/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include #include #include #include #include "Constants.hpp" #include "SharedPtr.hpp" #include "Node.hpp" #include "RuntimeEnvironment.hpp" #include "NetworkController.hpp" #include "Switch.hpp" #include "Multicaster.hpp" #include "Topology.hpp" #include "Buffer.hpp" #include "Packet.hpp" #include "Address.hpp" #include "Identity.hpp" #include "SelfAwareness.hpp" #include "Network.hpp" #include "Trace.hpp" #include "ScopedPtr.hpp" #include "Locator.hpp" namespace ZeroTier { /****************************************************************************/ /* Public Node interface (C++, exposed via CAPI bindings) */ /****************************************************************************/ Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) : _RR(this), RR(&_RR), _uPtr(uptr), _networks(8), _now(now), _lastPing(0), _lastHousekeepingRun(0), _lastNetworkHousekeepingRun(0) { memcpy(&_cb,callbacks,sizeof(ZT_Node_Callbacks)); _online = false; memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr)); memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo)); memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification)); uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0; char tmp[2048]; int n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,tmp,sizeof(tmp) - 1); if (n > 0) { tmp[n] = (char)0; if (RR->identity.fromString(tmp)) { RR->identity.toString(false,RR->publicIdentityStr); RR->identity.toString(true,RR->secretIdentityStr); } else { n = -1; } } if (n <= 0) { RR->identity.generate(Identity::C25519); RR->identity.toString(false,RR->publicIdentityStr); RR->identity.toString(true,RR->secretIdentityStr); idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0; stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr)); stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr)); } else { idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0; n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,tmp,sizeof(tmp) - 1); if ((n > 0)&&(n < (int)sizeof(RR->publicIdentityStr))&&(n < (int)sizeof(tmp))) { if (memcmp(tmp,RR->publicIdentityStr,n)) stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr)); } } char *m = (char *)0; try { const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0); const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0); const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0); const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0); const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0); m = reinterpret_cast(::malloc(16 + ts + sws + mcs + topologys + sas)); if (!m) throw std::bad_alloc(); RR->rtmem = m; while (((uintptr_t)m & 0xf) != 0) ++m; RR->t = new (m) Trace(RR); m += ts; RR->sw = new (m) Switch(RR); m += sws; RR->mc = new (m) Multicaster(RR); m += mcs; RR->topology = new (m) Topology(RR,RR->identity); m += topologys; RR->sa = new (m) SelfAwareness(RR); } catch ( ... ) { if (RR->sa) RR->sa->~SelfAwareness(); if (RR->topology) RR->topology->~Topology(); if (RR->mc) RR->mc->~Multicaster(); if (RR->sw) RR->sw->~Switch(); if (RR->t) RR->t->~Trace(); ::free(m); throw; } postEvent(tptr,ZT_EVENT_UP); } Node::~Node() { { Mutex::Lock _l(_networks_m); _networks.clear(); // destroy all networks before shutdown } if (RR->sa) RR->sa->~SelfAwareness(); if (RR->topology) RR->topology->~Topology(); if (RR->mc) RR->mc->~Multicaster(); if (RR->sw) RR->sw->~Switch(); if (RR->t) RR->t->~Trace(); ::free(RR->rtmem); } ZT_ResultCode Node::processWirePacket( void *tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile int64_t *nextBackgroundTaskDeadline) { _now = now; RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast(remoteAddress)),packetData,packetLength); return ZT_RESULT_OK; } ZT_ResultCode Node::processVirtualNetworkFrame( void *tptr, int64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile int64_t *nextBackgroundTaskDeadline) { _now = now; SharedPtr nw(this->network(nwid)); if (nw) { RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } struct _processBackgroundTasks_ping_eachRoot { Hashtable< void *,bool > roots; int64_t now; void *tPtr; bool online; ZT_ALWAYS_INLINE bool operator()(const SharedPtr &peer,const std::vector &addrs) { unsigned int v4SendCount = 0,v6SendCount = 0; peer->ping(tPtr,now,v4SendCount,v6SendCount); for(std::vector::const_iterator a(addrs.begin());a!=addrs.end();++a) { if ( ((a->isV4())&&(v4SendCount == 0)) || ((a->isV6())&&(v6SendCount == 0)) ) peer->sendHELLO(tPtr,-1,*a,now); } if (!online) online = ((now - peer->lastReceive()) <= ((ZT_PEER_PING_PERIOD * 2) + 5000)); roots.set((void *)peer.ptr(),true); return true; } }; struct _processBackgroundTasks_ping_eachPeer { int64_t now; void *tPtr; Hashtable< void *,bool > *roots; ZT_ALWAYS_INLINE bool operator()(const SharedPtr &peer) { if (!roots->contains((void *)peer.ptr())) { unsigned int v4SendCount = 0,v6SendCount = 0; peer->ping(tPtr,now,v4SendCount,v6SendCount); } return true; } }; ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline) { _now = now; Mutex::Lock bl(_backgroundTasksLock); // Initialize these on first call so these things happen just a few seconds after // startup, since right at startup things are likely to not be ready to communicate // at all yet. if (_lastNetworkHousekeepingRun <= 0) _lastNetworkHousekeepingRun = now - (ZT_NETWORK_HOUSEKEEPING_PERIOD / 3); if (_lastHousekeepingRun <= 0) _lastHousekeepingRun = now; if ((now - _lastPing) >= ZT_PEER_PING_PERIOD) { _lastPing = now; try { _processBackgroundTasks_ping_eachRoot rf; rf.now = now; rf.tPtr = tptr; rf.online = false; RR->topology->eachRoot(rf); _processBackgroundTasks_ping_eachPeer pf; pf.now = now; pf.tPtr = tptr; pf.roots = &rf.roots; RR->topology->eachPeer(pf); if (rf.online != _online) { _online = rf.online; postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE); } } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } if ((now - _lastNetworkHousekeepingRun) >= ZT_NETWORK_HOUSEKEEPING_PERIOD) { _lastHousekeepingRun = now; { Mutex::Lock l(_networks_m); Hashtable< uint64_t,SharedPtr >::Iterator i(_networks); uint64_t *nwid = (uint64_t *)0; SharedPtr *network = (SharedPtr *)0; while (i.next(nwid,network)) { (*network)->doPeriodicTasks(tptr,now); } } RR->t->updateMemoizedSettings(); } if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) { _lastHousekeepingRun = now; try { // Clean up any old local controller auth memoizations. This is an // optimization for network controllers to know whether to accept // or trust nodes without doing an extra cert check. { _localControllerAuthorizations_m.lock(); Hashtable< _LocalControllerAuth,int64_t >::Iterator i(_localControllerAuthorizations); _LocalControllerAuth *k = (_LocalControllerAuth *)0; int64_t *v = (int64_t *)0; while (i.next(k,v)) { if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) { _localControllerAuthorizations.erase(*k); } } _localControllerAuthorizations_m.unlock(); } RR->topology->doPeriodicTasks(now); RR->sa->clean(now); RR->mc->clean(now); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } try { *nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min((unsigned long)ZT_MAX_TIMER_TASK_INTERVAL,RR->sw->doTimerTasks(tptr,now)),(unsigned long)ZT_MIN_TIMER_TASK_INTERVAL); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } return ZT_RESULT_OK; } ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr) { Mutex::Lock _l(_networks_m); SharedPtr &nw = _networks[nwid]; if (!nw) nw = SharedPtr(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0)); return ZT_RESULT_OK; } ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr) { ZT_VirtualNetworkConfig ctmp; void **nUserPtr = (void **)0; { Mutex::Lock _l(_networks_m); SharedPtr *nw = _networks.get(nwid); RR->sw->removeNetworkQoSControlBlock(nwid); if (!nw) return ZT_RESULT_OK; if (uptr) *uptr = (*nw)->userPtr(); (*nw)->externalConfig(&ctmp); (*nw)->destroy(); nUserPtr = (*nw)->userPtr(); } if (nUserPtr) RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp); { Mutex::Lock _l(_networks_m); _networks.erase(nwid); } uint64_t tmp[2]; tmp[0] = nwid; tmp[1] = 0; RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp); return ZT_RESULT_OK; } ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } uint64_t Node::address() const { return RR->identity.address().toInt(); } void Node::status(ZT_NodeStatus *status) const { status->address = RR->identity.address().toInt(); status->publicIdentity = RR->publicIdentityStr; status->secretIdentity = RR->secretIdentityStr; status->online = _online ? 1 : 0; } struct _sortPeerPtrsByAddress { inline bool operator()(const SharedPtr &a,const SharedPtr &b) const { return (a->address() < b->address()); } }; ZT_PeerList *Node::peers() const { std::vector< SharedPtr > peers; RR->topology->getAllPeers(peers); std::sort(peers.begin(),peers.end(),_sortPeerPtrsByAddress()); char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size())); if (!buf) return (ZT_PeerList *)0; ZT_PeerList *pl = (ZT_PeerList *)buf; pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList)); pl->peerCount = 0; for(std::vector< SharedPtr >::iterator pi(peers.begin());pi!=peers.end();++pi) { ZT_Peer *p = &(pl->peers[pl->peerCount++]); p->address = (*pi)->address().toInt(); p->hadAggregateLink = 0; if ((*pi)->remoteVersionKnown()) { p->versionMajor = (*pi)->remoteVersionMajor(); p->versionMinor = (*pi)->remoteVersionMinor(); p->versionRev = (*pi)->remoteVersionRevision(); } else { p->versionMajor = -1; p->versionMinor = -1; p->versionRev = -1; } p->latency = (*pi)->latency(_now); if (p->latency >= 0xffff) p->latency = -1; p->role = RR->topology->isRoot((*pi)->identity()) ? ZT_PEER_ROLE_PLANET : ZT_PEER_ROLE_LEAF; std::vector< SharedPtr > paths((*pi)->paths(_now)); SharedPtr bestp((*pi)->getAppropriatePath(_now,false)); p->hadAggregateLink |= (*pi)->hasAggregateLink(); p->pathCount = 0; for(std::vector< SharedPtr >::iterator path(paths.begin());path!=paths.end();++path) { memcpy(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage)); p->paths[p->pathCount].lastSend = (*path)->lastOut(); p->paths[p->pathCount].lastReceive = (*path)->lastIn(); p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address()); p->paths[p->pathCount].expired = 0; p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0; p->paths[p->pathCount].latency = (float)(*path)->latency(); p->paths[p->pathCount].packetDelayVariance = (*path)->packetDelayVariance(); p->paths[p->pathCount].throughputDisturbCoeff = (*path)->throughputDisturbanceCoefficient(); p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio(); p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio(); p->paths[p->pathCount].stability = (*path)->lastComputedStability(); p->paths[p->pathCount].throughput = (*path)->meanThroughput(); p->paths[p->pathCount].maxThroughput = (*path)->maxLifetimeThroughput(); p->paths[p->pathCount].allocation = (float)(*path)->allocation() / (float)255; p->paths[p->pathCount].ifname = (*path)->getName(); ++p->pathCount; } } return pl; } ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const { Mutex::Lock _l(_networks_m); const SharedPtr *nw = _networks.get(nwid); if (nw) { ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig)); (*nw)->externalConfig(nc); return nc; } return (ZT_VirtualNetworkConfig *)0; } ZT_VirtualNetworkList *Node::networks() const { Mutex::Lock _l(_networks_m); char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size())); if (!buf) return (ZT_VirtualNetworkList *)0; ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf; nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList)); nl->networkCount = 0; Hashtable< uint64_t,SharedPtr >::Iterator i(*const_cast< Hashtable< uint64_t,SharedPtr > *>(&_networks)); uint64_t *k = (uint64_t *)0; SharedPtr *v = (SharedPtr *)0; while (i.next(k,v)) (*v)->externalConfig(&(nl->networks[nl->networkCount++])); return nl; } void Node::freeQueryResult(void *qr) { if (qr) ::free(qr); } int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr) { if (Path::isAddressValidForPath(*(reinterpret_cast(addr)))) { Mutex::Lock _l(_localInterfaceAddresses_m); if (std::find(_localInterfaceAddresses.begin(),_localInterfaceAddresses.end(),*(reinterpret_cast(addr))) == _localInterfaceAddresses.end()) { _localInterfaceAddresses.push_back(*(reinterpret_cast(addr))); return 1; } } return 0; } void Node::clearLocalInterfaceAddresses() { Mutex::Lock _l(_localInterfaceAddresses_m); _localInterfaceAddresses.clear(); } int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len) { try { if (RR->identity.address().toInt() != dest) { Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE); outp.append(typeId); outp.append(data,len); outp.compress(); RR->sw->send(tptr,outp,true); return 1; } } catch ( ... ) {} return 0; } void Node::setController(void *networkControllerInstance) { RR->localNetworkController = reinterpret_cast(networkControllerInstance); if (networkControllerInstance) RR->localNetworkController->init(RR->identity,this); } /****************************************************************************/ /* Node methods used only within node/ */ /****************************************************************************/ bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Address &ztaddr,const int64_t localSocket,const InetAddress &remoteAddress) { if (!Path::isAddressValidForPath(remoteAddress)) return false; { Mutex::Lock _l(_networks_m); Hashtable< uint64_t,SharedPtr >::Iterator i(_networks); uint64_t *k = (uint64_t *)0; SharedPtr *v = (SharedPtr *)0; while (i.next(k,v)) { if ((*v)->hasConfig()) { for(unsigned int k=0;k<(*v)->config().staticIpCount;++k) { if ((*v)->config().staticIps[k].containsAddress(remoteAddress)) return false; } } } } return ( (_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast(this),_uPtr,tPtr,ztaddr.toInt(),localSocket,reinterpret_cast(&remoteAddress)) != 0) : true); } ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig) { RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig); return ZT_RESULT_OK; } void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig) { _localControllerAuthorizations_m.lock(); _localControllerAuthorizations[_LocalControllerAuth(nwid,destination)] = now(); _localControllerAuthorizations_m.unlock(); if (destination == RR->identity.address()) { SharedPtr n(network(nwid)); if (!n) return; n->setConfiguration((void *)0,nc,true); } else { ScopedPtr< Dictionary > dconf(new Dictionary()); if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) { uint64_t configUpdateId = Utils::random(); if (!configUpdateId) ++configUpdateId; const unsigned int totalSize = dconf->sizeBytes(); unsigned int chunkIndex = 0; while (chunkIndex < totalSize) { const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256))); Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG); if (requestPacketId) { outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); } const unsigned int sigStart = outp.size(); outp.append(nwid); outp.append((uint16_t)chunkLen); outp.append((const void *)(dconf->data() + chunkIndex),chunkLen); outp.append((uint8_t)0); // no flags outp.append((uint64_t)configUpdateId); outp.append((uint32_t)totalSize); outp.append((uint32_t)chunkIndex); uint8_t sig[256]; const unsigned int siglen = RR->identity.sign(reinterpret_cast(outp.data()) + sigStart,outp.size() - sigStart,sig,sizeof(sig)); outp.append((uint8_t)1); outp.append((uint16_t)siglen); outp.append(sig,siglen); outp.compress(); RR->sw->send((void *)0,outp,true); chunkIndex += chunkLen; } } } } void Node::ncSendRevocation(const Address &destination,const Revocation &rev) { if (destination == RR->identity.address()) { SharedPtr n(network(rev.networkId())); if (!n) return; n->addCredential((void *)0,RR->identity.address(),rev); } else { Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); outp.append((uint8_t)0x00); outp.append((uint16_t)0); outp.append((uint16_t)0); outp.append((uint16_t)1); rev.serialize(outp); outp.append((uint16_t)0); RR->sw->send((void *)0,outp,true); } } void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode) { if (destination == RR->identity.address()) { SharedPtr n(network(nwid)); if (!n) return; switch(errorCode) { case NetworkController::NC_ERROR_OBJECT_NOT_FOUND: case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR: n->setNotFound(); break; case NetworkController::NC_ERROR_ACCESS_DENIED: n->setAccessDenied(); break; default: break; } } else if (requestPacketId) { Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); switch(errorCode) { //case NetworkController::NC_ERROR_OBJECT_NOT_FOUND: //case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR: default: outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND); break; case NetworkController::NC_ERROR_ACCESS_DENIED: outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_); break; } outp.append(nwid); RR->sw->send((void *)0,outp,true); } // else we can't send an ERROR() in response to nothing, so discard } } // namespace ZeroTier /****************************************************************************/ /* CAPI bindings */ /****************************************************************************/ extern "C" { enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) { *node = (ZT_Node *)0; try { *node = reinterpret_cast(new ZeroTier::Node(uptr,tptr,callbacks,now)); return ZT_RESULT_OK; } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (std::runtime_error &exc) { return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_Node_delete(ZT_Node *node) { try { delete (reinterpret_cast(node)); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_processWirePacket( ZT_Node *node, void *tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile int64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up } } enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame( ZT_Node *node, void *tptr, int64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile int64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr) { try { return reinterpret_cast(node)->join(nwid,uptr,tptr); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr) { try { return reinterpret_cast(node)->leave(nwid,uptr,tptr); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } uint64_t ZT_Node_address(ZT_Node *node) { return reinterpret_cast(node)->address(); } void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status) { try { reinterpret_cast(node)->status(status); } catch ( ... ) {} } ZT_PeerList *ZT_Node_peers(ZT_Node *node) { try { return reinterpret_cast(node)->peers(); } catch ( ... ) { return (ZT_PeerList *)0; } } ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->networkConfig(nwid); } catch ( ... ) { return (ZT_VirtualNetworkConfig *)0; } } ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node) { try { return reinterpret_cast(node)->networks(); } catch ( ... ) { return (ZT_VirtualNetworkList *)0; } } void ZT_Node_freeQueryResult(ZT_Node *node,void *qr) { try { reinterpret_cast(node)->freeQueryResult(qr); } catch ( ... ) {} } int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr) { try { return reinterpret_cast(node)->addLocalInterfaceAddress(addr); } catch ( ... ) { return 0; } } void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node) { try { reinterpret_cast(node)->clearLocalInterfaceAddresses(); } catch ( ... ) {} } int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len) { try { return reinterpret_cast(node)->sendUserMessage(tptr,dest,typeId,data,len); } catch ( ... ) { return 0; } } void ZT_Node_setController(ZT_Node *node,void *networkControllerInstance) { try { reinterpret_cast(node)->setController(networkControllerInstance); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig) { try { return reinterpret_cast(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_version(int *major,int *minor,int *revision) { if (major) *major = ZEROTIER_ONE_VERSION_MAJOR; if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR; if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION; } } // extern "C"