin());r!=world.roots().end();++r) { nlohmann::json rj; rj["identity"] = r->identity.toString(false,tmp); nlohmann::json eps = nlohmann::json::array(); for(std::vector::const_iterator a(r->stableEndpoints.begin());a!=r->stableEndpoints.end();++a) eps.push_back(a->toString(tmp)); rj["stableEndpoints"] = eps; ra.push_back(rj); } mj["roots"] = ra; mj["waiting"] = false; } class OneServiceImpl; static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf); static void SnodeEventCallback(ZT_Node *node,void *uptr,void *tptr,enum ZT_Event event,const void *metaData); static void SnodeStatePutFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len); static int SnodeStateGetFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen); static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,void *tptr,int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl); static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len); static int SnodePathCheckFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int64_t localSocket,const struct sockaddr_storage *remoteAddr); static int SnodePathLookupFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int family,struct sockaddr_storage *result); static void StapFrameHandler(void *uptr,void *tptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len); static int ShttpOnMessageBegin(http_parser *parser); static int ShttpOnUrl(http_parser *parser,const char *ptr,size_t length); #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2) static int ShttpOnStatus(http_parser *parser,const char *ptr,size_t length); #else static int ShttpOnStatus(http_parser *parser); #endif static int ShttpOnHeaderField(http_parser *parser,const char *ptr,size_t length); static int ShttpOnValue(http_parser *parser,const char *ptr,size_t length); static int ShttpOnHeadersComplete(http_parser *parser); static int ShttpOnBody(http_parser *parser,const char *ptr,size_t length); static int ShttpOnMessageComplete(http_parser *parser); #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 1) static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnStatus, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete }; #else static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete }; #endif /** * A TCP connection and related state and buffers */ struct TcpConnection { enum { TCP_UNCATEGORIZED_INCOMING, // uncategorized incoming connection TCP_HTTP_INCOMING, TCP_HTTP_OUTGOING, TCP_TUNNEL_OUTGOING // TUNNELED mode proxy outbound connection } type; OneServiceImpl *parent; PhySocket *sock; InetAddress remoteAddr; uint64_t lastReceive; // Used for inbound HTTP connections http_parser parser; unsigned long messageSize; std::string currentHeaderField; std::string currentHeaderValue; std::string url; std::string status; std::map< std::string,std::string > headers; std::string readq; std::string writeq; Mutex writeq_m; }; struct OneServiceIncomingPacket { uint64_t now; int64_t sock; struct sockaddr_storage from; unsigned int size; uint8_t data[ZT_MAX_MTU]; }; class OneServiceImpl : public OneService { public: // begin member variables -------------------------------------------------- const std::string _homePath; std::string _authToken; std::string _controllerDbPath; const std::string _networksPath; const std::string _moonsPath; EmbeddedNetworkController *_controller; Phy _phy; Node *_node; SoftwareUpdater *_updater; PhySocket *_localControlSocket4; PhySocket *_localControlSocket6; bool _updateAutoApply; bool _allowTcpFallbackRelay; bool _allowSecondaryPort; unsigned int _multipathMode; unsigned int _primaryPort; unsigned int _secondaryPort; unsigned int _tertiaryPort; volatile unsigned int _udpPortPickerCounter; // Local configuration and memo-ized information from it json _localConfig; Hashtable< uint64_t,std::vector > _v4Hints; Hashtable< uint64_t,std::vector > _v6Hints; Hashtable< uint64_t,std::vector > _v4Blacklists; Hashtable< uint64_t,std::vector > _v6Blacklists; std::vector< InetAddress > _globalV4Blacklist; std::vector< InetAddress > _globalV6Blacklist; std::vector< InetAddress > _allowManagementFrom; std::vector< std::string > _interfacePrefixBlacklist; Mutex _localConfig_m; std::vector explicitBind; /* * To attempt to handle NAT/gateway craziness we use three local UDP ports: * * [0] is the normal/default port, usually 9993 * [1] is a port derived from our ZeroTier address * [2] is a port computed from the normal/default for use with uPnP/NAT-PMP mappings * * [2] exists because on some gateways trying to do regular NAT-t interferes * destructively with uPnP port mapping behavior in very weird buggy ways. * It's only used if uPnP/NAT-PMP is enabled in this build. */ unsigned int _ports[3]; Binder _binder; // Time we last received a packet from a global address uint64_t _lastDirectReceiveFromGlobal; #ifdef ZT_TCP_FALLBACK_RELAY uint64_t _lastSendToGlobalV4; #endif // Last potential sleep/wake event uint64_t _lastRestart; // Deadline for the next background task service function volatile int64_t _nextBackgroundTaskDeadline; // Configured networks struct NetworkState { NetworkState() : tap((EthernetTap *)0) { // Real defaults are in network 'up' code in network event handler settings.allowManaged = true; settings.allowGlobal = false; settings.allowDefault = false; } std::shared_ptr tap; ZT_VirtualNetworkConfig config; // memcpy() of raw config from core std::vector managedIps; std::list< SharedPtr > managedRoutes; NetworkSettings settings; }; std::map _nets; Mutex _nets_m; // Active TCP/IP connections std::vector< TcpConnection * > _tcpConnections; Mutex _tcpConnections_m; TcpConnection *_tcpFallbackTunnel; // Termination status information ReasonForTermination _termReason; std::string _fatalErrorMessage; Mutex _termReason_m; // uPnP/NAT-PMP port mapper if enabled bool _portMappingEnabled; // local.conf settings #ifdef ZT_USE_MINIUPNPC PortMapper *_portMapper; #endif // HashiCorp Vault Settings #if ZT_VAULT_SUPPORT bool _vaultEnabled; std::string _vaultURL; std::string _vaultToken; std::string _vaultPath; // defaults to cubbyhole/zerotier/identity.secret for per-access key storage #endif // Set to false to force service to stop volatile bool _run; Mutex _run_m; MQConfig *_mqc; // end member variables ---------------------------------------------------- OneServiceImpl(const char *hp,unsigned int port) : _homePath((hp) ? hp : ".") ,_controllerDbPath(_homePath + ZT_PATH_SEPARATOR_S "controller.d") ,_networksPath(_homePath + ZT_PATH_SEPARATOR_S "networks.d") ,_moonsPath(_homePath + ZT_PATH_SEPARATOR_S "moons.d") ,_controller((EmbeddedNetworkController *)0) ,_phy(this,false,true) ,_node((Node *)0) ,_updater((SoftwareUpdater *)0) ,_localControlSocket4((PhySocket *)0) ,_localControlSocket6((PhySocket *)0) ,_updateAutoApply(false) ,_primaryPort(port) ,_udpPortPickerCounter(0) ,_lastDirectReceiveFromGlobal(0) #ifdef ZT_TCP_FALLBACK_RELAY ,_lastSendToGlobalV4(0) #endif ,_lastRestart(0) ,_nextBackgroundTaskDeadline(0) ,_tcpFallbackTunnel((TcpConnection *)0) ,_termReason(ONE_STILL_RUNNING) ,_portMappingEnabled(true) #ifdef ZT_USE_MINIUPNPC ,_portMapper((PortMapper *)0) #endif #ifdef ZT_VAULT_SUPPORT ,_vaultEnabled(false) ,_vaultURL() ,_vaultToken() ,_vaultPath("cubbyhole/zerotier") #endif ,_run(true) ,_mqc(NULL) { _ports[0] = 0; _ports[1] = 0; _ports[2] = 0; #if ZT_VAULT_SUPPORT curl_global_init(CURL_GLOBAL_DEFAULT); #endif } virtual ~OneServiceImpl() { _binder.closeAll(_phy); _phy.close(_localControlSocket4); _phy.close(_localControlSocket6); #if ZT_VAULT_SUPPORT curl_global_cleanup(); #endif #ifdef ZT_USE_MINIUPNPC delete _portMapper; #endif delete _controller; delete _mqc; } virtual ReasonForTermination run() { try { { const std::string authTokenPath(_homePath + ZT_PATH_SEPARATOR_S "authtoken.secret"); if (!OSUtils::readFile(authTokenPath.c_str(),_authToken)) { unsigned char foo[24]; Utils::getSecureRandom(foo,sizeof(foo)); _authToken = ""; for(unsigned int i=0;iaddress() % 45500) : _secondaryPort; for(int i=0;;++i) { if (i > 1000) { _ports[1] = 0; break; } else if (++_ports[1] >= 65536) { _ports[1] = 20000; } if (_trialBind(_ports[1])) break; } } #ifdef ZT_USE_MINIUPNPC if (_portMappingEnabled) { // If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't // use the other two ports for that because some NATs do really funky // stuff with ports that are explicitly mapped that breaks things. if (_ports[1]) { _ports[2] = (_tertiaryPort == 0) ? _ports[1] : _tertiaryPort; for(int i=0;;++i) { if (i > 1000) { _ports[2] = 0; break; } else if (++_ports[2] >= 65536) { _ports[2] = 20000; } if (_trialBind(_ports[2])) break; } if (_ports[2]) { char uniqueName[64]; OSUtils::ztsnprintf(uniqueName,sizeof(uniqueName),"ZeroTier/%.10llx@%u",_node->address(),_ports[2]); _portMapper = new PortMapper(_ports[2],uniqueName); } } } #endif // Delete legacy iddb.d if present (cleanup) OSUtils::rmDashRf((_homePath + ZT_PATH_SEPARATOR_S "iddb.d").c_str()); // Network controller is now enabled by default for desktop and server _controller = new EmbeddedNetworkController(_node,_homePath.c_str(),_controllerDbPath.c_str(),_ports[0], _mqc); _node->setNetconfMaster((void *)_controller); // Join existing networks in networks.d { std::vector networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str())); for(std::vector::iterator f(networksDotD.begin());f!=networksDotD.end();++f) { std::size_t dot = f->find_last_of('.'); if ((dot == 16)&&(f->substr(16) == ".conf")) _node->join(Utils::hexStrToU64(f->substr(0,dot).c_str()),(void *)0,(void *)0); } } // Orbit existing moons in moons.d { std::vector moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str())); for(std::vector::iterator f(moonsDotD.begin());f!=moonsDotD.end();++f) { std::size_t dot = f->find_last_of('.'); if ((dot == 16)&&(f->substr(16) == ".moon")) _node->orbit((void *)0,Utils::hexStrToU64(f->substr(0,dot).c_str()),0); } } // Main I/O loop _nextBackgroundTaskDeadline = 0; int64_t clockShouldBe = OSUtils::now(); _lastRestart = clockShouldBe; int64_t lastTapMulticastGroupCheck = 0; int64_t lastBindRefresh = 0; int64_t lastUpdateCheck = clockShouldBe; int64_t lastMultipathModeUpdate = 0; int64_t lastCleanedPeersDb = 0; int64_t lastLocalInterfaceAddressCheck = (clockShouldBe - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle int64_t lastLocalConfFileCheck = OSUtils::now(); for(;;) { _run_m.lock(); if (!_run) { _run_m.unlock(); _termReason_m.lock(); _termReason = ONE_NORMAL_TERMINATION; _termReason_m.unlock(); break; } else { _run_m.unlock(); } const int64_t now = OSUtils::now(); // Attempt to detect sleep/wake events by detecting delay overruns bool restarted = false; if ((now > clockShouldBe)&&((now - clockShouldBe) > 10000)) { _lastRestart = now; restarted = true; } // Check for updates (if enabled) if ((_updater)&&((now - lastUpdateCheck) > 10000)) { lastUpdateCheck = now; if (_updater->check(now) && _updateAutoApply) _updater->apply(); } // Reload local.conf if anything changed recently if ((now - lastLocalConfFileCheck) >= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) { lastLocalConfFileCheck = now; struct stat result; if(stat((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), &result)==0) { int64_t mod_time = result.st_mtime * 1000; if ((now - mod_time) <= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) { readLocalSettings(); applyLocalConfig(); } } } // Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default) if (((now - lastBindRefresh) >= (_multipathMode ? ZT_BINDER_REFRESH_PERIOD / 8 : ZT_BINDER_REFRESH_PERIOD))||(restarted)) { lastBindRefresh = now; unsigned int p[3]; unsigned int pc = 0; for(int i=0;i<3;++i) { if (_ports[i]) p[pc++] = _ports[i]; } _binder.refresh(_phy,p,pc,explicitBind,*this); { Mutex::Lock _l(_nets_m); for(std::map::iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) syncManagedStuff(n->second,false,true); } } } // Update multipath mode (if needed) if (((now - lastMultipathModeUpdate) >= ZT_BINDER_REFRESH_PERIOD / 8)||(restarted)) { lastMultipathModeUpdate = now; _node->setMultipathMode(_multipathMode); } // Run background task processor in core if it's time to do so int64_t dl = _nextBackgroundTaskDeadline; if (dl <= now) { _node->processBackgroundTasks((void *)0,now,&_nextBackgroundTaskDeadline); dl = _nextBackgroundTaskDeadline; } // Close TCP fallback tunnel if we have direct UDP if ((_tcpFallbackTunnel)&&((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2))) _phy.close(_tcpFallbackTunnel->sock); // Sync multicast group memberships if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) { lastTapMulticastGroupCheck = now; std::vector< std::pair< uint64_t,std::pair< std::vector,std::vector > > > mgChanges; { Mutex::Lock _l(_nets_m); mgChanges.reserve(_nets.size() + 1); for(std::map::const_iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) { mgChanges.push_back(std::pair< uint64_t,std::pair< std::vector,std::vector > >(n->first,std::pair< std::vector,std::vector >())); n->second.tap->scanMulticastGroups(mgChanges.back().second.first,mgChanges.back().second.second); } } } for(std::vector< std::pair< uint64_t,std::pair< std::vector,std::vector > > >::iterator c(mgChanges.begin());c!=mgChanges.end();++c) { for(std::vector::iterator m(c->second.first.begin());m!=c->second.first.end();++m) _node->multicastSubscribe((void *)0,c->first,m->mac().toInt(),m->adi()); for(std::vector::iterator m(c->second.second.begin());m!=c->second.second.end();++m) _node->multicastUnsubscribe(c->first,m->mac().toInt(),m->adi()); } } // Sync information about physical network interfaces if ((now - lastLocalInterfaceAddressCheck) >= (_multipathMode ? ZT_LOCAL_INTERFACE_CHECK_INTERVAL / 8 : ZT_LOCAL_INTERFACE_CHECK_INTERVAL)) { lastLocalInterfaceAddressCheck = now; _node->clearLocalInterfaceAddresses(); #ifdef ZT_USE_MINIUPNPC if (_portMapper) { std::vector mappedAddresses(_portMapper->get()); for(std::vector::const_iterator ext(mappedAddresses.begin());ext!=mappedAddresses.end();++ext) _node->addLocalInterfaceAddress(reinterpret_cast(&(*ext))); } #endif std::vector boundAddrs(_binder.allBoundLocalInterfaceAddresses()); for(std::vector::const_iterator i(boundAddrs.begin());i!=boundAddrs.end();++i) _node->addLocalInterfaceAddress(reinterpret_cast(&(*i))); } // Clean peers.d periodically if ((now - lastCleanedPeersDb) >= 3600000) { lastCleanedPeersDb = now; OSUtils::cleanDirectory((_homePath + ZT_PATH_SEPARATOR_S "peers.d").c_str(),now - 2592000000LL); // delete older than 30 days } const unsigned long delay = (dl > now) ? (unsigned long)(dl - now) : 100; clockShouldBe = now + (uint64_t)delay; _phy.poll(delay); } } catch (std::exception &e) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = std::string("unexpected exception in main thread: ")+e.what(); } catch ( ... ) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "unexpected exception in main thread: unknown exception"; } try { Mutex::Lock _l(_tcpConnections_m); while (!_tcpConnections.empty()) _phy.close((*_tcpConnections.begin())->sock); } catch ( ... ) {} { Mutex::Lock _l(_nets_m); _nets.clear(); } delete _updater; _updater = (SoftwareUpdater *)0; delete _node; _node = (Node *)0; return _termReason; } void readLocalSettings() { // Read local configuration std::map ppc; // LEGACY: support old "trustedpaths" flat file FILE *trustpaths = fopen((_homePath + ZT_PATH_SEPARATOR_S "trustedpaths").c_str(),"r"); if (trustpaths) { fprintf(stderr,"WARNING: 'trustedpaths' flat file format is deprecated in favor of path definitions in local.conf" ZT_EOL_S); char buf[1024]; while (fgets(buf,sizeof(buf),trustpaths)) { int fno = 0; char *saveptr = (char *)0; uint64_t trustedPathId = 0; InetAddress trustedPathNetwork; for(char *f=Utils::stok(buf,"=\r\n \t",&saveptr);(f);f=Utils::stok((char *)0,"=\r\n \t",&saveptr)) { if (fno == 0) { trustedPathId = Utils::hexStrToU64(f); } else if (fno == 1) { trustedPathNetwork = InetAddress(f); } else break; ++fno; } if ( (trustedPathId != 0) && ((trustedPathNetwork.ss_family == AF_INET)||(trustedPathNetwork.ss_family == AF_INET6)) && (trustedPathNetwork.netmaskBits() > 0) ) { ppc[trustedPathNetwork].trustedPathId = trustedPathId; ppc[trustedPathNetwork].mtu = 0; // use default } } fclose(trustpaths); } // Read local config file Mutex::Lock _l2(_localConfig_m); std::string lcbuf; if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(),lcbuf)) { if (lcbuf.length() > 0) { try { _localConfig = OSUtils::jsonParse(lcbuf); if (!_localConfig.is_object()) { fprintf(stderr,"ERROR: unable to parse local.conf (root element is not a JSON object)" ZT_EOL_S); exit(1); } } catch ( ... ) { fprintf(stderr,"ERROR: unable to parse local.conf (invalid JSON)" ZT_EOL_S); exit(1); } } } // Get any trusted paths in local.conf (we'll parse the rest of physical[] elsewhere) json &physical = _localConfig["physical"]; if (physical.is_object()) { for(json::iterator phy(physical.begin());phy!=physical.end();++phy) { InetAddress net(OSUtils::jsonString(phy.key(),"").c_str()); if (net) { if (phy.value().is_object()) { uint64_t tpid; if ((tpid = OSUtils::jsonInt(phy.value()["trustedPathId"],0ULL)) != 0ULL) { if ((net.ss_family == AF_INET)||(net.ss_family == AF_INET6)) ppc[net].trustedPathId = tpid; } ppc[net].mtu = (int)OSUtils::jsonInt(phy.value()["mtu"],0ULL); // 0 means use default } } } } json &settings = _localConfig["settings"]; if (settings.is_object()) { // Allow controller DB path to be put somewhere else const std::string cdbp(OSUtils::jsonString(settings["controllerDbPath"],"")); if (cdbp.length() > 0) _controllerDbPath = cdbp; json &rmq = settings["rabbitmq"]; if (rmq.is_object() && _mqc == NULL) { fprintf(stderr, "Reading RabbitMQ Config\n"); _mqc = new MQConfig; _mqc->port = rmq["port"]; _mqc->host = OSUtils::jsonString(rmq["host"], "").c_str(); _mqc->username = OSUtils::jsonString(rmq["username"], "").c_str(); _mqc->password = OSUtils::jsonString(rmq["password"], "").c_str(); } // Bind to wildcard instead of to specific interfaces (disables full tunnel capability) json &bind = settings["bind"]; if (bind.is_array()) { for(unsigned long i=0;i 0) { InetAddress ip(ips.c_str()); if ((ip.ss_family == AF_INET)||(ip.ss_family == AF_INET6)) explicitBind.push_back(ip); } } } } // Set trusted paths if there are any if (ppc.size() > 0) { for(std::map::iterator i(ppc.begin());i!=ppc.end();++i) _node->setPhysicalPathConfiguration(reinterpret_cast(&(i->first)),&(i->second)); } } virtual ReasonForTermination reasonForTermination() const { Mutex::Lock _l(_termReason_m); return _termReason; } virtual std::string fatalErrorMessage() const { Mutex::Lock _l(_termReason_m); return _fatalErrorMessage; } virtual std::string portDeviceName(uint64_t nwid) const { Mutex::Lock _l(_nets_m); std::map::const_iterator n(_nets.find(nwid)); if ((n != _nets.end())&&(n->second.tap)) return n->second.tap->deviceName(); else return std::string(); } #ifdef ZT_SDK virtual std::string givenHomePath() { return _homePath; } void getRoutes(uint64_t nwid, void *routeArray, unsigned int *numRoutes) { Mutex::Lock _l(_nets_m); NetworkState &n = _nets[nwid]; *numRoutes = *numRoutes < n.config.routeCount ? *numRoutes : n.config.routeCount; for(unsigned int i=0; i<*numRoutes; i++) { ZT_VirtualNetworkRoute *vnr = (ZT_VirtualNetworkRoute*)routeArray; memcpy(&vnr[i], &(n.config.routes[i]), sizeof(ZT_VirtualNetworkRoute)); } } virtual Node *getNode() { return _node; } #endif // ZT_SDK virtual void terminate() { _run_m.lock(); _run = false; _run_m.unlock(); _phy.whack(); } virtual bool getNetworkSettings(const uint64_t nwid,NetworkSettings &settings) const { Mutex::Lock _l(_nets_m); std::map::const_iterator n(_nets.find(nwid)); if (n == _nets.end()) return false; settings = n->second.settings; return true; } virtual bool setNetworkSettings(const uint64_t nwid,const NetworkSettings &settings) { Mutex::Lock _l(_nets_m); std::map::iterator n(_nets.find(nwid)); if (n == _nets.end()) return false; n->second.settings = settings; char nlcpath[4096]; OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_networksPath.c_str(),nwid); FILE *out = fopen(nlcpath,"w"); if (out) { fprintf(out,"allowManaged=%d\n",(int)n->second.settings.allowManaged); fprintf(out,"allowGlobal=%d\n",(int)n->second.settings.allowGlobal); fprintf(out,"allowDefault=%d\n",(int)n->second.settings.allowDefault); fclose(out); } if (n->second.tap) syncManagedStuff(n->second,true,true); return true; } // ========================================================================= // Internal implementation methods for control plane, route setup, etc. // ========================================================================= inline unsigned int handleControlPlaneHttpRequest( const InetAddress &fromAddress, unsigned int httpMethod, const std::string &path, const std::map &headers, const std::string &body, std::string &responseBody, std::string &responseContentType) { char tmp[256]; unsigned int scode = 404; json res; std::vector ps(OSUtils::split(path.c_str(),"/","","")); std::map urlArgs; /* Note: this is kind of restricted in what it'll take. It does not support * URL encoding, and /'s in URL args will screw it up. But the only URL args * it really uses in ?jsonp=funcionName, and otherwise it just takes simple * paths to simply-named resources. */ if (ps.size() > 0) { std::size_t qpos = ps[ps.size() - 1].find('?'); if (qpos != std::string::npos) { std::string args(ps[ps.size() - 1].substr(qpos + 1)); ps[ps.size() - 1] = ps[ps.size() - 1].substr(0,qpos); std::vector asplit(OSUtils::split(args.c_str(),"&","","")); for(std::vector::iterator a(asplit.begin());a!=asplit.end();++a) { std::size_t eqpos = a->find('='); if (eqpos == std::string::npos) urlArgs[*a] = ""; else urlArgs[a->substr(0,eqpos)] = a->substr(eqpos + 1); } } } else { return 404; } bool isAuth = false; { std::map::const_iterator ah(headers.find("x-zt1-auth")); if ((ah != headers.end())&&(_authToken == ah->second)) { isAuth = true; } else { ah = urlArgs.find("auth"); if ((ah != urlArgs.end())&&(_authToken == ah->second)) isAuth = true; } } #ifdef __SYNOLOGY__ // Authenticate via Synology's built-in cgi script if (!isAuth) { int synotoken_pos = path.find("SynoToken"); int argpos = path.find("?"); if(synotoken_pos != std::string::npos && argpos != std::string::npos) { std::string cookie = path.substr(argpos+1, synotoken_pos-(argpos+1)); std::string synotoken = path.substr(synotoken_pos); std::string cookie_val = cookie.substr(cookie.find("=")+1); std::string synotoken_val = synotoken.substr(synotoken.find("=")+1); // Set necessary env for auth script std::map::const_iterator ah2(headers.find("x-forwarded-for")); setenv("HTTP_COOKIE", cookie_val.c_str(), true); setenv("HTTP_X_SYNO_TOKEN", synotoken_val.c_str(), true); setenv("REMOTE_ADDR", ah2->second.c_str(),true); char user[256], buf[1024]; FILE *fp = NULL; bzero(user, 256); fp = popen("/usr/syno/synoman/webman/modules/authenticate.cgi", "r"); if(!fp) isAuth = false; else { bzero(buf, sizeof(buf)); fread(buf, 1024, 1, fp); if(strlen(buf) > 0) { snprintf(user, 256, "%s", buf); isAuth = true; } } pclose(fp); } } #endif if (httpMethod == HTTP_GET) { if (isAuth) { if (ps[0] == "status") { ZT_NodeStatus status; _node->status(&status); OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.10llx",status.address); res["address"] = tmp; res["publicIdentity"] = status.publicIdentity; res["online"] = (bool)(status.online != 0); res["tcpFallbackActive"] = (_tcpFallbackTunnel != (TcpConnection *)0); res["versionMajor"] = ZEROTIER_ONE_VERSION_MAJOR; res["versionMinor"] = ZEROTIER_ONE_VERSION_MINOR; res["versionRev"] = ZEROTIER_ONE_VERSION_REVISION; res["versionBuild"] = ZEROTIER_ONE_VERSION_BUILD; OSUtils::ztsnprintf(tmp,sizeof(tmp),"%d.%d.%d",ZEROTIER_ONE_VERSION_MAJOR,ZEROTIER_ONE_VERSION_MINOR,ZEROTIER_ONE_VERSION_REVISION); res["version"] = tmp; res["clock"] = OSUtils::now(); { Mutex::Lock _l(_localConfig_m); res["config"] = _localConfig; } json &settings = res["config"]["settings"]; settings["primaryPort"] = OSUtils::jsonInt(settings["primaryPort"],(uint64_t)_primaryPort) & 0xffff; settings["allowTcpFallbackRelay"] = OSUtils::jsonBool(settings["allowTcpFallbackRelay"],_allowTcpFallbackRelay); if (_multipathMode) { json &multipathConfig = res["multipath"]; ZT_PeerList *pl = _node->peers(); char peerAddrStr[256]; if (pl) { for(unsigned long i=0;ipeerCount;++i) { if (pl->peers[i].hadAggregateLink) { nlohmann::json pj; _peerAggregateLinkToJson(pj,&(pl->peers[i])); OSUtils::ztsnprintf(peerAddrStr,sizeof(peerAddrStr),"%.10llx",pl->peers[i].address); multipathConfig[peerAddrStr] = (pj); } } } } #ifdef ZT_USE_MINIUPNPC settings["portMappingEnabled"] = OSUtils::jsonBool(settings["portMappingEnabled"],true); #else settings["portMappingEnabled"] = false; // not supported in build #endif #ifndef ZT_SDK settings["softwareUpdate"] = OSUtils::jsonString(settings["softwareUpdate"],ZT_SOFTWARE_UPDATE_DEFAULT); settings["softwareUpdateChannel"] = OSUtils::jsonString(settings["softwareUpdateChannel"],ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL); #endif const World planet(_node->planet()); res["planetWorldId"] = planet.id(); res["planetWorldTimestamp"] = planet.timestamp(); scode = 200; } else if (ps[0] == "moon") { std::vector moons(_node->moons()); if (ps.size() == 1) { // Return [array] of all moons res = json::array(); for(std::vector::const_iterator m(moons.begin());m!=moons.end();++m) { json mj; _moonToJson(mj,*m); res.push_back(mj); } scode = 200; } else { // Return a single moon by ID const uint64_t id = Utils::hexStrToU64(ps[1].c_str()); for(std::vector::const_iterator m(moons.begin());m!=moons.end();++m) { if (m->id() == id) { _moonToJson(res,*m); scode = 200; break; } } } } else if (ps[0] == "network") { ZT_VirtualNetworkList *nws = _node->networks(); if (nws) { if (ps.size() == 1) { // Return [array] of all networks res = nlohmann::json::array(); for(unsigned long i=0;inetworkCount;++i) { OneService::NetworkSettings localSettings; getNetworkSettings(nws->networks[i].nwid,localSettings); nlohmann::json nj; _networkToJson(nj,&(nws->networks[i]),portDeviceName(nws->networks[i].nwid),localSettings); res.push_back(nj); } scode = 200; } else if (ps.size() == 2) { // Return a single network by ID or 404 if not found const uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str()); for(unsigned long i=0;inetworkCount;++i) { if (nws->networks[i].nwid == wantnw) { OneService::NetworkSettings localSettings; getNetworkSettings(nws->networks[i].nwid,localSettings); _networkToJson(res,&(nws->networks[i]),portDeviceName(nws->networks[i].nwid),localSettings); scode = 200; break; } } } else scode = 404; _node->freeQueryResult((void *)nws); } else scode = 500; } else if (ps[0] == "peer") { ZT_PeerList *pl = _node->peers(); if (pl) { if (ps.size() == 1) { // Return [array] of all peers res = nlohmann::json::array(); for(unsigned long i=0;ipeerCount;++i) { nlohmann::json pj; _peerToJson(pj,&(pl->peers[i])); res.push_back(pj); } scode = 200; } else if (ps.size() == 2) { // Return a single peer by ID or 404 if not found uint64_t wantp = Utils::hexStrToU64(ps[1].c_str()); for(unsigned long i=0;ipeerCount;++i) { if (pl->peers[i].address == wantp) { _peerToJson(res,&(pl->peers[i])); scode = 200; break; } } } else scode = 404; _node->freeQueryResult((void *)pl); } else scode = 500; } else { if (_controller) { scode = _controller->handleControlPlaneHttpGET(std::vector(ps.begin()+1,ps.end()),urlArgs,headers,body,responseBody,responseContentType); } else scode = 404; } } else scode = 401; // isAuth == false } else if ((httpMethod == HTTP_POST)||(httpMethod == HTTP_PUT)) { if (isAuth) { if (ps[0] == "moon") { if (ps.size() == 2) { uint64_t seed = 0; try { json j(OSUtils::jsonParse(body)); if (j.is_object()) { seed = Utils::hexStrToU64(OSUtils::jsonString(j["seed"],"0").c_str()); } } catch ( ... ) { // discard invalid JSON } std::vector moons(_node->moons()); const uint64_t id = Utils::hexStrToU64(ps[1].c_str()); for(std::vector::const_iterator m(moons.begin());m!=moons.end();++m) { if (m->id() == id) { _moonToJson(res,*m); scode = 200; break; } } if ((scode != 200)&&(seed != 0)) { char tmp[64]; OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",id); res["id"] = tmp; res["roots"] = json::array(); res["timestamp"] = 0; res["signature"] = json(); res["updatesMustBeSignedBy"] = json(); res["waiting"] = true; _node->orbit((void *)0,id,seed); scode = 200; } } else scode = 404; } else if (ps[0] == "network") { if (ps.size() == 2) { uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str()); _node->join(wantnw,(void *)0,(void *)0); // does nothing if we are a member ZT_VirtualNetworkList *nws = _node->networks(); if (nws) { for(unsigned long i=0;inetworkCount;++i) { if (nws->networks[i].nwid == wantnw) { OneService::NetworkSettings localSettings; getNetworkSettings(nws->networks[i].nwid,localSettings); try { json j(OSUtils::jsonParse(body)); if (j.is_object()) { json &allowManaged = j["allowManaged"]; if (allowManaged.is_boolean()) localSettings.allowManaged = (bool)allowManaged; json &allowGlobal = j["allowGlobal"]; if (allowGlobal.is_boolean()) localSettings.allowGlobal = (bool)allowGlobal; json &allowDefault = j["allowDefault"]; if (allowDefault.is_boolean()) localSettings.allowDefault = (bool)allowDefault; } } catch ( ... ) { // discard invalid JSON } setNetworkSettings(nws->networks[i].nwid,localSettings); _networkToJson(res,&(nws->networks[i]),portDeviceName(nws->networks[i].nwid),localSettings); scode = 200; break; } } _node->freeQueryResult((void *)nws); } else scode = 500; } else scode = 404; } else { if (_controller) scode = _controller->handleControlPlaneHttpPOST(std::vector(ps.begin()+1,ps.end()),urlArgs,headers,body,responseBody,responseContentType); else scode = 404; } } else scode = 401; // isAuth == false } else if (httpMethod == HTTP_DELETE) { if (isAuth) { if (ps[0] == "moon") { if (ps.size() == 2) { _node->deorbit((void *)0,Utils::hexStrToU64(ps[1].c_str())); res["result"] = true; scode = 200; } // else 404 } else if (ps[0] == "network") { ZT_VirtualNetworkList *nws = _node->networks(); if (nws) { if (ps.size() == 2) { uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str()); for(unsigned long i=0;inetworkCount;++i) { if (nws->networks[i].nwid == wantnw) { _node->leave(wantnw,(void **)0,(void *)0); res["result"] = true; scode = 200; break; } } } // else 404 _node->freeQueryResult((void *)nws); } else scode = 500; } else { if (_controller) scode = _controller->handleControlPlaneHttpDELETE(std::vector(ps.begin()+1,ps.end()),urlArgs,headers,body,responseBody,responseContentType); else scode = 404; } } else scode = 401; // isAuth = false } else { scode = 400; } if (responseBody.length() == 0) { if ((res.is_object())||(res.is_array())) responseBody = OSUtils::jsonDump(res); else responseBody = "{}"; responseContentType = "application/json"; } // Wrap result in jsonp function call if the user included a jsonp= url argument. // Also double-check isAuth since forbidding this without auth feels safer. std::map::const_iterator jsonp(urlArgs.find("jsonp")); if ((isAuth)&&(jsonp != urlArgs.end())&&(responseContentType == "application/json")) { if (responseBody.length() > 0) responseBody = jsonp->second + "(" + responseBody + ");"; else responseBody = jsonp->second + "(null);"; responseContentType = "application/javascript"; } return scode; } // Must be called after _localConfig is read or modified void applyLocalConfig() { Mutex::Lock _l(_localConfig_m); json lc(_localConfig); _v4Hints.clear(); _v6Hints.clear(); _v4Blacklists.clear(); _v6Blacklists.clear(); json &virt = lc["virtual"]; if (virt.is_object()) { for(json::iterator v(virt.begin());v!=virt.end();++v) { const std::string nstr = v.key(); if ((nstr.length() == ZT_ADDRESS_LENGTH_HEX)&&(v.value().is_object())) { const Address ztaddr(Utils::hexStrToU64(nstr.c_str())); if (ztaddr) { const uint64_t ztaddr2 = ztaddr.toInt(); std::vector &v4h = _v4Hints[ztaddr2]; std::vector &v6h = _v6Hints[ztaddr2]; std::vector &v4b = _v4Blacklists[ztaddr2]; std::vector &v6b = _v6Blacklists[ztaddr2]; json &tryAddrs = v.value()["try"]; if (tryAddrs.is_array()) { for(unsigned long i=0;i 0)) { if (phy.value().is_object()) { if (OSUtils::jsonBool(phy.value()["blacklist"],false)) { if (net.ss_family == AF_INET) _globalV4Blacklist.push_back(net); else if (net.ss_family == AF_INET6) _globalV6Blacklist.push_back(net); } } } } } _allowManagementFrom.clear(); _interfacePrefixBlacklist.clear(); json &settings = lc["settings"]; _primaryPort = (unsigned int)OSUtils::jsonInt(settings["primaryPort"],(uint64_t)_primaryPort) & 0xffff; _allowTcpFallbackRelay = OSUtils::jsonBool(settings["allowTcpFallbackRelay"],true); _allowSecondaryPort = OSUtils::jsonBool(settings["allowSecondaryPort"],true); _secondaryPort = (unsigned int)OSUtils::jsonInt(settings["secondaryPort"],0); _tertiaryPort = (unsigned int)OSUtils::jsonInt(settings["tertiaryPort"],0); if (_secondaryPort != 0 || _tertiaryPort != 0) { fprintf(stderr,"WARNING: using manually-specified ports. This can cause NAT issues." ZT_EOL_S); } _multipathMode = (unsigned int)OSUtils::jsonInt(settings["multipathMode"],0); if (_multipathMode != 0 && _allowTcpFallbackRelay) { fprintf(stderr,"WARNING: multipathMode cannot be used with allowTcpFallbackRelay. Disabling allowTcpFallbackRelay" ZT_EOL_S); _allowTcpFallbackRelay = false; } _portMappingEnabled = OSUtils::jsonBool(settings["portMappingEnabled"],true); #ifndef ZT_SDK const std::string up(OSUtils::jsonString(settings["softwareUpdate"],ZT_SOFTWARE_UPDATE_DEFAULT)); const bool udist = OSUtils::jsonBool(settings["softwareUpdateDist"],false); if (((up == "apply")||(up == "download"))||(udist)) { if (!_updater) _updater = new SoftwareUpdater(*_node,_homePath); _updateAutoApply = (up == "apply"); _updater->setUpdateDistribution(udist); _updater->setChannel(OSUtils::jsonString(settings["softwareUpdateChannel"],ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL)); } else { delete _updater; _updater = (SoftwareUpdater *)0; _updateAutoApply = false; } #endif json &ignoreIfs = settings["interfacePrefixBlacklist"]; if (ignoreIfs.is_array()) { for(unsigned long i=0;i 0) _interfacePrefixBlacklist.push_back(tmp); } } json &amf = settings["allowManagementFrom"]; if (amf.is_array()) { for(unsigned long i=0;i 0) { bool allowed = false; for (InetAddress addr : n.settings.allowManagedWhitelist) { if (addr.containsAddress(target) && addr.netmaskBits() <= target.netmaskBits()) { allowed = true; break; } } if (!allowed) return false; } if (target.isDefaultRoute()) return n.settings.allowDefault; switch(target.ipScope()) { case InetAddress::IP_SCOPE_NONE: case InetAddress::IP_SCOPE_MULTICAST: case InetAddress::IP_SCOPE_LOOPBACK: case InetAddress::IP_SCOPE_LINK_LOCAL: return false; case InetAddress::IP_SCOPE_GLOBAL: return n.settings.allowGlobal; default: return true; } } // Match only an IP from a vector of IPs -- used in syncManagedStuff() bool matchIpOnly(const std::vector &ips,const InetAddress &ip) const { for(std::vector::const_iterator i(ips.begin());i!=ips.end();++i) { if (i->ipsEqual(ip)) return true; } return false; } // Apply or update managed IPs for a configured network (be sure n.tap exists) void syncManagedStuff(NetworkState &n,bool syncIps,bool syncRoutes) { char ipbuf[64]; // assumes _nets_m is locked if (syncIps) { std::vector newManagedIps; newManagedIps.reserve(n.config.assignedAddressCount); for(unsigned int i=0;i(&(n.config.assignedAddresses[i])); if (checkIfManagedIsAllowed(n,*ii)) newManagedIps.push_back(*ii); } std::sort(newManagedIps.begin(),newManagedIps.end()); newManagedIps.erase(std::unique(newManagedIps.begin(),newManagedIps.end()),newManagedIps.end()); for(std::vector::iterator ip(n.managedIps.begin());ip!=n.managedIps.end();++ip) { if (std::find(newManagedIps.begin(),newManagedIps.end(),*ip) == newManagedIps.end()) { if (!n.tap->removeIp(*ip)) fprintf(stderr,"ERROR: unable to remove ip address %s" ZT_EOL_S, ip->toString(ipbuf)); } } #ifdef __SYNOLOGY__ if (!n.tap->addIpSyn(newManagedIps)) fprintf(stderr,"ERROR: unable to add ip addresses to ifcfg" ZT_EOL_S); #else for(std::vector::iterator ip(newManagedIps.begin());ip!=newManagedIps.end();++ip) { if (std::find(n.managedIps.begin(),n.managedIps.end(),*ip) == n.managedIps.end()) { if (!n.tap->addIp(*ip)) fprintf(stderr,"ERROR: unable to add ip address %s" ZT_EOL_S, ip->toString(ipbuf)); } } #endif n.managedIps.swap(newManagedIps); } if (syncRoutes) { char tapdev[64]; #if defined(__WINDOWS__) && !defined(ZT_SDK) OSUtils::ztsnprintf(tapdev,sizeof(tapdev),"%.16llx",(unsigned long long)n.tap->luid().Value); #else Utils::scopy(tapdev,sizeof(tapdev),n.tap->deviceName().c_str()); #endif std::vector myIps(n.tap->ips()); // Nuke applied routes that are no longer in n.config.routes[] and/or are not allowed for(std::list< SharedPtr >::iterator mr(n.managedRoutes.begin());mr!=n.managedRoutes.end();) { bool haveRoute = false; if ( (checkIfManagedIsAllowed(n,(*mr)->target())) && (((*mr)->via().ss_family != (*mr)->target().ss_family)||(!matchIpOnly(myIps,(*mr)->via()))) ) { for(unsigned int i=0;i(&(n.config.routes[i].target)); const InetAddress *const via = reinterpret_cast(&(n.config.routes[i].via)); if ( ((*mr)->target() == *target) && ( ((via->ss_family == target->ss_family)&&((*mr)->via().ipsEqual(*via))) || (strcmp(tapdev,(*mr)->device())==0) ) ) { haveRoute = true; break; } } } if (haveRoute) { ++mr; } else { n.managedRoutes.erase(mr++); } } // Apply routes in n.config.routes[] that we haven't applied yet, and sync those we have in case shadow routes need to change for(unsigned int i=0;i(&(n.config.routes[i].target)); const InetAddress *const via = reinterpret_cast(&(n.config.routes[i].via)); const InetAddress *src = NULL; for (unsigned int j=0; j(&(n.config.assignedAddresses[j])); if (target->isV4() && tmp->isV4()) { src = reinterpret_cast(&(n.config.assignedAddresses[j])); break; } else if (target->isV6() && tmp->isV6()) { src = reinterpret_cast(&(n.config.assignedAddresses[j])); break; } } if (!src) src = &NULL_INET_ADDR; if ( (!checkIfManagedIsAllowed(n,*target)) || ((via->ss_family == target->ss_family)&&(matchIpOnly(myIps,*via))) ) continue; bool haveRoute = false; // Ignore routes implied by local managed IPs since adding the IP adds the route #ifndef __APPLE__ for(std::vector::iterator ip(n.managedIps.begin());ip!=n.managedIps.end();++ip) { if ((target->netmaskBits() == ip->netmaskBits())&&(target->containsAddress(*ip))) { haveRoute = true; break; } } #endif if (haveRoute) continue; #ifndef ZT_SDK // If we've already applied this route, just sync it and continue for(std::list< SharedPtr >::iterator mr(n.managedRoutes.begin());mr!=n.managedRoutes.end();++mr) { if ( ((*mr)->target() == *target) && ( ((via->ss_family == target->ss_family)&&((*mr)->via().ipsEqual(*via))) || (tapdev == (*mr)->device()) ) ) { haveRoute = true; (*mr)->sync(); break; } } if (haveRoute) continue; // Add and apply new routes n.managedRoutes.push_back(SharedPtr(new ManagedRoute(*target,*via,*src,tapdev))); if (!n.managedRoutes.back()->sync()) n.managedRoutes.pop_back(); #endif } } } // ========================================================================= // Handlers for Node and Phy<> callbacks // ========================================================================= inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len) { const uint64_t now = OSUtils::now(); if ((len >= 16)&&(reinterpret_cast(from)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) _lastDirectReceiveFromGlobal = now; const ZT_ResultCode rc = _node->processWirePacket(nullptr,now,reinterpret_cast(sock),reinterpret_cast(from),data,len,&_nextBackgroundTaskDeadline); if (ZT_ResultCode_isFatal(rc)) { char tmp[256]; OSUtils::ztsnprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = tmp; this->terminate(); } } inline void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) { if (!success) { phyOnTcpClose(sock,uptr); return; } TcpConnection *const tc = reinterpret_cast(*uptr); if (!tc) { // sanity check _phy.close(sock,true); return; } tc->sock = sock; if (tc->type == TcpConnection::TCP_TUNNEL_OUTGOING) { if (_tcpFallbackTunnel) _phy.close(_tcpFallbackTunnel->sock); _tcpFallbackTunnel = tc; _phy.streamSend(sock,ZT_TCP_TUNNEL_HELLO,sizeof(ZT_TCP_TUNNEL_HELLO)); } else { _phy.close(sock,true); } } inline void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) { if (!from) { _phy.close(sockN,false); return; } else { #ifdef ZT_SDK // Immediately close new local connections. The intention is to prevent the backplane from being accessed when operating as libzt if (!allowHttpBackplaneManagement && ((InetAddress*)from)->ipScope() == InetAddress::IP_SCOPE_LOOPBACK) { _phy.close(sockN,false); return; } #endif TcpConnection *tc = new TcpConnection(); { Mutex::Lock _l(_tcpConnections_m); _tcpConnections.push_back(tc); } tc->type = TcpConnection::TCP_UNCATEGORIZED_INCOMING; tc->parent = this; tc->sock = sockN; tc->remoteAddr = from; tc->lastReceive = OSUtils::now(); http_parser_init(&(tc->parser),HTTP_REQUEST); tc->parser.data = (void *)tc; tc->messageSize = 0; *uptrN = (void *)tc; } } void phyOnTcpClose(PhySocket *sock,void **uptr) { TcpConnection *tc = (TcpConnection *)*uptr; if (tc) { if (tc == _tcpFallbackTunnel) { _tcpFallbackTunnel = (TcpConnection *)0; } { Mutex::Lock _l(_tcpConnections_m); _tcpConnections.erase(std::remove(_tcpConnections.begin(),_tcpConnections.end(),tc),_tcpConnections.end()); } delete tc; } } void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) { try { if (!len) return; // sanity check, should never happen TcpConnection *tc = reinterpret_cast(*uptr); tc->lastReceive = OSUtils::now(); switch(tc->type) { case TcpConnection::TCP_UNCATEGORIZED_INCOMING: switch(reinterpret_cast(data)[0]) { // HTTP: GET, PUT, POST, HEAD, DELETE case 'G': case 'P': case 'D': case 'H': { // This is only allowed from IPs permitted to access the management // backplane, which is just 127.0.0.1/::1 unless otherwise configured. bool allow; { Mutex::Lock _l(_localConfig_m); if (_allowManagementFrom.size() == 0) { allow = (tc->remoteAddr.ipScope() == InetAddress::IP_SCOPE_LOOPBACK); } else { allow = false; for(std::vector::const_iterator i(_allowManagementFrom.begin());i!=_allowManagementFrom.end();++i) { if (i->containsAddress(tc->remoteAddr)) { allow = true; break; } } } } if (allow) { tc->type = TcpConnection::TCP_HTTP_INCOMING; phyOnTcpData(sock,uptr,data,len); } else { _phy.close(sock); } } break; // Drop unknown protocols default: _phy.close(sock); break; } return; case TcpConnection::TCP_HTTP_INCOMING: case TcpConnection::TCP_HTTP_OUTGOING: http_parser_execute(&(tc->parser),&HTTP_PARSER_SETTINGS,(const char *)data,len); if ((tc->parser.upgrade)||(tc->parser.http_errno != HPE_OK)) _phy.close(sock); return; case TcpConnection::TCP_TUNNEL_OUTGOING: tc->readq.append((const char *)data,len); while (tc->readq.length() >= 5) { const char *data = tc->readq.data(); const unsigned long mlen = ( ((((unsigned long)data[3]) & 0xff) << 8) | (((unsigned long)data[4]) & 0xff) ); if (tc->readq.length() >= (mlen + 5)) { InetAddress from; unsigned long plen = mlen; // payload length, modified if there's an IP header data += 5; // skip forward past pseudo-TLS junk and mlen if (plen == 4) { // Hello message, which isn't sent by proxy and would be ignored by client } else if (plen) { // Messages should contain IPv4 or IPv6 source IP address data switch(data[0]) { case 4: // IPv4 if (plen >= 7) { from.set((const void *)(data + 1),4,((((unsigned int)data[5]) & 0xff) << 8) | (((unsigned int)data[6]) & 0xff)); data += 7; // type + 4 byte IP + 2 byte port plen -= 7; } else { _phy.close(sock); return; } break; case 6: // IPv6 if (plen >= 19) { from.set((const void *)(data + 1),16,((((unsigned int)data[17]) & 0xff) << 8) | (((unsigned int)data[18]) & 0xff)); data += 19; // type + 16 byte IP + 2 byte port plen -= 19; } else { _phy.close(sock); return; } break; case 0: // none/omitted ++data; --plen; break; default: // invalid address type _phy.close(sock); return; } if (from) { InetAddress fakeTcpLocalInterfaceAddress((uint32_t)0xffffffff,0xffff); const ZT_ResultCode rc = _node->processWirePacket( (void *)0, OSUtils::now(), -1, reinterpret_cast(&from), data, plen, &_nextBackgroundTaskDeadline); if (ZT_ResultCode_isFatal(rc)) { char tmp[256]; OSUtils::ztsnprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = tmp; this->terminate(); _phy.close(sock); return; } } } if (tc->readq.length() > (mlen + 5)) tc->readq.erase(tc->readq.begin(),tc->readq.begin() + (mlen + 5)); else tc->readq.clear(); } else break; } return; } } catch ( ... ) { _phy.close(sock); } } inline void phyOnTcpWritable(PhySocket *sock,void **uptr) { TcpConnection *tc = reinterpret_cast(*uptr); bool closeit = false; { Mutex::Lock _l(tc->writeq_m); if (tc->writeq.length() > 0) { long sent = (long)_phy.streamSend(sock,tc->writeq.data(),(unsigned long)tc->writeq.length(),true); if (sent > 0) { if ((unsigned long)sent >= (unsigned long)tc->writeq.length()) { tc->writeq.clear(); _phy.setNotifyWritable(sock,false); if (tc->type == TcpConnection::TCP_HTTP_INCOMING) closeit = true; // HTTP keep alive not supported } else { tc->writeq.erase(tc->writeq.begin(),tc->writeq.begin() + sent); } } } else { _phy.setNotifyWritable(sock,false); } } if (closeit) _phy.close(sock); } inline void phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) {} inline void phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {} inline void phyOnUnixClose(PhySocket *sock,void **uptr) {} inline void phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} inline void phyOnUnixWritable(PhySocket *sock,void **uptr) {} inline int nodeVirtualNetworkConfigFunction(uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwc) { Mutex::Lock _l(_nets_m); NetworkState &n = _nets[nwid]; switch(op) { case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP: if (!n.tap) { try { char friendlyName[128]; OSUtils::ztsnprintf(friendlyName,sizeof(friendlyName),"ZeroTier One [%.16llx]",nwid); n.tap = EthernetTap::newInstance( nullptr, _homePath.c_str(), MAC(nwc->mac), nwc->mtu, (unsigned int)ZT_IF_METRIC, nwid, friendlyName, StapFrameHandler, (void *)this); *nuptr = (void *)&n; char nlcpath[256]; OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_homePath.c_str(),nwid); std::string nlcbuf; if (OSUtils::readFile(nlcpath,nlcbuf)) { Dictionary<4096> nc; nc.load(nlcbuf.c_str()); Buffer<1024> allowManaged; if (nc.get("allowManaged", allowManaged) && allowManaged.size() != 0) { std::string addresses (allowManaged.begin(), allowManaged.size()); if (allowManaged.size() <= 5) { // untidy parsing for backward compatibility if (allowManaged[0] == '1' || allowManaged[0] == 't' || allowManaged[0] == 'T') { n.settings.allowManaged = true; } else { n.settings.allowManaged = false; } } else { // this should be a list of IP addresses n.settings.allowManaged = true; size_t pos = 0; while (true) { size_t nextPos = addresses.find(',', pos); std::string address = addresses.substr(pos, (nextPos == std::string::npos ? addresses.size() : nextPos) - pos); n.settings.allowManagedWhitelist.push_back(InetAddress(address.c_str())); if (nextPos == std::string::npos) break; pos = nextPos + 1; } } } else { n.settings.allowManaged = true; } n.settings.allowGlobal = nc.getB("allowGlobal", false); n.settings.allowDefault = nc.getB("allowDefault", false); } } catch (std::exception &exc) { #ifdef __WINDOWS__ FILE *tapFailLog = fopen((_homePath + ZT_PATH_SEPARATOR_S"port_error_log.txt").c_str(),"a"); if (tapFailLog) { fprintf(tapFailLog,"%.16llx: %s" ZT_EOL_S,(unsigned long long)nwid,exc.what()); fclose(tapFailLog); } #else fprintf(stderr,"ERROR: unable to configure virtual network port: %s" ZT_EOL_S,exc.what()); #endif _nets.erase(nwid); return -999; } catch ( ... ) { return -999; // tap init failed } } // After setting up tap, fall through to CONFIG_UPDATE since we also want to do this... case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE: memcpy(&(n.config),nwc,sizeof(ZT_VirtualNetworkConfig)); if (n.tap) { // sanity check #if defined(__WINDOWS__) && !defined(ZT_SDK) // wait for up to 5 seconds for the WindowsEthernetTap to actually be initialized // // without WindowsEthernetTap::isInitialized() returning true, the won't actually // be online yet and setting managed routes on it will fail. const int MAX_SLEEP_COUNT = 500; for (int i = 0; !n.tap->isInitialized() && i < MAX_SLEEP_COUNT; i++) { Sleep(10); } #endif syncManagedStuff(n,true,true); n.tap->setMtu(nwc->mtu); } else { _nets.erase(nwid); return -999; // tap init failed } break; case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN: case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY: if (n.tap) { // sanity check #if defined(__WINDOWS__) && !defined(ZT_SDK) std::string winInstanceId(n.tap->instanceId()); #endif *nuptr = (void *)0; n.tap.reset(); _nets.erase(nwid); #if defined(__WINDOWS__) && !defined(ZT_SDK) if ((op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY)&&(winInstanceId.length() > 0)) WindowsEthernetTap::deletePersistentTapDevice(winInstanceId.c_str()); #endif if (op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) { char nlcpath[256]; OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_homePath.c_str(),nwid); OSUtils::rm(nlcpath); } } else { _nets.erase(nwid); } break; } return 0; } inline void nodeEventCallback(enum ZT_Event event,const void *metaData) { switch(event) { case ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION: { Mutex::Lock _l(_termReason_m); _termReason = ONE_IDENTITY_COLLISION; _fatalErrorMessage = "identity/address collision"; this->terminate(); } break; case ZT_EVENT_TRACE: { if (metaData) { ::fprintf(stderr,"%s" ZT_EOL_S,(const char *)metaData); ::fflush(stderr); } } break; case ZT_EVENT_USER_MESSAGE: { const ZT_UserMessage *um = reinterpret_cast(metaData); if ((um->typeId == ZT_SOFTWARE_UPDATE_USER_MESSAGE_TYPE)&&(_updater)) { _updater->handleSoftwareUpdateUserMessage(um->origin,um->data,um->length); } } break; case ZT_EVENT_REMOTE_TRACE: { const ZT_RemoteTrace *rt = reinterpret_cast(metaData); if ((rt)&&(rt->len > 0)&&(rt->len <= ZT_MAX_REMOTE_TRACE_SIZE)&&(rt->data)) _controller->handleRemoteTrace(*rt); } default: break; } } #if ZT_VAULT_SUPPORT inline bool nodeVaultPutIdentity(enum ZT_StateObjectType type, const void *data, int len) { bool retval = false; if (type != ZT_STATE_OBJECT_IDENTITY_PUBLIC && type != ZT_STATE_OBJECT_IDENTITY_SECRET) { return retval; } CURL *curl = curl_easy_init(); if (curl) { char token[512] = { 0 }; snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str()); struct curl_slist *chunk = NULL; chunk = curl_slist_append(chunk, token); char content_type[512] = { 0 }; snprintf(content_type, sizeof(content_type), "Content-Type: application/json"); chunk = curl_slist_append(chunk, content_type); curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk); char url[2048] = { 0 }; snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str()); curl_easy_setopt(curl, CURLOPT_URL, url); json d = json::object(); if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) { std::string key((const char*)data, len); d["public"] = key; } else if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) { std::string key((const char*)data, len); d["secret"] = key; } if (!d.empty()) { std::string post = d.dump(); if (!post.empty()) { curl_easy_setopt(curl, CURLOPT_POSTFIELDS, post.c_str()); curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, post.length()); #ifndef NDEBUG curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L); #endif CURLcode res = curl_easy_perform(curl); if (res == CURLE_OK) { long response_code = 0; curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code); if (response_code == 200 || response_code == 204) { retval = true; } } } } curl_easy_cleanup(curl); curl = NULL; curl_slist_free_all(chunk); chunk = NULL; } return retval; } #endif inline void nodeStatePutFunction(enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len) { #if ZT_VAULT_SUPPORT if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) { if (nodeVaultPutIdentity(type, data, len)) { // value successfully written to Vault return; } // else fallback to disk } #endif char p[1024]; FILE *f; bool secure = false; char dirname[1024]; dirname[0] = 0; switch(type) { case ZT_STATE_OBJECT_IDENTITY_PUBLIC: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.public",_homePath.c_str()); break; case ZT_STATE_OBJECT_IDENTITY_SECRET: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str()); secure = true; break; case ZT_STATE_OBJECT_PLANET: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str()); break; case ZT_STATE_OBJECT_MOON: OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "moons.d",_homePath.c_str()); OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.moon",dirname,(unsigned long long)id[0]); break; case ZT_STATE_OBJECT_NETWORK_CONFIG: OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "networks.d",_homePath.c_str()); OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.conf",dirname,(unsigned long long)id[0]); secure = true; break; case ZT_STATE_OBJECT_PEER: OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "peers.d",_homePath.c_str()); OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.10llx.peer",dirname,(unsigned long long)id[0]); break; default: return; } if ((len >= 0)&&(data)) { // Check to see if we've already written this first. This reduces // redundant writes and I/O overhead on most platforms and has // little effect on others. f = fopen(p,"rb"); if (f) { char *const buf = (char *)malloc(len*4); if (buf) { long l = (long)fread(buf,1,(size_t)(len*4),f); fclose(f); if ((l == (long)len)&&(memcmp(data,buf,l) == 0)) { free(buf); return; } free(buf); } } f = fopen(p,"wb"); if ((!f)&&(dirname[0])) { // create subdirectory if it does not exist OSUtils::mkdir(dirname); f = fopen(p,"wb"); } if (f) { if (fwrite(data,len,1,f) != 1) fprintf(stderr,"WARNING: unable to write to file: %s (I/O error)" ZT_EOL_S,p); fclose(f); if (secure) OSUtils::lockDownFile(p,false); } else { fprintf(stderr,"WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S,p); } } else { OSUtils::rm(p); } } #if ZT_VAULT_SUPPORT inline int nodeVaultGetIdentity(enum ZT_StateObjectType type, void *data, unsigned int maxlen) { if (type != ZT_STATE_OBJECT_IDENTITY_SECRET && type != ZT_STATE_OBJECT_IDENTITY_PUBLIC) { return -1; } int ret = -1; CURL *curl = curl_easy_init(); if (curl) { char token[512] = { 0 }; snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str()); struct curl_slist *chunk = NULL; chunk = curl_slist_append(chunk, token); curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk); char url[2048] = { 0 }; snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str()); curl_easy_setopt(curl, CURLOPT_URL, url); std::string response; std::string res_headers; curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, &curlResponseWrite); curl_easy_setopt(curl, CURLOPT_WRITEDATA, &response); curl_easy_setopt(curl, CURLOPT_HEADERDATA, &res_headers); #ifndef NDEBUG curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L); #endif CURLcode res = curl_easy_perform(curl); if (res == CURLE_OK) { long response_code = 0; curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code); if (response_code == 200) { try { json payload = json::parse(response); if (!payload["data"].is_null()) { json &d = payload["data"]; if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) { std::string secret = OSUtils::jsonString(d["secret"],""); if (!secret.empty()) { ret = (int)secret.length(); memcpy(data, secret.c_str(), ret); } } else if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) { std::string pub = OSUtils::jsonString(d["public"],""); if (!pub.empty()) { ret = (int)pub.length(); memcpy(data, pub.c_str(), ret); } } } } catch (...) { ret = -1; } } } curl_easy_cleanup(curl); curl = NULL; curl_slist_free_all(chunk); chunk = NULL; } return ret; } #endif inline int nodeStateGetFunction(enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen) { #if ZT_VAULT_SUPPORT if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) ) { int retval = nodeVaultGetIdentity(type, data, maxlen); if (retval >= 0) return retval; // else continue file based lookup } #endif char p[4096]; switch(type) { case ZT_STATE_OBJECT_IDENTITY_PUBLIC: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.public",_homePath.c_str()); break; case ZT_STATE_OBJECT_IDENTITY_SECRET: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str()); break; case ZT_STATE_OBJECT_PLANET: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str()); break; case ZT_STATE_OBJECT_MOON: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "moons.d" ZT_PATH_SEPARATOR_S "%.16llx.moon",_homePath.c_str(),(unsigned long long)id[0]); break; case ZT_STATE_OBJECT_NETWORK_CONFIG: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.conf",_homePath.c_str(),(unsigned long long)id[0]); break; case ZT_STATE_OBJECT_PEER: OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "peers.d" ZT_PATH_SEPARATOR_S "%.10llx.peer",_homePath.c_str(),(unsigned long long)id[0]); break; default: return -1; } FILE *f = fopen(p,"rb"); if (f) { int n = (int)fread(data,1,maxlen,f); fclose(f); #if ZT_VAULT_SUPPORT if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) { // If we've gotten here while Vault is enabled, Vault does not know the key and it's been // read from disk instead. // // We should put the value in Vault and remove the local file. if (nodeVaultPutIdentity(type, data, n)) { unlink(p); } } #endif if (n >= 0) return n; } return -1; } inline int nodeWirePacketSendFunction(const int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl) { #ifdef ZT_TCP_FALLBACK_RELAY if(_allowTcpFallbackRelay) { if (addr->ss_family == AF_INET) { // TCP fallback tunnel support, currently IPv4 only if ((len >= 16)&&(reinterpret_cast(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) { // Engage TCP tunnel fallback if we haven't received anything valid from a global // IP address in ZT_TCP_FALLBACK_AFTER milliseconds. If we do start getting // valid direct traffic we'll stop using it and close the socket after a while. const int64_t now = OSUtils::now(); if (((now - _lastDirectReceiveFromGlobal) > ZT_TCP_FALLBACK_AFTER)&&((now - _lastRestart) > ZT_TCP_FALLBACK_AFTER)) { if (_tcpFallbackTunnel) { bool flushNow = false; { Mutex::Lock _l(_tcpFallbackTunnel->writeq_m); if (_tcpFallbackTunnel->writeq.size() < (1024 * 64)) { if (_tcpFallbackTunnel->writeq.length() == 0) { _phy.setNotifyWritable(_tcpFallbackTunnel->sock,true); flushNow = true; } const unsigned long mlen = len + 7; _tcpFallbackTunnel->writeq.push_back((char)0x17); _tcpFallbackTunnel->writeq.push_back((char)0x03); _tcpFallbackTunnel->writeq.push_back((char)0x03); // fake TLS 1.2 header _tcpFallbackTunnel->writeq.push_back((char)((mlen >> 8) & 0xff)); _tcpFallbackTunnel->writeq.push_back((char)(mlen & 0xff)); _tcpFallbackTunnel->writeq.push_back((char)4); // IPv4 _tcpFallbackTunnel->writeq.append(reinterpret_cast(reinterpret_cast(&(reinterpret_cast(addr)->sin_addr.s_addr))),4); _tcpFallbackTunnel->writeq.append(reinterpret_cast(reinterpret_cast(&(reinterpret_cast(addr)->sin_port))),2); _tcpFallbackTunnel->writeq.append((const char *)data,len); } } if (flushNow) { void *tmpptr = (void *)_tcpFallbackTunnel; phyOnTcpWritable(_tcpFallbackTunnel->sock,&tmpptr); } } else if (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER)&&((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INVERVAL / 2))) { const InetAddress addr(ZT_TCP_FALLBACK_RELAY); TcpConnection *tc = new TcpConnection(); { Mutex::Lock _l(_tcpConnections_m); _tcpConnections.push_back(tc); } tc->type = TcpConnection::TCP_TUNNEL_OUTGOING; tc->remoteAddr = addr; tc->lastReceive = OSUtils::now(); tc->parent = this; tc->sock = (PhySocket *)0; // set in connect handler tc->messageSize = 0; bool connected = false; _phy.tcpConnect(reinterpret_cast(&addr),connected,(void *)tc,true); } } _lastSendToGlobalV4 = now; } } } #endif // ZT_TCP_FALLBACK_RELAY // Even when relaying we still send via UDP. This way if UDP starts // working we can instantly "fail forward" to it and stop using TCP // proxy fallback, which is slow. if ((localSocket != -1)&&(localSocket != 0)&&(_binder.isUdpSocketValid((PhySocket *)((uintptr_t)localSocket)))) { if ((ttl)&&(addr->ss_family == AF_INET)) _phy.setIp4UdpTtl((PhySocket *)((uintptr_t)localSocket),ttl); const bool r = _phy.udpSend((PhySocket *)((uintptr_t)localSocket),(const struct sockaddr *)addr,data,len); if ((ttl)&&(addr->ss_family == AF_INET)) _phy.setIp4UdpTtl((PhySocket *)((uintptr_t)localSocket),255); return ((r) ? 0 : -1); } else { return ((_binder.udpSendAll(_phy,addr,data,len,ttl)) ? 0 : -1); } } inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { NetworkState *n = reinterpret_cast(*nuptr); if ((!n)||(!n->tap)) return; n->tap->put(MAC(sourceMac),MAC(destMac),etherType,data,len); } inline int nodePathCheckFunction(uint64_t ztaddr,const int64_t localSocket,const struct sockaddr_storage *remoteAddr) { // Make sure we're not trying to do ZeroTier-over-ZeroTier { Mutex::Lock _l(_nets_m); for(std::map::const_iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) { std::vector ips(n->second.tap->ips()); for(std::vector::const_iterator i(ips.begin());i!=ips.end();++i) { if (i->containsAddress(*(reinterpret_cast(remoteAddr)))) { return 0; } } } } } /* Note: I do not think we need to scan for overlap with managed routes * because of the "route forking" and interface binding that we do. This * ensures (we hope) that ZeroTier traffic will still take the physical * path even if its managed routes override this for other traffic. Will * revisit if we see recursion problems. */ // Check blacklists const Hashtable< uint64_t,std::vector > *blh = (const Hashtable< uint64_t,std::vector > *)0; const std::vector *gbl = (const std::vector *)0; if (remoteAddr->ss_family == AF_INET) { blh = &_v4Blacklists; gbl = &_globalV4Blacklist; } else if (remoteAddr->ss_family == AF_INET6) { blh = &_v6Blacklists; gbl = &_globalV6Blacklist; } if (blh) { Mutex::Lock _l(_localConfig_m); const std::vector *l = blh->get(ztaddr); if (l) { for(std::vector::const_iterator a(l->begin());a!=l->end();++a) { if (a->containsAddress(*reinterpret_cast(remoteAddr))) return 0; } } } if (gbl) { for(std::vector::const_iterator a(gbl->begin());a!=gbl->end();++a) { if (a->containsAddress(*reinterpret_cast(remoteAddr))) return 0; } } return 1; } inline int nodePathLookupFunction(uint64_t ztaddr,int family,struct sockaddr_storage *result) { const Hashtable< uint64_t,std::vector > *lh = (const Hashtable< uint64_t,std::vector > *)0; if (family < 0) lh = (_node->prng() & 1) ? &_v4Hints : &_v6Hints; else if (family == AF_INET) lh = &_v4Hints; else if (family == AF_INET6) lh = &_v6Hints; else return 0; const std::vector *l = lh->get(ztaddr); if ((l)&&(l->size() > 0)) { memcpy(result,&((*l)[(unsigned long)_node->prng() % l->size()]),sizeof(struct sockaddr_storage)); return 1; } else return 0; } inline void tapFrameHandler(uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { _node->processVirtualNetworkFrame((void *)0,OSUtils::now(),nwid,from.toInt(),to.toInt(),etherType,vlanId,data,len,&_nextBackgroundTaskDeadline); } inline void onHttpRequestToServer(TcpConnection *tc) { char tmpn[4096]; std::string data; std::string contentType("text/plain"); // default if not changed in handleRequest() unsigned int scode = 404; // Note that we check allowed IP ranges when HTTP connections are first detected in // phyOnTcpData(). If we made it here the source IP is okay. try { scode = handleControlPlaneHttpRequest(tc->remoteAddr,tc->parser.method,tc->url,tc->headers,tc->readq,data,contentType); } catch (std::exception &exc) { fprintf(stderr,"WARNING: unexpected exception processing control HTTP request: %s" ZT_EOL_S,exc.what()); scode = 500; } catch ( ... ) { fprintf(stderr,"WARNING: unexpected exception processing control HTTP request: unknown exception" ZT_EOL_S); scode = 500; } const char *scodestr; switch(scode) { case 200: scodestr = "OK"; break; case 400: scodestr = "Bad Request"; break; case 401: scodestr = "Unauthorized"; break; case 403: scodestr = "Forbidden"; break; case 404: scodestr = "Not Found"; break; case 500: scodestr = "Internal Server Error"; break; case 501: scodestr = "Not Implemented"; break; case 503: scodestr = "Service Unavailable"; break; default: scodestr = "Error"; break; } OSUtils::ztsnprintf(tmpn,sizeof(tmpn),"HTTP/1.1 %.3u %s\r\nCache-Control: no-cache\r\nPragma: no-cache\r\nContent-Type: %s\r\nContent-Length: %lu\r\nConnection: close\r\n\r\n", scode, scodestr, contentType.c_str(), (unsigned long)data.length()); { Mutex::Lock _l(tc->writeq_m); tc->writeq = tmpn; if (tc->parser.method != HTTP_HEAD) tc->writeq.append(data); } _phy.setNotifyWritable(tc->sock,true); } inline void onHttpResponseFromClient(TcpConnection *tc) { _phy.close(tc->sock); } bool shouldBindInterface(const char *ifname,const InetAddress &ifaddr) { #if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux) if ((ifname[0] == 'l')&&(ifname[1] == 'o')) return false; // loopback if ((ifname[0] == 'z')&&(ifname[1] == 't')) return false; // sanity check: zt# if ((ifname[0] == 't')&&(ifname[1] == 'u')&&(ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar if ((ifname[0] == 't')&&(ifname[1] == 'a')&&(ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar #endif #ifdef __APPLE__ if ((ifname[0] == 'f')&&(ifname[1] == 'e')&&(ifname[2] == 't')&&(ifname[3] == 'h')) return false; // ... as is feth# if ((ifname[0] == 'l')&&(ifname[1] == 'o')) return false; // loopback if ((ifname[0] == 'z')&&(ifname[1] == 't')) return false; // sanity check: zt# if ((ifname[0] == 't')&&(ifname[1] == 'u')&&(ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar if ((ifname[0] == 't')&&(ifname[1] == 'a')&&(ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar if ((ifname[0] == 'u')&&(ifname[1] == 't')&&(ifname[2] == 'u')&&(ifname[3] == 'n')) return false; // ... as is utun# #endif { Mutex::Lock _l(_localConfig_m); for(std::vector::const_iterator p(_interfacePrefixBlacklist.begin());p!=_interfacePrefixBlacklist.end();++p) { if (!strncmp(p->c_str(),ifname,p->length())) return false; } } { // Check global blacklists const std::vector *gbl = (const std::vector *)0; if (ifaddr.ss_family == AF_INET) { gbl = &_globalV4Blacklist; } else if (ifaddr.ss_family == AF_INET6) { gbl = &_globalV6Blacklist; } if (gbl) { Mutex::Lock _l(_localConfig_m); for(std::vector::const_iterator a(gbl->begin());a!=gbl->end();++a) { if (a->containsAddress(ifaddr)) return false; } } } { Mutex::Lock _l(_nets_m); for(std::map::const_iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) { std::vector ips(n->second.tap->ips()); for(std::vector::const_iterator i(ips.begin());i!=ips.end();++i) { if (i->ipsEqual(ifaddr)) return false; } } } } return true; } bool _trialBind(unsigned int port) { struct sockaddr_in in4; struct sockaddr_in6 in6; PhySocket *tb; memset(&in4,0,sizeof(in4)); in4.sin_family = AF_INET; in4.sin_port = Utils::hton((uint16_t)port); tb = _phy.udpBind(reinterpret_cast(&in4),(void *)0,0); if (tb) { _phy.close(tb,false); tb = _phy.tcpListen(reinterpret_cast(&in4),(void *)0); if (tb) { _phy.close(tb,false); return true; } } memset(&in6,0,sizeof(in6)); in6.sin6_family = AF_INET6; in6.sin6_port = Utils::hton((uint16_t)port); tb = _phy.udpBind(reinterpret_cast(&in6),(void *)0,0); if (tb) { _phy.close(tb,false); tb = _phy.tcpListen(reinterpret_cast(&in6),(void *)0); if (tb) { _phy.close(tb,false); return true; } } return false; } }; static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf) { return reinterpret_cast(uptr)->nodeVirtualNetworkConfigFunction(nwid,nuptr,op,nwconf); } static void SnodeEventCallback(ZT_Node *node,void *uptr,void *tptr,enum ZT_Event event,const void *metaData) { reinterpret_cast(uptr)->nodeEventCallback(event,metaData); } static void SnodeStatePutFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len) { reinterpret_cast(uptr)->nodeStatePutFunction(type,id,data,len); } static int SnodeStateGetFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen) { return reinterpret_cast(uptr)->nodeStateGetFunction(type,id,data,maxlen); } static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,void *tptr,int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl) { return reinterpret_cast(uptr)->nodeWirePacketSendFunction(localSocket,addr,data,len,ttl); } static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { reinterpret_cast(uptr)->nodeVirtualNetworkFrameFunction(nwid,nuptr,sourceMac,destMac,etherType,vlanId,data,len); } static int SnodePathCheckFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int64_t localSocket,const struct sockaddr_storage *remoteAddr) { return reinterpret_cast(uptr)->nodePathCheckFunction(ztaddr,localSocket,remoteAddr); } static int SnodePathLookupFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int family,struct sockaddr_storage *result) { return reinterpret_cast(uptr)->nodePathLookupFunction(ztaddr,family,result); } static void StapFrameHandler(void *uptr,void *tptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { reinterpret_cast(uptr)->tapFrameHandler(nwid,from,to,etherType,vlanId,data,len); } static int ShttpOnMessageBegin(http_parser *parser) { TcpConnection *tc = reinterpret_cast(parser->data); tc->currentHeaderField = ""; tc->currentHeaderValue = ""; tc->messageSize = 0; tc->url.clear(); tc->status.clear(); tc->headers.clear(); tc->readq.clear(); return 0; } static int ShttpOnUrl(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->url.append(ptr,length); return 0; } #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2) static int ShttpOnStatus(http_parser *parser,const char *ptr,size_t length) #else static int ShttpOnStatus(http_parser *parser) #endif { return 0; } static int ShttpOnHeaderField(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; if ((tc->currentHeaderField.length())&&(tc->currentHeaderValue.length())) { tc->headers[tc->currentHeaderField] = tc->currentHeaderValue; tc->currentHeaderField = ""; tc->currentHeaderValue = ""; } for(size_t i=0;icurrentHeaderField.push_back(OSUtils::toLower(ptr[i])); return 0; } static int ShttpOnValue(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->currentHeaderValue.append(ptr,length); return 0; } static int ShttpOnHeadersComplete(http_parser *parser) { TcpConnection *tc = reinterpret_cast(parser->data); if ((tc->currentHeaderField.length())&&(tc->currentHeaderValue.length())) tc->headers[tc->currentHeaderField] = tc->currentHeaderValue; return 0; } static int ShttpOnBody(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->readq.append(ptr,length); return 0; } static int ShttpOnMessageComplete(http_parser *parser) { TcpConnection *tc = reinterpret_cast(parser->data); if (tc->type == TcpConnection::TCP_HTTP_INCOMING) { tc->parent->onHttpRequestToServer(tc); } else { tc->parent->onHttpResponseFromClient(tc); } return 0; } } // anonymous namespace std::string OneService::platformDefaultHomePath() { return OSUtils::platformDefaultHomePath(); } OneService *OneService::newInstance(const char *hp,unsigned int port) { return new OneServiceImpl(hp,port); } OneService::~OneService() {} } // namespace ZeroTier