/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include #include #include #include #include #include "../version.h" #include "../include/ZeroTierOne.h" #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Switch.hpp" #include "Node.hpp" #include "InetAddress.hpp" #include "Topology.hpp" #include "Peer.hpp" #include "SelfAwareness.hpp" #include "Packet.hpp" #include "Trace.hpp" namespace ZeroTier { Switch::Switch(const RuntimeEnvironment *renv) : RR(renv), _lastBeaconResponse(0), _lastCheckedQueues(0), _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine { } void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len) { try { const int64_t now = RR->node->now(); const SharedPtr path(RR->topology->getPath(localSocket,fromAddr)); path->received(now); if (len == 13) { /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast * announcements on the LAN to solve the 'same network problem.' We * no longer send these, but we'll listen for them for a while to * locate peers with versions <1.0.4. */ const Address beaconAddr(reinterpret_cast(data) + 8,5); if (beaconAddr == RR->identity.address()) return; if (!RR->node->shouldUsePathForZeroTierTraffic(tPtr,beaconAddr,localSocket,fromAddr)) return; const SharedPtr peer(RR->topology->getPeer(tPtr,beaconAddr)); if (peer) { // we'll only respond to beacons from known peers if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses _lastBeaconResponse = now; Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP); outp.armor(peer->key(),true); path->send(RR,tPtr,outp.data(),outp.size(),now); } } } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below! if (reinterpret_cast(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) { // Handle fragment ---------------------------------------------------- Packet::Fragment fragment(data,len); const Address destination(fragment.destination()); if (destination != RR->identity.address()) { if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) ) return; if (fragment.hops() < ZT_RELAY_MAX_HOPS) { fragment.incrementHops(); // Note: we don't bother initiating NAT-t for fragments, since heads will set that off. // It wouldn't hurt anything, just redundant and unnecessary. SharedPtr relayTo = RR->topology->getPeer(tPtr,destination); if ((!relayTo)||(!relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,false))) { // Don't know peer or no direct path -- so relay via someone upstream relayTo = RR->topology->getUpstreamPeer(); if (relayTo) relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,true); } } } else { // Fragment looks like ours const uint64_t fragmentPacketId = fragment.packetId(); const unsigned int fragmentNumber = fragment.fragmentNumber(); const unsigned int totalFragments = fragment.totalFragments(); if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) { // Fragment appears basically sane. Its fragment number must be // 1 or more, since a Packet with fragmented bit set is fragment 0. // Total fragments must be more than 1, otherwise why are we // seeing a Packet::Fragment? RXQueueEntry *const rq = _findRXQueueEntry(fragmentPacketId); Mutex::Lock rql(rq->lock); if (rq->packetId != fragmentPacketId) { // No packet found, so we received a fragment without its head. rq->timestamp = now; rq->packetId = fragmentPacketId; rq->frags[fragmentNumber - 1] = fragment; rq->totalFragments = totalFragments; // total fragment count is known rq->haveFragments = 1 << fragmentNumber; // we have only this fragment rq->complete = false; } else if (!(rq->haveFragments & (1 << fragmentNumber))) { // We have other fragments and maybe the head, so add this one and check rq->frags[fragmentNumber - 1] = fragment; rq->totalFragments = totalFragments; if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) { // We have all fragments -- assemble and process full Packet for(unsigned int f=1;ffrag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength()); if (rq->frag0.tryDecode(RR,tPtr)) { rq->timestamp = 0; // packet decoded, free entry } else { rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something } } } // else this is a duplicate fragment, ignore } } // -------------------------------------------------------------------- } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important! // Handle packet head ------------------------------------------------- const Address destination(reinterpret_cast(data) + 8,ZT_ADDRESS_LENGTH); const Address source(reinterpret_cast(data) + 13,ZT_ADDRESS_LENGTH); if (source == RR->identity.address()) return; if (destination != RR->identity.address()) { if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) ) return; Packet packet(data,len); if (packet.hops() < ZT_RELAY_MAX_HOPS) { packet.incrementHops(); SharedPtr relayTo = RR->topology->getPeer(tPtr,destination); if ((relayTo)&&(relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,false))) { if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) { const SharedPtr sourcePeer(RR->topology->getPeer(tPtr,source)); if (sourcePeer) relayTo->introduce(tPtr,now,sourcePeer); } } else { relayTo = RR->topology->getUpstreamPeer(); if ((relayTo)&&(relayTo->address() != source)) { if (relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true)) { const SharedPtr sourcePeer(RR->topology->getPeer(tPtr,source)); if (sourcePeer) relayTo->introduce(tPtr,now,sourcePeer); } } } } } else if ((reinterpret_cast(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) { // Packet is the head of a fragmented packet series const uint64_t packetId = ( (((uint64_t)reinterpret_cast(data)[0]) << 56) | (((uint64_t)reinterpret_cast(data)[1]) << 48) | (((uint64_t)reinterpret_cast(data)[2]) << 40) | (((uint64_t)reinterpret_cast(data)[3]) << 32) | (((uint64_t)reinterpret_cast(data)[4]) << 24) | (((uint64_t)reinterpret_cast(data)[5]) << 16) | (((uint64_t)reinterpret_cast(data)[6]) << 8) | ((uint64_t)reinterpret_cast(data)[7]) ); RXQueueEntry *const rq = _findRXQueueEntry(packetId); Mutex::Lock rql(rq->lock); if (rq->packetId != packetId) { // If we have no other fragments yet, create an entry and save the head rq->timestamp = now; rq->packetId = packetId; rq->frag0.init(data,len,path,now); rq->totalFragments = 0; rq->haveFragments = 1; rq->complete = false; } else if (!(rq->haveFragments & 1)) { // If we have other fragments but no head, see if we are complete with the head if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) { // We have all fragments -- assemble and process full Packet rq->frag0.init(data,len,path,now); for(unsigned int f=1;ftotalFragments;++f) rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength()); if (rq->frag0.tryDecode(RR,tPtr)) { rq->timestamp = 0; // packet decoded, free entry } else { rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something } } else { // Still waiting on more fragments, but keep the head rq->frag0.init(data,len,path,now); } } // else this is a duplicate head, ignore } else { // Packet is unfragmented, so just process it IncomingPacket packet(data,len,path,now); if (!packet.tryDecode(RR,tPtr)) { RXQueueEntry *const rq = _nextRXQueueEntry(); Mutex::Lock rql(rq->lock); rq->timestamp = now; rq->packetId = packet.packetId(); rq->frag0 = packet; rq->totalFragments = 1; rq->haveFragments = 1; rq->complete = true; } } // -------------------------------------------------------------------- } } } catch ( ... ) {} // sanity check, should be caught elsewhere } void Switch::onLocalEthernet(void *tPtr,const SharedPtr &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { if (!network->hasConfig()) return; // Check if this packet is from someone other than the tap -- i.e. bridged in bool fromBridged; if ((fromBridged = (from != network->mac()))) { if (!network->config().permitsBridging(RR->identity.address())) { RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"not a bridge"); return; } } uint8_t qosBucket = ZT_QOS_DEFAULT_BUCKET; if (to.isMulticast()) { MulticastGroup multicastGroup(to,0); if (to.isBroadcast()) { if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) { /* IPv4 ARP is one of the few special cases that we impose upon what is * otherwise a straightforward Ethernet switch emulation. Vanilla ARP * is dumb old broadcast and simply doesn't scale. ZeroTier multicast * groups have an additional field called ADI (additional distinguishing * information) which was added specifically for ARP though it could * be used for other things too. We then take ARP broadcasts and turn * them into multicasts by stuffing the IP address being queried into * the 32-bit ADI field. In practice this uses our multicast pub/sub * system to implement a kind of extended/distributed ARP table. */ multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0)); } else if (!network->config().enableBroadcast()) { // Don't transmit broadcasts if this network doesn't want them RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"broadcast disabled"); return; } } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) { // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled if ((network->config().ndpEmulation())&&(reinterpret_cast(data)[6] == 0x3a)&&(reinterpret_cast(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation Address v6EmbeddedAddress; const uint8_t *const pkt6 = reinterpret_cast(data) + 40 + 8; const uint8_t *my6 = (const uint8_t *)0; // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host) // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host) // (XX - lower 32 bits of network ID XORed with higher 32 bits) // For these to work, we must have a ZT-managed address assigned in one of the // above formats, and the query must match its prefix. for(unsigned int sipk=0;sipkconfig().staticIpCount;++sipk) { const InetAddress *const sip = &(network->config().staticIps[sipk]); if (sip->ss_family == AF_INET6) { my6 = reinterpret_cast(reinterpret_cast(&(*sip))->sin6_addr.s6_addr); const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast(&(*sip))->sin6_port); if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ??? unsigned int ptr = 0; while (ptr != 11) { if (pkt6[ptr] != my6[ptr]) break; ++ptr; } if (ptr == 11) { // prefix match! v6EmbeddedAddress.setTo(pkt6 + ptr,5); break; } } else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ??? const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff); if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) { unsigned int ptr = 0; while (ptr != 5) { if (pkt6[ptr] != my6[ptr]) break; ++ptr; } if (ptr == 5) { // prefix match! v6EmbeddedAddress.setTo(pkt6 + ptr,5); break; } } } } } if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) { const MAC peerMac(v6EmbeddedAddress,network->id()); uint8_t adv[72]; adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00; adv[4] = 0x00; adv[5] = 0x20; adv[6] = 0x3a; adv[7] = 0xff; for(int i=0;i<16;++i) adv[8 + i] = pkt6[i]; for(int i=0;i<16;++i) adv[24 + i] = my6[i]; adv[40] = 0x88; adv[41] = 0x00; adv[42] = 0x00; adv[43] = 0x00; // future home of checksum adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00; for(int i=0;i<16;++i) adv[48 + i] = pkt6[i]; adv[64] = 0x02; adv[65] = 0x01; adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5]; uint16_t pseudo_[36]; uint8_t *const pseudo = reinterpret_cast(pseudo_); for(int i=0;i<32;++i) pseudo[i] = adv[8 + i]; pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20; pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a; for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i]; uint32_t checksum = 0; for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]); while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16); checksum = ~checksum; adv[42] = (checksum >> 8) & 0xff; adv[43] = checksum & 0xff; RR->node->putFrame(tPtr,network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72); return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query. } // else no NDP emulation } // else no NDP emulation } // Check this after NDP emulation, since that has to be allowed in exactly this case if (network->config().multicastLimit == 0) { RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"multicast disabled"); return; } /* Learn multicast groups for bridged-in hosts. * Note that some OSes, most notably Linux, do this for you by learning * multicast addresses on bridge interfaces and subscribing each slave. * But in that case this does no harm, as the sets are just merged. */ if (fromBridged) network->learnBridgedMulticastGroup(tPtr,multicastGroup,RR->node->now()); // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) { RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked"); return; } RR->mc->send( tPtr, RR->node->now(), network, Address(), multicastGroup, (fromBridged) ? from : MAC(), etherType, data, len); } else if (to == network->mac()) { // Destination is this node, so just reinject it RR->node->putFrame(tPtr,network->id(),network->userPtr(),from,to,etherType,vlanId,data,len); } else if (to[0] == MAC::firstOctetForNetwork(network->id())) { // Destination is another ZeroTier peer on the same network Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this SharedPtr toPeer(RR->topology->getPeer(tPtr,toZT)); if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) { RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked"); return; } if (fromBridged) { Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(network->id()); outp.append((unsigned char)0x00); to.appendTo(outp); from.appendTo(outp); outp.append((uint16_t)etherType); outp.append(data,len); if (!network->config().disableCompression()) outp.compress(); aqm_enqueue(tPtr,network,outp,true,qosBucket); } else { Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME); outp.append(network->id()); outp.append((uint16_t)etherType); outp.append(data,len); if (!network->config().disableCompression()) outp.compress(); aqm_enqueue(tPtr,network,outp,true,qosBucket); } } else { // Destination is bridged behind a remote peer // We filter with a NULL destination ZeroTier address first. Filtrations // for each ZT destination are also done below. This is the same rationale // and design as for multicast. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) { RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked"); return; } Address bridges[ZT_MAX_BRIDGE_SPAM]; unsigned int numBridges = 0; /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */ bridges[0] = network->findBridgeTo(to); std::vector
activeBridges(network->config().activeBridges()); if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) { /* We have a known bridge route for this MAC, send it there. */ ++numBridges; } else if (!activeBridges.empty()) { /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active * bridges. If someone responds, we'll learn the route. */ std::vector
::const_iterator ab(activeBridges.begin()); if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) { // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all while (ab != activeBridges.end()) { bridges[numBridges++] = *ab; ++ab; } } else { // Otherwise pick a random set of them while (numBridges < ZT_MAX_BRIDGE_SPAM) { if (ab == activeBridges.end()) ab = activeBridges.begin(); if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) { bridges[numBridges++] = *ab; ++ab; } else ++ab; } } } for(unsigned int b=0;bfilterOutgoingPacket(tPtr,true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId,qosBucket)) { Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(network->id()); outp.append((uint8_t)0x00); to.appendTo(outp); from.appendTo(outp); outp.append((uint16_t)etherType); outp.append(data,len); if (!network->config().disableCompression()) outp.compress(); aqm_enqueue(tPtr,network,outp,true,qosBucket); } else { RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked (bridge replication)"); } } } } void Switch::aqm_enqueue(void *tPtr, const SharedPtr &network, Packet &packet,bool encrypt,int qosBucket) { if(!network->qosEnabled()) { send(tPtr, packet, encrypt); return; } NetworkQoSControlBlock *nqcb = _netQueueControlBlock[network->id()]; if (!nqcb) { // DEBUG_INFO("creating network QoS control block (NQCB) for network %llx", network->id()); nqcb = new NetworkQoSControlBlock(); _netQueueControlBlock[network->id()] = nqcb; // Initialize ZT_QOS_NUM_BUCKETS queues and place them in the INACTIVE list // These queues will be shuffled between the new/old/inactive lists by the enqueue/dequeue algorithm for (int i=0; iinactiveQueues.push_back(new ManagedQueue(i)); } } if (packet.verb() != Packet::VERB_FRAME && packet.verb() != Packet::VERB_EXT_FRAME) { // DEBUG_INFO("skipping, no QoS for this packet, verb=%x", packet.verb()); // just send packet normally, no QoS for ZT protocol traffic send(tPtr, packet, encrypt); } _aqm_m.lock(); // Enqueue packet and move queue to appropriate list const Address dest(packet.destination()); TXQueueEntry *txEntry = new TXQueueEntry(dest,RR->node->now(),packet,encrypt); ManagedQueue *selectedQueue = nullptr; for (size_t i=0; ioldQueues.size()) { // search old queues first (I think this is best since old would imply most recent usage of the queue) if (nqcb->oldQueues[i]->id == qosBucket) { selectedQueue = nqcb->oldQueues[i]; } } if (i < nqcb->newQueues.size()) { // search new queues (this would imply not often-used queues) if (nqcb->newQueues[i]->id == qosBucket) { selectedQueue = nqcb->newQueues[i]; } } if (i < nqcb->inactiveQueues.size()) { // search inactive queues if (nqcb->inactiveQueues[i]->id == qosBucket) { selectedQueue = nqcb->inactiveQueues[i]; // move queue to end of NEW queue list selectedQueue->byteCredit = ZT_QOS_QUANTUM; // DEBUG_INFO("moving q=%p from INACTIVE to NEW list", selectedQueue); nqcb->newQueues.push_back(selectedQueue); nqcb->inactiveQueues.erase(nqcb->inactiveQueues.begin() + i); } } } if (!selectedQueue) { return; } selectedQueue->q.push_back(txEntry); selectedQueue->byteLength+=txEntry->packet.payloadLength(); nqcb->_currEnqueuedPackets++; // DEBUG_INFO("nq=%2lu, oq=%2lu, iq=%2lu, nqcb.size()=%3d, bucket=%2d, q=%p", nqcb->newQueues.size(), nqcb->oldQueues.size(), nqcb->inactiveQueues.size(), nqcb->_currEnqueuedPackets, qosBucket, selectedQueue); // Drop a packet if necessary ManagedQueue *selectedQueueToDropFrom = nullptr; if (nqcb->_currEnqueuedPackets > ZT_QOS_MAX_ENQUEUED_PACKETS) { // DEBUG_INFO("too many enqueued packets (%d), finding packet to drop", nqcb->_currEnqueuedPackets); int maxQueueLength = 0; for (size_t i=0; ioldQueues.size()) { if (nqcb->oldQueues[i]->byteLength > maxQueueLength) { maxQueueLength = nqcb->oldQueues[i]->byteLength; selectedQueueToDropFrom = nqcb->oldQueues[i]; } } if (i < nqcb->newQueues.size()) { if (nqcb->newQueues[i]->byteLength > maxQueueLength) { maxQueueLength = nqcb->newQueues[i]->byteLength; selectedQueueToDropFrom = nqcb->newQueues[i]; } } if (i < nqcb->inactiveQueues.size()) { if (nqcb->inactiveQueues[i]->byteLength > maxQueueLength) { maxQueueLength = nqcb->inactiveQueues[i]->byteLength; selectedQueueToDropFrom = nqcb->inactiveQueues[i]; } } } if (selectedQueueToDropFrom) { // DEBUG_INFO("dropping packet from head of largest queue (%d payload bytes)", maxQueueLength); int sizeOfDroppedPacket = selectedQueueToDropFrom->q.front()->packet.payloadLength(); delete selectedQueueToDropFrom->q.front(); selectedQueueToDropFrom->q.pop_front(); selectedQueueToDropFrom->byteLength-=sizeOfDroppedPacket; nqcb->_currEnqueuedPackets--; } } _aqm_m.unlock(); aqm_dequeue(tPtr); } uint64_t Switch::control_law(uint64_t t, int count) { return t + ZT_QOS_INTERVAL / sqrt(count); } Switch::dqr Switch::dodequeue(ManagedQueue *q, uint64_t now) { dqr r; r.ok_to_drop = false; r.p = q->q.front(); if (r.p == NULL) { q->first_above_time = 0; return r; } uint64_t sojourn_time = now - r.p->creationTime; if (sojourn_time < ZT_QOS_TARGET || q->byteLength <= ZT_DEFAULT_MTU) { // went below - stay below for at least interval q->first_above_time = 0; } else { if (q->first_above_time == 0) { // just went above from below. if still above at // first_above_time, will say it's ok to drop. q->first_above_time = now + ZT_QOS_INTERVAL; } else if (now >= q->first_above_time) { r.ok_to_drop = true; } } return r; } Switch::TXQueueEntry * Switch::CoDelDequeue(ManagedQueue *q, bool isNew, uint64_t now) { dqr r = dodequeue(q, now); if (q->dropping) { if (!r.ok_to_drop) { q->dropping = false; } while (now >= q->drop_next && q->dropping) { q->q.pop_front(); // drop r = dodequeue(q, now); if (!r.ok_to_drop) { // leave dropping state q->dropping = false; } else { ++(q->count); // schedule the next drop. q->drop_next = control_law(q->drop_next, q->count); } } } else if (r.ok_to_drop) { q->q.pop_front(); // drop r = dodequeue(q, now); q->dropping = true; q->count = (q->count > 2 && now - q->drop_next < 8*ZT_QOS_INTERVAL)? q->count - 2 : 1; q->drop_next = control_law(now, q->count); } return r.p; } void Switch::aqm_dequeue(void *tPtr) { // Cycle through network-specific QoS control blocks for(std::map::iterator nqcb(_netQueueControlBlock.begin());nqcb!=_netQueueControlBlock.end();) { if (!(*nqcb).second->_currEnqueuedPackets) { return; } uint64_t now = RR->node->now(); TXQueueEntry *entryToEmit = nullptr; std::vector *currQueues = &((*nqcb).second->newQueues); std::vector *oldQueues = &((*nqcb).second->oldQueues); std::vector *inactiveQueues = &((*nqcb).second->inactiveQueues); _aqm_m.lock(); // Attempt dequeue from queues in NEW list bool examiningNewQueues = true; while (currQueues->size()) { ManagedQueue *queueAtFrontOfList = currQueues->front(); if (queueAtFrontOfList->byteCredit < 0) { queueAtFrontOfList->byteCredit += ZT_QOS_QUANTUM; // Move to list of OLD queues // DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList); oldQueues->push_back(queueAtFrontOfList); currQueues->erase(currQueues->begin()); } else { entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now); if (!entryToEmit) { // Move to end of list of OLD queues // DEBUG_INFO("moving q=%p from NEW to OLD list", queueAtFrontOfList); oldQueues->push_back(queueAtFrontOfList); currQueues->erase(currQueues->begin()); } else { int len = entryToEmit->packet.payloadLength(); queueAtFrontOfList->byteLength -= len; queueAtFrontOfList->byteCredit -= len; // Send the packet! queueAtFrontOfList->q.pop_front(); send(tPtr, entryToEmit->packet, entryToEmit->encrypt); (*nqcb).second->_currEnqueuedPackets--; } if (queueAtFrontOfList) { //DEBUG_INFO("dequeuing from q=%p, len=%lu in NEW list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit); } break; } } // Attempt dequeue from queues in OLD list examiningNewQueues = false; currQueues = &((*nqcb).second->oldQueues); while (currQueues->size()) { ManagedQueue *queueAtFrontOfList = currQueues->front(); if (queueAtFrontOfList->byteCredit < 0) { queueAtFrontOfList->byteCredit += ZT_QOS_QUANTUM; oldQueues->push_back(queueAtFrontOfList); currQueues->erase(currQueues->begin()); } else { entryToEmit = CoDelDequeue(queueAtFrontOfList, examiningNewQueues, now); if (!entryToEmit) { //DEBUG_INFO("moving q=%p from OLD to INACTIVE list", queueAtFrontOfList); // Move to inactive list of queues inactiveQueues->push_back(queueAtFrontOfList); currQueues->erase(currQueues->begin()); } else { int len = entryToEmit->packet.payloadLength(); queueAtFrontOfList->byteLength -= len; queueAtFrontOfList->byteCredit -= len; queueAtFrontOfList->q.pop_front(); send(tPtr, entryToEmit->packet, entryToEmit->encrypt); (*nqcb).second->_currEnqueuedPackets--; } if (queueAtFrontOfList) { //DEBUG_INFO("dequeuing from q=%p, len=%lu in OLD list (byteCredit=%d)", queueAtFrontOfList, queueAtFrontOfList->q.size(), queueAtFrontOfList->byteCredit); } break; } } nqcb++; _aqm_m.unlock(); } } void Switch::removeNetworkQoSControlBlock(uint64_t nwid) { NetworkQoSControlBlock *nq = _netQueueControlBlock[nwid]; if (nq) { _netQueueControlBlock.erase(nwid); delete nq; nq = NULL; } } void Switch::send(void *tPtr,Packet &packet,bool encrypt) { const Address dest(packet.destination()); if (dest == RR->identity.address()) return; if (!_trySend(tPtr,packet,encrypt)) { { Mutex::Lock _l(_txQueue_m); if (_txQueue.size() >= ZT_TX_QUEUE_SIZE) { _txQueue.pop_front(); } _txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt)); } if (!RR->topology->getPeer(tPtr,dest)) requestWhois(tPtr,RR->node->now(),dest); } } void Switch::requestWhois(void *tPtr,const int64_t now,const Address &addr) { if (addr == RR->identity.address()) return; { Mutex::Lock _l(_lastSentWhoisRequest_m); int64_t &last = _lastSentWhoisRequest[addr]; if ((now - last) < ZT_WHOIS_RETRY_DELAY) return; else last = now; } const SharedPtr upstream(RR->topology->getUpstreamPeer()); if (upstream) { Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS); addr.appendTo(outp); RR->node->expectReplyTo(outp.packetId()); send(tPtr,outp,true); } } void Switch::doAnythingWaitingForPeer(void *tPtr,const SharedPtr &peer) { { Mutex::Lock _l(_lastSentWhoisRequest_m); _lastSentWhoisRequest.erase(peer->address()); } const int64_t now = RR->node->now(); for(unsigned int ptr=0;ptrlock); if ((rq->timestamp)&&(rq->complete)) { if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) rq->timestamp = 0; } } { Mutex::Lock _l(_txQueue_m); for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { if (txi->dest == peer->address()) { if (_trySend(tPtr,txi->packet,txi->encrypt)) { _txQueue.erase(txi++); } else { ++txi; } } else { ++txi; } } } } unsigned long Switch::doTimerTasks(void *tPtr,int64_t now) { const uint64_t timeSinceLastCheck = now - _lastCheckedQueues; if (timeSinceLastCheck < ZT_WHOIS_RETRY_DELAY) return (unsigned long)(ZT_WHOIS_RETRY_DELAY - timeSinceLastCheck); _lastCheckedQueues = now; std::vector
needWhois; { Mutex::Lock _l(_txQueue_m); for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { if (_trySend(tPtr,txi->packet,txi->encrypt)) { _txQueue.erase(txi++); } else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) { _txQueue.erase(txi++); } else { if (!RR->topology->getPeer(tPtr,txi->dest)) needWhois.push_back(txi->dest); ++txi; } } } for(std::vector
::const_iterator i(needWhois.begin());i!=needWhois.end();++i) requestWhois(tPtr,now,*i); for(unsigned int ptr=0;ptrlock); if ((rq->timestamp)&&(rq->complete)) { if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) { rq->timestamp = 0; } else { const Address src(rq->frag0.source()); if (!RR->topology->getPeer(tPtr,src)) requestWhois(tPtr,now,src); } } } { Mutex::Lock _l(_lastUniteAttempt_m); Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt); _LastUniteKey *k = (_LastUniteKey *)0; uint64_t *v = (uint64_t *)0; while (i.next(k,v)) { if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8)) _lastUniteAttempt.erase(*k); } } { Mutex::Lock _l(_lastSentWhoisRequest_m); Hashtable< Address,int64_t >::Iterator i(_lastSentWhoisRequest); Address *a = (Address *)0; int64_t *ts = (int64_t *)0; while (i.next(a,ts)) { if ((now - *ts) > (ZT_WHOIS_RETRY_DELAY * 2)) _lastSentWhoisRequest.erase(*a); } } return ZT_WHOIS_RETRY_DELAY; } bool Switch::_shouldUnite(const int64_t now,const Address &source,const Address &destination) { Mutex::Lock _l(_lastUniteAttempt_m); uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)]; if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) { ts = now; return true; } return false; } bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt) { SharedPtr viaPath; const int64_t now = RR->node->now(); const Address destination(packet.destination()); const SharedPtr peer(RR->topology->getPeer(tPtr,destination)); if (peer) { viaPath = peer->getAppropriatePath(now,false); if (!viaPath) { peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known const SharedPtr relay(RR->topology->getUpstreamPeer()); if ( (!relay) || (!(viaPath = relay->getAppropriatePath(now,false))) ) { if (!(viaPath = peer->getAppropriatePath(now,true))) return false; } } } else { return false; } unsigned int mtu = ZT_DEFAULT_PHYSMTU; uint64_t trustedPathId = 0; RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId); unsigned int chunkSize = std::min(packet.size(),mtu); packet.setFragmented(chunkSize < packet.size()); peer->recordOutgoingPacket(viaPath, packet.packetId(), packet.payloadLength(), packet.verb(), now); if (trustedPathId) { packet.setTrusted(trustedPathId); } else { packet.armor(peer->key(),encrypt); } if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) { if (chunkSize < packet.size()) { // Too big for one packet, fragment the rest unsigned int fragStart = chunkSize; unsigned int remaining = packet.size() - chunkSize; unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)); if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining) ++fragsRemaining; const unsigned int totalFragments = fragsRemaining + 1; for(unsigned int fno=1;fnosend(RR,tPtr,frag.data(),frag.size(),now); fragStart += chunkSize; remaining -= chunkSize; } } } return true; } } // namespace ZeroTier