/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2012-2013 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #ifndef _ZT_N_PACKET_HPP #define _ZT_N_PACKET_HPP #include #include #include #include #include #include "Address.hpp" #include "HMAC.hpp" #include "Salsa20.hpp" #include "Utils.hpp" #include "Constants.hpp" #include "Buffer.hpp" #include "../ext/lz4/lz4.h" /** * Protocol version */ #define ZT_PROTO_VERSION 1 /** * Maximum hop count allowed by packet structure (3 bits, 0-7) * * This is not necessarily the maximum hop counter after which * relaying is no longer performed. */ #define ZT_PROTO_MAX_HOPS 7 /** * Header flag indicating that a packet is encrypted with Salsa20 * * If this is not set, then the packet's payload is in the clear and the * HMAC is over this (since there is no ciphertext). Otherwise the HMAC is * of the ciphertext after encryption. */ #define ZT_PROTO_FLAG_ENCRYPTED 0x80 /** * Header flag indicating that a packet is fragmented * * If this flag is set, the receiver knows to expect more than one fragment. * See Packet::Fragment for details. */ #define ZT_PROTO_FLAG_FRAGMENTED 0x40 /** * Verb flag indicating payload is compressed with LZ4 */ #define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80 // Indices of fields in normal packet header -- do not change as this // might require both code rework and will break compatibility. #define ZT_PACKET_IDX_IV 0 #define ZT_PACKET_IDX_DEST 8 #define ZT_PACKET_IDX_SOURCE 13 #define ZT_PACKET_IDX_FLAGS 18 #define ZT_PACKET_IDX_HMAC 19 #define ZT_PACKET_IDX_VERB 27 #define ZT_PACKET_IDX_PAYLOAD 28 /** * ZeroTier packet buffer size * * This can be changed. This provides enough room for MTU-size packet * payloads plus some overhead. The subtraction of sizeof(unsigned int) * makes it an even multiple of 1024 (see Buffer), which might reduce * memory use a little. */ #define ZT_PROTO_MAX_PACKET_LENGTH (3072 - sizeof(unsigned int)) /** * Minimum viable packet length (also length of header) */ #define ZT_PROTO_MIN_PACKET_LENGTH ZT_PACKET_IDX_PAYLOAD // Indexes of fields in fragment header -- also can't be changed without // breaking compatibility. #define ZT_PACKET_FRAGMENT_IDX_PACKET_ID 0 #define ZT_PACKET_FRAGMENT_IDX_DEST 8 #define ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR 13 #define ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO 14 #define ZT_PACKET_FRAGMENT_IDX_HOPS 15 #define ZT_PACKET_FRAGMENT_IDX_PAYLOAD 16 /** * Value found at ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR in fragments */ #define ZT_PACKET_FRAGMENT_INDICATOR ZT_ADDRESS_RESERVED_PREFIX /** * Minimum viable fragment length */ #define ZT_PROTO_MIN_FRAGMENT_LENGTH ZT_PACKET_FRAGMENT_IDX_PAYLOAD #define ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE 32 // Field incides for parsing verbs #define ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION (ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION + 1) #define ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION (ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION + 1) #define ZT_PROTO_VERB_HELLO_IDX_REVISION (ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION + 1) #define ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP (ZT_PROTO_VERB_HELLO_IDX_REVISION + 2) #define ZT_PROTO_VERB_HELLO_IDX_IDENTITY (ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP + 8) #define ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID (ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB + 1) #define ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE (ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID + 8) #define ZT_PROTO_VERB_ERROR_IDX_PAYLOAD (ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE + 1) #define ZT_PROTO_VERB_OK_IDX_IN_RE_VERB (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID (ZT_PROTO_VERB_OK_IDX_IN_RE_VERB + 1) #define ZT_PROTO_VERB_OK_IDX_PAYLOAD (ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID + 8) #define ZT_PROTO_VERB_WHOIS_IDX_ZTADDRESS (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT (ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS + 5) #define ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN (ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT + 2) #define ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS (ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN + 1) #define ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE (ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID + 8) #define ZT_PROTO_VERB_FRAME_IDX_PAYLOAD (ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE + 2) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID (ZT_PACKET_IDX_PAYLOAD) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID + 8) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC + 6) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI + 4) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM + ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS + 1) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR + 2) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC + 6) #define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE + 2) // Field indices for parsing OK and ERROR payloads of replies #define ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP (ZT_PROTO_VERB_OK_IDX_PAYLOAD) #define ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY (ZT_PROTO_VERB_OK_IDX_PAYLOAD) #define ZT_PROTO_VERB_WHOIS__ERROR__IDX_ZTADDRESS (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD) namespace ZeroTier { /** * ZeroTier packet * * Packet format: * <[8] random initialization vector (doubles as 64-bit packet ID)> * <[5] destination ZT address> * <[5] source ZT address> * <[1] flags (LS 5 bits) and ZT hop count (MS 3 bits)> * <[8] first 8 bytes of 32-byte HMAC-SHA-256 MAC> * [... -- begin encryption envelope -- ...] * <[1] encrypted flags (MS 3 bits) and verb (LS 5 bits)> * [... verb-specific payload ...] * * Packets smaller than 28 bytes are invalid and silently discarded. * * MAC is computed on ciphertext *after* encryption. See also: * * http://tonyarcieri.com/all-the-crypto-code-youve-ever-written-is-probably-broken * * For unencrypted packets, MAC is computed on plaintext. Only HELLO is ever * sent in the clear, as it's the "here is my public key" message. */ class Packet : public Buffer { public: /** * A packet fragment * * Fragments are sent if a packet is larger than UDP MTU. The first fragment * is sent with its normal header with the fragmented flag set. Remaining * fragments are sent this way. * * The fragmented bit indicates that there is at least one fragment. Fragments * themselves contain the total, so the receiver must "learn" this from the * first fragment it receives. * * Fragments are sent with the following format: * <[8] packet ID of packet whose fragment this belongs to> * <[5] destination ZT address> * <[1] 0xff, a reserved address, signals that this isn't a normal packet> * <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)> * <[1] ZT hop count> * <[...] fragment data> * * The protocol supports a maximum of 16 fragments. If a fragment is received * before its main packet header, it should be cached for a brief period of * time to see if its parent arrives. Loss of any fragment constitutes packet * loss; there is no retransmission mechanism. The receiver must wait for full * receipt to authenticate and decrypt; there is no per-fragment MAC. (But if * fragments are corrupt, the MAC will fail for the whole assembled packet.) */ class Fragment : public Buffer { public: Fragment() : Buffer() { } template Fragment(const Buffer &b) throw(std::out_of_range) : Buffer(b) { } /** * Initialize from a packet * * @param p Original assembled packet * @param fragStart Start of fragment (raw index in packet data) * @param fragLen Length of fragment in bytes * @param fragNo Which fragment (>= 1, since 0 is Packet with end chopped off) * @param fragTotal Total number of fragments (including 0) * @throws std::out_of_range Packet size would exceed buffer */ Fragment(const Packet &p,unsigned int fragStart,unsigned int fragLen,unsigned int fragNo,unsigned int fragTotal) throw(std::out_of_range) { init(p,fragStart,fragLen,fragNo,fragTotal); } /** * Initialize from a packet * * @param p Original assembled packet * @param fragStart Start of fragment (raw index in packet data) * @param fragLen Length of fragment in bytes * @param fragNo Which fragment (>= 1, since 0 is Packet with end chopped off) * @param fragTotal Total number of fragments (including 0) * @throws std::out_of_range Packet size would exceed buffer */ inline void init(const Packet &p,unsigned int fragStart,unsigned int fragLen,unsigned int fragNo,unsigned int fragTotal) throw(std::out_of_range) { if ((fragStart + fragLen) > p.size()) throw std::out_of_range("Packet::Fragment: tried to construct fragment of packet past its length"); setSize(fragLen + ZT_PROTO_MIN_FRAGMENT_LENGTH); // NOTE: this copies both the IV/packet ID and the destination address. memcpy(_b + ZT_PACKET_FRAGMENT_IDX_PACKET_ID,p.data() + ZT_PACKET_IDX_IV,13); _b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] = ZT_PACKET_FRAGMENT_INDICATOR; _b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] = (char)(((fragTotal & 0xf) << 4) | (fragNo & 0xf)); _b[ZT_PACKET_FRAGMENT_IDX_HOPS] = 0; memcpy(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD,p.data() + fragStart,fragLen); } /** * Get this fragment's destination * * @return Destination ZT address */ inline Address destination() const { return Address(_b + ZT_PACKET_FRAGMENT_IDX_DEST); } /** * @return True if fragment is of a valid length */ inline bool lengthValid() const { return (_l >= ZT_PACKET_FRAGMENT_IDX_PAYLOAD); } /** * @return ID of packet this is a fragment of */ inline uint64_t packetId() const { return at(ZT_PACKET_FRAGMENT_IDX_PACKET_ID); } /** * @return Total number of fragments in packet */ inline unsigned int totalFragments() const { return (((unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] >> 4) & 0xf); } /** * @return Fragment number of this fragment */ inline unsigned int fragmentNumber() const { return ((unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] & 0xf); } /** * @return Fragment ZT hop count */ inline unsigned int hops() const { return (unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_HOPS]; } /** * Increment this packet's hop count */ inline void incrementHops() { _b[ZT_PACKET_FRAGMENT_IDX_HOPS] = (_b[ZT_PACKET_FRAGMENT_IDX_HOPS] + 1) & ZT_PROTO_MAX_HOPS; } /** * @return Fragment payload */ inline unsigned char *payload() { return (unsigned char *)(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD); } inline const unsigned char *payload() const { return (const unsigned char *)(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD); } /** * @return Length of payload in bytes */ inline unsigned int payloadLength() const { return ((_l > ZT_PACKET_FRAGMENT_IDX_PAYLOAD) ? (_l - ZT_PACKET_FRAGMENT_IDX_PAYLOAD) : 0); } }; /** * ZeroTier protocol verbs */ enum Verb /* Max value: 32 (5 bits) */ { /* No operation, payload ignored, no reply */ VERB_NOP = 0, /* Announcement of a node's existence: * <[1] protocol version> * <[1] software major version> * <[1] software minor version> * <[2] software revision> * <[8] timestamp (ms since epoch)> * <[...] binary serialized identity (see Identity)> * * OK payload: * <[8] timestamp (echoed from original HELLO)> * * ERROR has no payload. */ VERB_HELLO = 1, /* Error response: * <[1] in-re verb> * <[8] in-re packet ID> * <[1] error code> * <[...] error-dependent payload> */ VERB_ERROR = 2, /* Success response: * <[1] in-re verb> * <[8] in-re packet ID> * <[...] request-specific payload> */ VERB_OK = 3, /* Query an identity by address: * <[5] address to look up> * * OK response payload: * <[...] binary serialized identity> * * Error payload will be address queried. */ VERB_WHOIS = 4, /* Meet another node at a given protocol address: * <[5] ZeroTier address of peer that might be found at this address> * <[2] 16-bit protocol address port> * <[1] protocol address length (4 for IPv4, 16 for IPv6)> * <[...] protocol address (network byte order)> * * This is sent by a relaying node to initiate NAT traversal between two * peers that are communicating by way of indirect relay. The relay will * send this to both peers at the same time on a periodic basis, telling * each where it might find the other on the network. * * Upon receipt, a peer sends a message such as NOP or HELLO to the other * peer. Peers only "learn" one anothers' direct addresses when they * successfully *receive* a message and authenticate it. Optionally, peers * will usually preface these messages with one or more firewall openers * to clear the path. * * Nodes should implement rate control, limiting the rate at which they * respond to these packets to prevent their use in DDOS attacks. Nodes * may also ignore these messages if a peer is not known or is not being * actively communicated with. * * No OK or ERROR is generated. */ VERB_RENDEZVOUS = 5, /* A ZT-to-ZT unicast ethernet frame: * <[8] 64-bit network ID> * <[2] 16-bit ethertype> * <[...] ethernet payload> * * MAC addresses are derived from the packet's source and destination * ZeroTier addresses. ZeroTier does not support VLANs or other extensions * beyond core Ethernet. * * No OK or ERROR is generated. */ VERB_FRAME = 6, /* A multicast frame: * <[8] 64-bit network ID> * <[6] destination multicast Ethernet address> * <[4] multicast additional distinguishing information (ADI)> * <[32] multicast propagation bloom filter> * <[1] 8-bit strict propagation hop count> * <[2] 16-bit average peer multicast bandwidth load> * <[6] source Ethernet address> * <[2] 16-bit ethertype> * <[...] ethernet payload> * * No OK or ERROR is generated. */ VERB_MULTICAST_FRAME = 7, /* Announce interest in multicast group(s): * <[8] 64-bit network ID> * <[6] multicast Ethernet address> * <[4] multicast additional distinguishing information (ADI)> * [... additional tuples of network/address/adi ...] * * OK is generated on successful receipt. */ VERB_MULTICAST_LIKE = 8 }; /** * Error codes for VERB_ERROR */ enum ErrorCode { /* No error, not actually used in transit */ ERROR_NONE = 0, /* Invalid request */ ERROR_INVALID_REQUEST = 1, /* Bad/unsupported protocol version */ ERROR_BAD_PROTOCOL_VERSION = 2, /* Unknown object queried (e.g. with WHOIS) */ ERROR_NOT_FOUND = 3, /* HELLO pushed an identity whose address is already claimed */ ERROR_IDENTITY_COLLISION = 4, /* Identity was not valid */ ERROR_IDENTITY_INVALID = 5, /* Verb or use case not supported/enabled by this node */ ERROR_UNSUPPORTED_OPERATION = 6 }; /** * @param v Verb * @return String representation (e.g. HELLO, OK) */ static const char *verbString(Verb v) throw(); /** * @param e Error code * @return String error name */ static const char *errorString(ErrorCode e) throw(); template Packet(const Buffer &b) throw(std::out_of_range) : Buffer(b) { } /** * Construct a new empty packet with a unique random packet ID * * Flags and hops will be zero. Other fields and data region are undefined. * Use the header access methods (setDestination() and friends) to fill out * the header. Payload should be appended; initial size is header size. */ Packet() : Buffer(ZT_PROTO_MIN_PACKET_LENGTH) { Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8); _b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops } /** * Construct a new empty packet with a unique random packet ID * * @param dest Destination ZT address * @param source Source ZT address * @param v Verb */ Packet(const Address &dest,const Address &source,const Verb v) : Buffer(ZT_PROTO_MIN_PACKET_LENGTH) { Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8); setDestination(dest); setSource(source); _b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops setVerb(v); } /** * Reset this packet structure for reuse in place * * @param dest Destination ZT address * @param source Source ZT address * @param v Verb */ inline void reset(const Address &dest,const Address &source,const Verb v) { setSize(ZT_PROTO_MIN_PACKET_LENGTH); Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8); setDestination(dest); setSource(source); _b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops setVerb(v); } /** * Set this packet's destination * * @param dest ZeroTier address of destination */ inline void setDestination(const Address &dest) { for(unsigned int i=0;i= ZT_PROTO_MIN_PACKET_LENGTH); } /** * @return True if packet is encrypted */ inline bool encrypted() const { return (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_ENCRYPTED)); } /** * @return True if packet is fragmented (expect fragments) */ inline bool fragmented() const { return (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED)); } /** * Set this packet's fragmented flag * * @param f Fragmented flag value */ inline void setFragmented(bool f) { if (f) _b[ZT_PACKET_IDX_FLAGS] |= (char)ZT_PROTO_FLAG_FRAGMENTED; else _b[ZT_PACKET_IDX_FLAGS] &= (char)(~ZT_PROTO_FLAG_FRAGMENTED); } /** * @return True if compressed (result only valid if unencrypted) */ inline bool compressed() const { return (((unsigned char)_b[ZT_PACKET_IDX_VERB] & ZT_PROTO_VERB_FLAG_COMPRESSED)); } /** * @return ZeroTier forwarding hops (0 to 7) */ inline unsigned int hops() const { return ((unsigned int)_b[ZT_PACKET_IDX_FLAGS] & 0x07); } /** * Increment this packet's hop count */ inline void incrementHops() { _b[ZT_PACKET_IDX_FLAGS] = (char)((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & 0xf8) | (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] + 1) & 0x07); } /** * Get this packet's unique ID (the IV field interpreted as uint64_t) * * @return Packet ID */ inline uint64_t packetId() const { return at(ZT_PACKET_IDX_IV); } /** * Set packet verb * * This also has the side-effect of clearing any verb flags, such as * compressed, and so must only be done during packet composition. * * @param v New packet verb */ inline void setVerb(Verb v) { _b[ZT_PACKET_IDX_VERB] = (char)v; } /** * @return Packet verb (not including flag bits) */ inline Verb verb() const { return (Verb)(_b[ZT_PACKET_IDX_VERB] & 0x1f); } /** * @return Length of packet payload */ inline unsigned int payloadLength() const throw() { return ((_l < ZT_PROTO_MIN_PACKET_LENGTH) ? 0 : (_l - ZT_PROTO_MIN_PACKET_LENGTH)); } /** * @return Packet payload */ inline unsigned char *payload() throw() { return (unsigned char *)(_b + ZT_PACKET_IDX_PAYLOAD); } inline const unsigned char *payload() const throw() { return (const unsigned char *)(_b + ZT_PACKET_IDX_PAYLOAD); } /** * Compute the HMAC of this packet's payload and set HMAC field * * For encrypted packets, this must be called after encryption. * * @param key 256-bit (32 byte) key */ inline void hmacSet(const void *key) throw() { unsigned char mac[32]; unsigned char key2[32]; _mangleKey((const unsigned char *)key,key2); HMAC::sha256(key2,sizeof(key2),_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0,mac); memcpy(_b + ZT_PACKET_IDX_HMAC,mac,8); } /** * Check the HMAC of this packet's payload * * For encrypted packets, this must be checked before decryption. * * @param key 256-bit (32 byte) key */ inline bool hmacVerify(const void *key) const throw() { unsigned char mac[32]; unsigned char key2[32]; if (_l < ZT_PACKET_IDX_VERB) return false; // incomplete packets fail _mangleKey((const unsigned char *)key,key2); HMAC::sha256(key2,sizeof(key2),_b + ZT_PACKET_IDX_VERB,_l - ZT_PACKET_IDX_VERB,mac); return (!memcmp(_b + ZT_PACKET_IDX_HMAC,mac,8)); } /** * Encrypt this packet * * @param key 256-bit (32 byte) key */ inline void encrypt(const void *key) throw() { _b[ZT_PACKET_IDX_FLAGS] |= ZT_PROTO_FLAG_ENCRYPTED; unsigned char key2[32]; _mangleKey((const unsigned char *)key,key2); Salsa20 s20(key2,256,_b + ZT_PACKET_IDX_IV); s20.encrypt(_b + ZT_PACKET_IDX_VERB,_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0); } /** * Decrypt this packet * * @param key 256-bit (32 byte) key */ inline void decrypt(const void *key) throw() { unsigned char key2[32]; _mangleKey((const unsigned char *)key,key2); Salsa20 s20(key2,256,_b + ZT_PACKET_IDX_IV); s20.decrypt(_b + ZT_PACKET_IDX_VERB,_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0); _b[ZT_PACKET_IDX_FLAGS] &= (char)(~ZT_PROTO_FLAG_ENCRYPTED); } /** * Attempt to compress payload if not already (must be unencrypted) * * This requires that the payload at least contain the verb byte already * set. The compressed flag in the verb is set if compression successfully * results in a size reduction. If no size reduction occurs, compression * is not done and the flag is left cleared. * * @return True if compression occurred */ inline bool compress() throw() { unsigned char buf[ZT_PROTO_MAX_PACKET_LENGTH * 2]; if ((!compressed())&&(_l > (ZT_PACKET_IDX_PAYLOAD + 32))) { int pl = (int)(_l - ZT_PACKET_IDX_PAYLOAD); int cl = LZ4_compress((const char *)(_b + ZT_PACKET_IDX_PAYLOAD),(char *)buf,pl); if ((cl > 0)&&(cl < pl)) { _b[ZT_PACKET_IDX_VERB] |= (char)ZT_PROTO_VERB_FLAG_COMPRESSED; memcpy(_b + ZT_PACKET_IDX_PAYLOAD,buf,cl); _l = (unsigned int)cl + ZT_PACKET_IDX_PAYLOAD; return true; } } _b[ZT_PACKET_IDX_VERB] &= (char)(~ZT_PROTO_VERB_FLAG_COMPRESSED); return false; } /** * Attempt to decompress payload if it is compressed (must be unencrypted) * * If payload is compressed, it is decompressed and the compressed verb * flag is cleared. Otherwise nothing is done and true is returned. * * @return True if data is now decompressed and valid, false on error */ inline bool uncompress() throw() { unsigned char buf[ZT_PROTO_MAX_PACKET_LENGTH]; if ((compressed())&&(_l >= ZT_PROTO_MIN_PACKET_LENGTH)) { if (_l > ZT_PACKET_IDX_PAYLOAD) { int ucl = LZ4_uncompress_unknownOutputSize((const char *)(_b + ZT_PACKET_IDX_PAYLOAD),(char *)buf,_l - ZT_PACKET_IDX_PAYLOAD,sizeof(buf)); if ((ucl > 0)&&(ucl <= (int)(capacity() - ZT_PACKET_IDX_PAYLOAD))) { memcpy(_b + ZT_PACKET_IDX_PAYLOAD,buf,ucl); _l = (unsigned int)ucl + ZT_PACKET_IDX_PAYLOAD; } else return false; } _b[ZT_PACKET_IDX_VERB] &= ~ZT_PROTO_VERB_FLAG_COMPRESSED; } return true; } private: /** * Deterministically mangle a 256-bit crypto key based on packet characteristics * * This takes the static agreed-upon input key and mangles it using * info from the packet. This serves two purposes: * * (1) It reduces the (already minute) probability of a duplicate key / * IV combo, which is good since keys are extremely long-lived. Another * way of saying this is that it increases the effective IV size by * using other parts of the packet as IV material. * (2) It causes HMAC to fail should any of the following change: ordering * of source and dest addresses, flags, IV, or packet size. HMAC has * no explicit scheme for AAD (additional authenticated data). * * NOTE: this function will have to be changed if the order of any packet * fields or their sizes/padding changes in the spec. * * @param in Input key (32 bytes) * @param out Output buffer (32 bytes) */ inline void _mangleKey(const unsigned char *in,unsigned char *out) const throw() { // Random IV (Salsa20 also uses the IV natively, but HMAC doesn't), and // destination and source addresses. Using dest and source addresses // gives us a (likely) different key space for a->b vs b->a. for(unsigned int i=0;i<18;++i) // 8 + (ZT_ADDRESS_LENGTH * 2) == 18 out[i] = in[i] ^ (unsigned char)_b[i]; // Flags, but masking off hop count which is altered by forwarding nodes out[18] = in[18] ^ ((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & 0xf8); // Raw packet size in bytes -- each raw packet size defines a possibly // different space of keys. out[19] = in[19] ^ (unsigned char)(_l & 0xff); out[20] = in[20] ^ (unsigned char)((_l >> 8) & 0xff); // little endian // Rest of raw key is used unchanged for(unsigned int i=21;i<32;++i) out[i] = in[i]; } }; } // namespace ZeroTier #endif