/*
 * Copyright (c)2013-2020 ZeroTier, Inc.
 *
 * Use of this software is governed by the Business Source License included
 * in the LICENSE.TXT file in the project's root directory.
 *
 * Change Date: 2025-01-01
 *
 * On the date above, in accordance with the Business Source License, use
 * of this software will be governed by version 2.0 of the Apache License.
 */
/****/

#ifndef ZT_PEER_HPP
#define ZT_PEER_HPP

#include <vector>
#include <list>

#include "../include/ZeroTierOne.h"

#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Node.hpp"
#include "Path.hpp"
#include "Address.hpp"
#include "Utils.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Packet.hpp"
#include "SharedPtr.hpp"
#include "AtomicCounter.hpp"
#include "Hashtable.hpp"
#include "Mutex.hpp"
#include "Bond.hpp"
#include "BondController.hpp"
#include "AES.hpp"

#define ZT_PEER_MAX_SERIALIZED_STATE_SIZE (sizeof(Peer) + 32 + (sizeof(Path) * 2))

namespace ZeroTier {

/**
 * Peer on P2P Network (virtual layer 1)
 */
class Peer
{
	friend class SharedPtr<Peer>;
	friend class SharedPtr<Bond>;
	friend class Switch;
	friend class Bond;

private:
	Peer() {} // disabled to prevent bugs -- should not be constructed uninitialized

public:
	~Peer() { Utils::burn(_key,sizeof(_key)); }

	/**
	 * Construct a new peer
	 *
	 * @param renv Runtime environment
	 * @param myIdentity Identity of THIS node (for key agreement)
	 * @param peerIdentity Identity of peer
	 * @throws std::runtime_error Key agreement with peer's identity failed
	 */
	Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity);

	/**
	 * @return This peer's ZT address (short for identity().address())
	 */
	inline const Address &address() const { return _id.address(); }

	/**
	 * @return This peer's identity
	 */
	inline const Identity &identity() const { return _id; }

	/**
	 * Log receipt of an authenticated packet
	 *
	 * This is called by the decode pipe when a packet is proven to be authentic
	 * and appears to be valid.
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param path Path over which packet was received
	 * @param hops ZeroTier (not IP) hops
	 * @param packetId Packet ID
	 * @param verb Packet verb
	 * @param inRePacketId Packet ID in reply to (default: none)
	 * @param inReVerb Verb in reply to (for OK/ERROR, default: VERB_NOP)
	 * @param trustEstablished If true, some form of non-trivial trust (like allowed in network) has been established
	 * @param networkId Network ID if this pertains to a network, or 0 otherwise
	 */
	void received(
		void *tPtr,
		const SharedPtr<Path> &path,
		const unsigned int hops,
		const uint64_t packetId,
		const unsigned int payloadLength,
		const Packet::Verb verb,
		const uint64_t inRePacketId,
		const Packet::Verb inReVerb,
		const bool trustEstablished,
		const uint64_t networkId,
		const int32_t flowId);

	/**
	 * Check whether we have an active path to this peer via the given address
	 *
	 * @param now Current time
	 * @param addr Remote address
	 * @return True if we have an active path to this destination
	 */
	inline bool hasActivePathTo(int64_t now,const InetAddress &addr) const
	{
		Mutex::Lock _l(_paths_m);
		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (_paths[i].p) {
				if (((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)&&(_paths[i].p->address() == addr))
					return true;
			} else break;
		}
		return false;
	}

	/**
	 * Send via best direct path
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param data Packet data
	 * @param len Packet length
	 * @param now Current time
	 * @param force If true, send even if path is not alive
	 * @return True if we actually sent something
	 */
	inline bool sendDirect(void *tPtr,const void *data,unsigned int len,int64_t now,bool force)
	{
		SharedPtr<Path> bp(getAppropriatePath(now,force));
		if (bp)
			return bp->send(RR,tPtr,data,len,now);
		return false;
	}

	/**
	 * Record incoming packets to
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param path Path over which packet was received
	 * @param packetId Packet ID
	 * @param payloadLength Length of packet data payload
	 * @param verb Packet verb
	 * @param flowId Flow ID
	 * @param now Current time
	 */
	void recordIncomingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
		uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now);

	/**
	 *
	 * @param path Path over which packet is being sent
	 * @param packetId Packet ID
	 * @param payloadLength Length of packet data payload
	 * @param verb Packet verb
	 * @param flowId Flow ID
	 * @param now Current time
	 */
	void recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
		uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now);

	/**
	 * Record an invalid incoming packet. This packet failed
	 * MAC/compression/cipher checks and will now contribute to a
	 * Packet Error Ratio (PER).
	 *
	 * @param path Path over which packet was received
	 */
	void recordIncomingInvalidPacket(const SharedPtr<Path>& path);

	/**
	 * Get the most appropriate direct path based on current multipath and QoS configuration
	 *
	 * @param now Current time
	 * @param includeExpired If true, include even expired paths
	 * @return Best current path or NULL if none
	 */
	SharedPtr<Path> getAppropriatePath(int64_t now, bool includeExpired, int32_t flowId = -1);

	/**
	 * Send VERB_RENDEZVOUS to this and another peer via the best common IP scope and path
	 */
	void introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const;

	/**
	 * Send a HELLO to this peer at a specified physical address
	 *
	 * No statistics or sent times are updated here.
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param localSocket Local source socket
	 * @param atAddress Destination address
	 * @param now Current time
	 */
	void sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now);

	/**
	 * Send ECHO (or HELLO for older peers) to this peer at the given address
	 *
	 * No statistics or sent times are updated here.
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param localSocket Local source socket
	 * @param atAddress Destination address
	 * @param now Current time
	 * @param sendFullHello If true, always send a full HELLO instead of just an ECHO
	 */
	void attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello);

	/**
	 * Try a memorized or statically defined path if any are known
	 *
	 * Under the hood this is done periodically based on ZT_TRY_MEMORIZED_PATH_INTERVAL.
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param now Current time
	 */
	void tryMemorizedPath(void *tPtr,int64_t now);

	/**
	 * A check to be performed periodically which determines whether multipath communication is
	 * possible with this peer. This check should be performed early in the life-cycle of the peer
	 * as well as during the process of learning new paths.
	 */
	void performMultipathStateCheck(void *tPtr, int64_t now);

	/**
	 * Send pings or keepalives depending on configured timeouts
	 *
	 * This also cleans up some internal data structures. It's called periodically from Node.
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param now Current time
	 * @param inetAddressFamily Keep this address family alive, or -1 for any
	 * @return 0 if nothing sent or bit mask: bit 0x1 if IPv4 sent, bit 0x2 if IPv6 sent (0x3 means both sent)
	 */
	unsigned int doPingAndKeepalive(void *tPtr,int64_t now);

	/**
	 * Process a cluster redirect sent by this peer
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param originatingPath Path from which redirect originated
	 * @param remoteAddress Remote address
	 * @param now Current time
	 */
	void clusterRedirect(void *tPtr,const SharedPtr<Path> &originatingPath,const InetAddress &remoteAddress,const int64_t now);

	/**
	 * Reset paths within a given IP scope and address family
	 *
	 * Resetting a path involves sending an ECHO to it and then deactivating
	 * it until or unless it responds. This is done when we detect a change
	 * to our external IP or another system change that might invalidate
	 * many or all current paths.
	 *
	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
	 * @param scope IP scope
	 * @param inetAddressFamily Family e.g. AF_INET
	 * @param now Current time
	 */
	void resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now);

	/**
	 * @param now Current time
	 * @return All known paths to this peer
	 */
	inline std::vector< SharedPtr<Path> > paths(const int64_t now) const
	{
		std::vector< SharedPtr<Path> > pp;
		Mutex::Lock _l(_paths_m);
		for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
			if (!_paths[i].p) break;
			pp.push_back(_paths[i].p);
		}
		return pp;
	}

	/**
	 * @return Time of last receive of anything, whether direct or relayed
	 */
	inline int64_t lastReceive() const { return _lastReceive; }

	/**
	 * @return True if we've heard from this peer in less than ZT_PEER_ACTIVITY_TIMEOUT
	 */
	inline bool isAlive(const int64_t now) const { return ((now - _lastReceive) < ZT_PEER_ACTIVITY_TIMEOUT); }

	/**
	 * @return True if this peer has sent us real network traffic recently
	 */
	inline int64_t isActive(int64_t now) const { return ((now - _lastNontrivialReceive) < ZT_PEER_ACTIVITY_TIMEOUT); }

	/**
	 * @return Latency in milliseconds of best/aggregate path or 0xffff if unknown / no paths
	 */
	inline unsigned int latency(const int64_t now)
	{
		if (_canUseMultipath) {
			return (int)_lastComputedAggregateMeanLatency;
		} else {
			SharedPtr<Path> bp(getAppropriatePath(now,false));
			if (bp)
				return bp->latency();
			return 0xffff;
		}
	}

	/**
	 * This computes a quality score for relays and root servers
	 *
	 * If we haven't heard anything from these in ZT_PEER_ACTIVITY_TIMEOUT, they
	 * receive the worst possible quality (max unsigned int). Otherwise the
	 * quality is a product of latency and the number of potential missed
	 * pings. This causes roots and relays to switch over a bit faster if they
	 * fail.
	 *
	 * @return Relay quality score computed from latency and other factors, lower is better
	 */
	inline unsigned int relayQuality(const int64_t now)
	{
		const uint64_t tsr = now - _lastReceive;
		if (tsr >= ZT_PEER_ACTIVITY_TIMEOUT)
			return (~(unsigned int)0);
		unsigned int l = latency(now);
		if (!l)
			l = 0xffff;
		return (l * (((unsigned int)tsr / (ZT_PEER_PING_PERIOD + 1000)) + 1));
	}

	/**
	 * @return 256-bit secret symmetric encryption key
	 */
	inline const unsigned char *key() const { return _key; }

	/**
	 * Set the currently known remote version of this peer's client
	 *
	 * @param vproto Protocol version
	 * @param vmaj Major version
	 * @param vmin Minor version
	 * @param vrev Revision
	 */
	inline void setRemoteVersion(unsigned int vproto,unsigned int vmaj,unsigned int vmin,unsigned int vrev)
	{
		_vProto = (uint16_t)vproto;
		_vMajor = (uint16_t)vmaj;
		_vMinor = (uint16_t)vmin;
		_vRevision = (uint16_t)vrev;
	}

	inline unsigned int remoteVersionProtocol() const { return _vProto; }
	inline unsigned int remoteVersionMajor() const { return _vMajor; }
	inline unsigned int remoteVersionMinor() const { return _vMinor; }
	inline unsigned int remoteVersionRevision() const { return _vRevision; }

	inline bool remoteVersionKnown() const { return ((_vMajor > 0)||(_vMinor > 0)||(_vRevision > 0)); }

	/**
	 * @return True if peer has received a trust established packet (e.g. common network membership) in the past ZT_TRUST_EXPIRATION ms
	 */
	inline bool trustEstablished(const int64_t now) const { return ((now - _lastTrustEstablishedPacketReceived) < ZT_TRUST_EXPIRATION); }

	/**
	 * Rate limit gate for VERB_PUSH_DIRECT_PATHS
	 */
	inline bool rateGatePushDirectPaths(const int64_t now)
	{
		if ((now - _lastDirectPathPushReceive) <= ZT_PUSH_DIRECT_PATHS_CUTOFF_TIME)
			++_directPathPushCutoffCount;
		else _directPathPushCutoffCount = 0;
		_lastDirectPathPushReceive = now;
		return (_directPathPushCutoffCount < ZT_PUSH_DIRECT_PATHS_CUTOFF_LIMIT);
	}

	/**
	 * Rate limit gate for VERB_NETWORK_CREDENTIALS
	 */
	inline bool rateGateCredentialsReceived(const int64_t now)
	{
		if ((now - _lastCredentialsReceived) <= ZT_PEER_CREDENTIALS_CUTOFF_TIME)
			++_credentialsCutoffCount;
		else _credentialsCutoffCount = 0;
		_lastCredentialsReceived = now;
		return (_directPathPushCutoffCount < ZT_PEER_CREDEITIALS_CUTOFF_LIMIT);
	}

	/**
	 * Rate limit gate for sending of ERROR_NEED_MEMBERSHIP_CERTIFICATE
	 */
	inline bool rateGateRequestCredentials(const int64_t now)
	{
		if ((now - _lastCredentialRequestSent) >= ZT_PEER_GENERAL_RATE_LIMIT) {
			_lastCredentialRequestSent = now;
			return true;
		}
		return false;
	}

	/**
	 * Rate limit gate for inbound WHOIS requests
	 */
	inline bool rateGateInboundWhoisRequest(const int64_t now)
	{
		if ((now - _lastWhoisRequestReceived) >= ZT_PEER_WHOIS_RATE_LIMIT) {
			_lastWhoisRequestReceived = now;
			return true;
		}
		return false;
	}

	/**
	 * Rate limit gate for inbound ECHO requests. This rate limiter works
	 * by draining a certain number of requests per unit time. Each peer may
	 * theoretically receive up to ZT_ECHO_CUTOFF_LIMIT requests per second.
	 */
	inline bool rateGateEchoRequest(const int64_t now)
	{
		/*
		// TODO: Rethink this
		if (_canUseMultipath) {
			_echoRequestCutoffCount++;
			int numToDrain = (now - _lastEchoCheck) / ZT_ECHO_DRAINAGE_DIVISOR;
			_lastEchoCheck = now;
			fprintf(stderr, "ZT_ECHO_CUTOFF_LIMIT=%d, (now - _lastEchoCheck)=%d, numToDrain=%d, ZT_ECHO_DRAINAGE_DIVISOR=%d\n", ZT_ECHO_CUTOFF_LIMIT, (now - _lastEchoCheck), numToDrain, ZT_ECHO_DRAINAGE_DIVISOR);
			if (_echoRequestCutoffCount > numToDrain) {
				_echoRequestCutoffCount-=numToDrain;
			}
			else {
				_echoRequestCutoffCount = 0;
			}
			return (_echoRequestCutoffCount < ZT_ECHO_CUTOFF_LIMIT);
		} else {
			if ((now - _lastEchoRequestReceived) >= (ZT_PEER_GENERAL_RATE_LIMIT)) {
				_lastEchoRequestReceived = now;
				return true;
			}
			return false;
		}
		*/
		return true;
	}

	/**
	 * Serialize a peer for storage in local cache
	 *
	 * This does not serialize everything, just non-ephemeral information.
	 */
	template<unsigned int C>
	inline void serializeForCache(Buffer<C> &b) const
	{
		b.append((uint8_t)1);

		_id.serialize(b);

		b.append((uint16_t)_vProto);
		b.append((uint16_t)_vMajor);
		b.append((uint16_t)_vMinor);
		b.append((uint16_t)_vRevision);

		{
			Mutex::Lock _l(_paths_m);
			unsigned int pc = 0;
			for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
				if (_paths[i].p)
					++pc;
				else break;
			}
			b.append((uint16_t)pc);
			for(unsigned int i=0;i<pc;++i)
				_paths[i].p->address().serialize(b);
		}
	}

	template<unsigned int C>
	inline static SharedPtr<Peer> deserializeFromCache(int64_t now,void *tPtr,Buffer<C> &b,const RuntimeEnvironment *renv)
	{
		try {
			unsigned int ptr = 0;
			if (b[ptr++] != 1)
				return SharedPtr<Peer>();

			Identity id;
			ptr += id.deserialize(b,ptr);
			if (!id)
				return SharedPtr<Peer>();

			SharedPtr<Peer> p(new Peer(renv,renv->identity,id));

			p->_vProto = b.template at<uint16_t>(ptr); ptr += 2;
			p->_vMajor = b.template at<uint16_t>(ptr); ptr += 2;
			p->_vMinor = b.template at<uint16_t>(ptr); ptr += 2;
			p->_vRevision = b.template at<uint16_t>(ptr); ptr += 2;

			// When we deserialize from the cache we don't actually restore paths. We
			// just try them and then re-learn them if they happen to still be up.
			// Paths are fairly ephemeral in the real world in most cases.
			const unsigned int tryPathCount = b.template at<uint16_t>(ptr); ptr += 2;
			for(unsigned int i=0;i<tryPathCount;++i) {
				InetAddress inaddr;
				try {
					ptr += inaddr.deserialize(b,ptr);
					if (inaddr)
						p->attemptToContactAt(tPtr,-1,inaddr,now,true);
				} catch ( ... ) {
					break;
				}
			}

			return p;
		} catch ( ... ) {
			return SharedPtr<Peer>();
		}
	}

	/**
	 *
	 * @return
	 */
	SharedPtr<Bond> bond() { return _bondToPeer; }

	/**
	 *
	 * @return
	 */
	inline int8_t bondingPolicy() { return _bondingPolicy; }

	//inline const AES *aesKeysIfSupported() const
	//{ return (const AES *)0; }

	inline const AES *aesKeysIfSupported() const
	{ return (_vProto >= 12) ? _aesKeys : (const AES *)0; }

	inline const AES *aesKeys() const
	{ return _aesKeys; }

private:
	struct _PeerPath
	{
		_PeerPath() : lr(0),p(),priority(1) {}
		int64_t lr; // time of last valid ZeroTier packet
		SharedPtr<Path> p;
		long priority; // >= 1, higher is better
	};

	uint8_t _key[ZT_SYMMETRIC_KEY_SIZE];
	AES _aesKeys[2];

	const RuntimeEnvironment *RR;

	int64_t _lastReceive; // direct or indirect
	int64_t _lastNontrivialReceive; // frames, things like netconf, etc.
	int64_t _lastTriedMemorizedPath;
	int64_t _lastDirectPathPushSent;
	int64_t _lastDirectPathPushReceive;
	int64_t _lastEchoRequestReceived;
	int64_t _lastCredentialRequestSent;
	int64_t _lastWhoisRequestReceived;
	int64_t _lastCredentialsReceived;
	int64_t _lastTrustEstablishedPacketReceived;
	int64_t _lastSentFullHello;
	int64_t _lastEchoCheck;

	unsigned char _freeRandomByte;

	uint16_t _vProto;
	uint16_t _vMajor;
	uint16_t _vMinor;
	uint16_t _vRevision;

	std::list< std::pair< Path *, int64_t > > _lastTriedPath;
	Mutex _lastTriedPath_m;

	_PeerPath _paths[ZT_MAX_PEER_NETWORK_PATHS];
	Mutex _paths_m;

	Identity _id;

	unsigned int _directPathPushCutoffCount;
	unsigned int _credentialsCutoffCount;
	unsigned int _echoRequestCutoffCount;

	AtomicCounter __refCount;

	bool _remotePeerMultipathEnabled;
	int _uniqueAlivePathCount;
	bool _localMultipathSupported;
	bool _remoteMultipathSupported;
	bool _canUseMultipath;

	volatile bool _shouldCollectPathStatistics;
	volatile int8_t _bondingPolicy;

	int32_t _lastComputedAggregateMeanLatency;

	SharedPtr<Bond> _bondToPeer;
};

} // namespace ZeroTier

// Add a swap() for shared ptr's to peers to speed up peer sorts
namespace std {
	template<>
	inline void swap(ZeroTier::SharedPtr<ZeroTier::Peer> &a,ZeroTier::SharedPtr<ZeroTier::Peer> &b)
	{
		a.swap(b);
	}
}

#endif