/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef _ZT_N_PACKET_HPP
#define _ZT_N_PACKET_HPP
#include
#include
#include
#include
#include
#include "Address.hpp"
#include "HMAC.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
#include "Constants.hpp"
#include "Buffer.hpp"
#include "../ext/lz4/lz4.h"
/**
* Protocol version
*/
#define ZT_PROTO_VERSION 1
/**
* Maximum hop count allowed by packet structure (3 bits, 0-7)
*
* This is not necessarily the maximum hop counter after which
* relaying is no longer performed.
*/
#define ZT_PROTO_MAX_HOPS 7
/**
* Header flag indicating that a packet is encrypted with Salsa20
*
* If this is not set, then the packet's payload is in the clear and the
* HMAC is over this (since there is no ciphertext). Otherwise the HMAC is
* of the ciphertext after encryption.
*/
#define ZT_PROTO_FLAG_ENCRYPTED 0x80
/**
* Header flag indicating that a packet is fragmented
*
* If this flag is set, the receiver knows to expect more than one fragment.
* See Packet::Fragment for details.
*/
#define ZT_PROTO_FLAG_FRAGMENTED 0x40
/**
* Verb flag indicating payload is compressed with LZ4
*/
#define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80
// Indices of fields in normal packet header -- do not change as this
// might require both code rework and will break compatibility.
#define ZT_PACKET_IDX_IV 0
#define ZT_PACKET_IDX_DEST 8
#define ZT_PACKET_IDX_SOURCE 13
#define ZT_PACKET_IDX_FLAGS 18
#define ZT_PACKET_IDX_HMAC 19
#define ZT_PACKET_IDX_VERB 27
#define ZT_PACKET_IDX_PAYLOAD 28
/**
* ZeroTier packet buffer size
*
* This can be changed. This provides enough room for MTU-size packet
* payloads plus some overhead. The subtraction of sizeof(unsigned int)
* makes it an even multiple of 1024 (see Buffer), which might reduce
* memory use a little.
*/
#define ZT_PROTO_MAX_PACKET_LENGTH (3072 - sizeof(unsigned int))
/**
* Minimum viable packet length (also length of header)
*/
#define ZT_PROTO_MIN_PACKET_LENGTH ZT_PACKET_IDX_PAYLOAD
// Indexes of fields in fragment header -- also can't be changed without
// breaking compatibility.
#define ZT_PACKET_FRAGMENT_IDX_PACKET_ID 0
#define ZT_PACKET_FRAGMENT_IDX_DEST 8
#define ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR 13
#define ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO 14
#define ZT_PACKET_FRAGMENT_IDX_HOPS 15
#define ZT_PACKET_FRAGMENT_IDX_PAYLOAD 16
/**
* Value found at ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR in fragments
*/
#define ZT_PACKET_FRAGMENT_INDICATOR ZT_ADDRESS_RESERVED_PREFIX
/**
* Minimum viable fragment length
*/
#define ZT_PROTO_MIN_FRAGMENT_LENGTH ZT_PACKET_FRAGMENT_IDX_PAYLOAD
#define ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE 32
// Field incides for parsing verbs
#define ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION (ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION + 1)
#define ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION (ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION + 1)
#define ZT_PROTO_VERB_HELLO_IDX_REVISION (ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION + 1)
#define ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP (ZT_PROTO_VERB_HELLO_IDX_REVISION + 2)
#define ZT_PROTO_VERB_HELLO_IDX_IDENTITY (ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP + 8)
#define ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID (ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB + 1)
#define ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE (ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID + 8)
#define ZT_PROTO_VERB_ERROR_IDX_PAYLOAD (ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE + 1)
#define ZT_PROTO_VERB_OK_IDX_IN_RE_VERB (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID (ZT_PROTO_VERB_OK_IDX_IN_RE_VERB + 1)
#define ZT_PROTO_VERB_OK_IDX_PAYLOAD (ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID + 8)
#define ZT_PROTO_VERB_WHOIS_IDX_ZTADDRESS (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT (ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS + 5)
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN (ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT + 2)
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS (ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN + 1)
#define ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE (ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID + 8)
#define ZT_PROTO_VERB_FRAME_IDX_PAYLOAD (ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE + 2)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID (ZT_PACKET_IDX_PAYLOAD)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID + 8)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC + 6)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI + 4)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM + ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS + 1)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR + 2)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC + 6)
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE + 2)
// Field indices for parsing OK and ERROR payloads of replies
#define ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP (ZT_PROTO_VERB_OK_IDX_PAYLOAD)
#define ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY (ZT_PROTO_VERB_OK_IDX_PAYLOAD)
#define ZT_PROTO_VERB_WHOIS__ERROR__IDX_ZTADDRESS (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)
namespace ZeroTier {
/**
* ZeroTier packet
*
* Packet format:
* <[8] random initialization vector (doubles as 64-bit packet ID)>
* <[5] destination ZT address>
* <[5] source ZT address>
* <[1] flags (LS 5 bits) and ZT hop count (MS 3 bits)>
* <[8] first 8 bytes of 32-byte HMAC-SHA-256 MAC>
* [... -- begin encryption envelope -- ...]
* <[1] encrypted flags (MS 3 bits) and verb (LS 5 bits)>
* [... verb-specific payload ...]
*
* Packets smaller than 28 bytes are invalid and silently discarded.
*
* MAC is computed on ciphertext *after* encryption. See also:
*
* http://tonyarcieri.com/all-the-crypto-code-youve-ever-written-is-probably-broken
*
* For unencrypted packets, MAC is computed on plaintext. Only HELLO is ever
* sent in the clear, as it's the "here is my public key" message.
*/
class Packet : public Buffer
{
public:
/**
* A packet fragment
*
* Fragments are sent if a packet is larger than UDP MTU. The first fragment
* is sent with its normal header with the fragmented flag set. Remaining
* fragments are sent this way.
*
* The fragmented bit indicates that there is at least one fragment. Fragments
* themselves contain the total, so the receiver must "learn" this from the
* first fragment it receives.
*
* Fragments are sent with the following format:
* <[8] packet ID of packet whose fragment this belongs to>
* <[5] destination ZT address>
* <[1] 0xff, a reserved address, signals that this isn't a normal packet>
* <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
* <[1] ZT hop count>
* <[...] fragment data>
*
* The protocol supports a maximum of 16 fragments. If a fragment is received
* before its main packet header, it should be cached for a brief period of
* time to see if its parent arrives. Loss of any fragment constitutes packet
* loss; there is no retransmission mechanism. The receiver must wait for full
* receipt to authenticate and decrypt; there is no per-fragment MAC. (But if
* fragments are corrupt, the MAC will fail for the whole assembled packet.)
*/
class Fragment : public Buffer
{
public:
Fragment() :
Buffer()
{
}
template
Fragment(const Buffer &b)
throw(std::out_of_range) :
Buffer(b)
{
}
/**
* Initialize from a packet
*
* @param p Original assembled packet
* @param fragStart Start of fragment (raw index in packet data)
* @param fragLen Length of fragment in bytes
* @param fragNo Which fragment (>= 1, since 0 is Packet with end chopped off)
* @param fragTotal Total number of fragments (including 0)
* @throws std::out_of_range Packet size would exceed buffer
*/
Fragment(const Packet &p,unsigned int fragStart,unsigned int fragLen,unsigned int fragNo,unsigned int fragTotal)
throw(std::out_of_range)
{
init(p,fragStart,fragLen,fragNo,fragTotal);
}
/**
* Initialize from a packet
*
* @param p Original assembled packet
* @param fragStart Start of fragment (raw index in packet data)
* @param fragLen Length of fragment in bytes
* @param fragNo Which fragment (>= 1, since 0 is Packet with end chopped off)
* @param fragTotal Total number of fragments (including 0)
* @throws std::out_of_range Packet size would exceed buffer
*/
inline void init(const Packet &p,unsigned int fragStart,unsigned int fragLen,unsigned int fragNo,unsigned int fragTotal)
throw(std::out_of_range)
{
if ((fragStart + fragLen) > p.size())
throw std::out_of_range("Packet::Fragment: tried to construct fragment of packet past its length");
setSize(fragLen + ZT_PROTO_MIN_FRAGMENT_LENGTH);
// NOTE: this copies both the IV/packet ID and the destination address.
memcpy(_b + ZT_PACKET_FRAGMENT_IDX_PACKET_ID,p.data() + ZT_PACKET_IDX_IV,13);
_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] = ZT_PACKET_FRAGMENT_INDICATOR;
_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] = (char)(((fragTotal & 0xf) << 4) | (fragNo & 0xf));
_b[ZT_PACKET_FRAGMENT_IDX_HOPS] = 0;
memcpy(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD,p.data() + fragStart,fragLen);
}
/**
* Get this fragment's destination
*
* @return Destination ZT address
*/
inline Address destination() const { return Address(_b + ZT_PACKET_FRAGMENT_IDX_DEST); }
/**
* @return True if fragment is of a valid length
*/
inline bool lengthValid() const { return (_l >= ZT_PACKET_FRAGMENT_IDX_PAYLOAD); }
/**
* @return ID of packet this is a fragment of
*/
inline uint64_t packetId() const { return at(ZT_PACKET_FRAGMENT_IDX_PACKET_ID); }
/**
* @return Total number of fragments in packet
*/
inline unsigned int totalFragments() const { return (((unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] >> 4) & 0xf); }
/**
* @return Fragment number of this fragment
*/
inline unsigned int fragmentNumber() const { return ((unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] & 0xf); }
/**
* @return Fragment ZT hop count
*/
inline unsigned int hops() const { return (unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_HOPS]; }
/**
* Increment this packet's hop count
*/
inline void incrementHops()
{
_b[ZT_PACKET_FRAGMENT_IDX_HOPS] = (_b[ZT_PACKET_FRAGMENT_IDX_HOPS] + 1) & ZT_PROTO_MAX_HOPS;
}
/**
* @return Fragment payload
*/
inline unsigned char *payload() { return (unsigned char *)(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD); }
inline const unsigned char *payload() const { return (const unsigned char *)(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD); }
/**
* @return Length of payload in bytes
*/
inline unsigned int payloadLength() const { return ((_l > ZT_PACKET_FRAGMENT_IDX_PAYLOAD) ? (_l - ZT_PACKET_FRAGMENT_IDX_PAYLOAD) : 0); }
};
/**
* ZeroTier protocol verbs
*/
enum Verb /* Max value: 32 (5 bits) */
{
/* No operation, payload ignored, no reply */
VERB_NOP = 0,
/* Announcement of a node's existence:
* <[1] protocol version>
* <[1] software major version>
* <[1] software minor version>
* <[2] software revision>
* <[8] timestamp (ms since epoch)>
* <[...] binary serialized identity (see Identity)>
*
* OK payload:
* <[8] timestamp (echoed from original HELLO)>
*
* ERROR has no payload.
*/
VERB_HELLO = 1,
/* Error response:
* <[1] in-re verb>
* <[8] in-re packet ID>
* <[1] error code>
* <[...] error-dependent payload>
*/
VERB_ERROR = 2,
/* Success response:
* <[1] in-re verb>
* <[8] in-re packet ID>
* <[...] request-specific payload>
*/
VERB_OK = 3,
/* Query an identity by address:
* <[5] address to look up>
*
* OK response payload:
* <[...] binary serialized identity>
*
* Error payload will be address queried.
*/
VERB_WHOIS = 4,
/* Meet another node at a given protocol address:
* <[5] ZeroTier address of peer that might be found at this address>
* <[2] 16-bit protocol address port>
* <[1] protocol address length (4 for IPv4, 16 for IPv6)>
* <[...] protocol address (network byte order)>
*
* This is sent by a relaying node to initiate NAT traversal between two
* peers that are communicating by way of indirect relay. The relay will
* send this to both peers at the same time on a periodic basis, telling
* each where it might find the other on the network.
*
* Upon receipt, a peer sends a message such as NOP or HELLO to the other
* peer. Peers only "learn" one anothers' direct addresses when they
* successfully *receive* a message and authenticate it. Optionally, peers
* will usually preface these messages with one or more firewall openers
* to clear the path.
*
* Nodes should implement rate control, limiting the rate at which they
* respond to these packets to prevent their use in DDOS attacks. Nodes
* may also ignore these messages if a peer is not known or is not being
* actively communicated with.
*
* No OK or ERROR is generated.
*/
VERB_RENDEZVOUS = 5,
/* A ZT-to-ZT unicast ethernet frame:
* <[8] 64-bit network ID>
* <[2] 16-bit ethertype>
* <[...] ethernet payload>
*
* MAC addresses are derived from the packet's source and destination
* ZeroTier addresses. ZeroTier does not support VLANs or other extensions
* beyond core Ethernet.
*
* No OK or ERROR is generated.
*/
VERB_FRAME = 6,
/* A multicast frame:
* <[8] 64-bit network ID>
* <[6] destination multicast Ethernet address>
* <[4] multicast additional distinguishing information (ADI)>
* <[32] multicast propagation bloom filter>
* <[1] 8-bit strict propagation hop count>
* <[2] 16-bit average peer multicast bandwidth load>
* <[6] source Ethernet address>
* <[2] 16-bit ethertype>
* <[...] ethernet payload>
*
* No OK or ERROR is generated.
*/
VERB_MULTICAST_FRAME = 7,
/* Announce interest in multicast group(s):
* <[8] 64-bit network ID>
* <[6] multicast Ethernet address>
* <[4] multicast additional distinguishing information (ADI)>
* [... additional tuples of network/address/adi ...]
*
* OK is generated on successful receipt.
*/
VERB_MULTICAST_LIKE = 8
};
/**
* Error codes for VERB_ERROR
*/
enum ErrorCode
{
/* No error, not actually used in transit */
ERROR_NONE = 0,
/* Invalid request */
ERROR_INVALID_REQUEST = 1,
/* Bad/unsupported protocol version */
ERROR_BAD_PROTOCOL_VERSION = 2,
/* Unknown object queried (e.g. with WHOIS) */
ERROR_NOT_FOUND = 3,
/* HELLO pushed an identity whose address is already claimed */
ERROR_IDENTITY_COLLISION = 4,
/* Identity was not valid */
ERROR_IDENTITY_INVALID = 5,
/* Verb or use case not supported/enabled by this node */
ERROR_UNSUPPORTED_OPERATION = 6
};
/**
* @param v Verb
* @return String representation (e.g. HELLO, OK)
*/
static const char *verbString(Verb v)
throw();
/**
* @param e Error code
* @return String error name
*/
static const char *errorString(ErrorCode e)
throw();
template
Packet(const Buffer &b)
throw(std::out_of_range) :
Buffer(b)
{
}
/**
* Construct a new empty packet with a unique random packet ID
*
* Flags and hops will be zero. Other fields and data region are undefined.
* Use the header access methods (setDestination() and friends) to fill out
* the header. Payload should be appended; initial size is header size.
*/
Packet() :
Buffer(ZT_PROTO_MIN_PACKET_LENGTH)
{
Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8);
_b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops
}
/**
* Construct a new empty packet with a unique random packet ID
*
* @param dest Destination ZT address
* @param source Source ZT address
* @param v Verb
*/
Packet(const Address &dest,const Address &source,const Verb v) :
Buffer(ZT_PROTO_MIN_PACKET_LENGTH)
{
Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8);
setDestination(dest);
setSource(source);
_b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops
setVerb(v);
}
/**
* Reset this packet structure for reuse in place
*
* @param dest Destination ZT address
* @param source Source ZT address
* @param v Verb
*/
inline void reset(const Address &dest,const Address &source,const Verb v)
{
setSize(ZT_PROTO_MIN_PACKET_LENGTH);
Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8);
setDestination(dest);
setSource(source);
_b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops
setVerb(v);
}
/**
* Set this packet's destination
*
* @param dest ZeroTier address of destination
*/
inline void setDestination(const Address &dest)
{
for(unsigned int i=0;i= ZT_PROTO_MIN_PACKET_LENGTH); }
/**
* @return True if packet is encrypted
*/
inline bool encrypted() const { return (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_ENCRYPTED)); }
/**
* @return True if packet is fragmented (expect fragments)
*/
inline bool fragmented() const { return (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED)); }
/**
* Set this packet's fragmented flag
*
* @param f Fragmented flag value
*/
inline void setFragmented(bool f)
{
if (f)
_b[ZT_PACKET_IDX_FLAGS] |= (char)ZT_PROTO_FLAG_FRAGMENTED;
else _b[ZT_PACKET_IDX_FLAGS] &= (char)(~ZT_PROTO_FLAG_FRAGMENTED);
}
/**
* @return True if compressed (result only valid if unencrypted)
*/
inline bool compressed() const { return (((unsigned char)_b[ZT_PACKET_IDX_VERB] & ZT_PROTO_VERB_FLAG_COMPRESSED)); }
/**
* @return ZeroTier forwarding hops (0 to 7)
*/
inline unsigned int hops() const { return ((unsigned int)_b[ZT_PACKET_IDX_FLAGS] & 0x07); }
/**
* Increment this packet's hop count
*/
inline void incrementHops()
{
_b[ZT_PACKET_IDX_FLAGS] = (char)((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & 0xf8) | (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] + 1) & 0x07);
}
/**
* Get this packet's unique ID (the IV field interpreted as uint64_t)
*
* @return Packet ID
*/
inline uint64_t packetId() const { return at(ZT_PACKET_IDX_IV); }
/**
* Set packet verb
*
* This also has the side-effect of clearing any verb flags, such as
* compressed, and so must only be done during packet composition.
*
* @param v New packet verb
*/
inline void setVerb(Verb v) { _b[ZT_PACKET_IDX_VERB] = (char)v; }
/**
* @return Packet verb (not including flag bits)
*/
inline Verb verb() const { return (Verb)(_b[ZT_PACKET_IDX_VERB] & 0x1f); }
/**
* @return Length of packet payload
*/
inline unsigned int payloadLength() const throw() { return ((_l < ZT_PROTO_MIN_PACKET_LENGTH) ? 0 : (_l - ZT_PROTO_MIN_PACKET_LENGTH)); }
/**
* @return Packet payload
*/
inline unsigned char *payload() throw() { return (unsigned char *)(_b + ZT_PACKET_IDX_PAYLOAD); }
inline const unsigned char *payload() const throw() { return (const unsigned char *)(_b + ZT_PACKET_IDX_PAYLOAD); }
/**
* Compute the HMAC of this packet's payload and set HMAC field
*
* For encrypted packets, this must be called after encryption.
*
* @param key 256-bit (32 byte) key
*/
inline void hmacSet(const void *key)
throw()
{
unsigned char mac[32];
unsigned char key2[32];
_mangleKey((const unsigned char *)key,key2);
HMAC::sha256(key2,sizeof(key2),_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0,mac);
memcpy(_b + ZT_PACKET_IDX_HMAC,mac,8);
}
/**
* Check the HMAC of this packet's payload
*
* For encrypted packets, this must be checked before decryption.
*
* @param key 256-bit (32 byte) key
*/
inline bool hmacVerify(const void *key) const
throw()
{
unsigned char mac[32];
unsigned char key2[32];
if (_l < ZT_PACKET_IDX_VERB)
return false; // incomplete packets fail
_mangleKey((const unsigned char *)key,key2);
HMAC::sha256(key2,sizeof(key2),_b + ZT_PACKET_IDX_VERB,_l - ZT_PACKET_IDX_VERB,mac);
return (!memcmp(_b + ZT_PACKET_IDX_HMAC,mac,8));
}
/**
* Encrypt this packet
*
* @param key 256-bit (32 byte) key
*/
inline void encrypt(const void *key)
throw()
{
_b[ZT_PACKET_IDX_FLAGS] |= ZT_PROTO_FLAG_ENCRYPTED;
unsigned char key2[32];
_mangleKey((const unsigned char *)key,key2);
Salsa20 s20(key2,256,_b + ZT_PACKET_IDX_IV);
s20.encrypt(_b + ZT_PACKET_IDX_VERB,_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0);
}
/**
* Decrypt this packet
*
* @param key 256-bit (32 byte) key
*/
inline void decrypt(const void *key)
throw()
{
unsigned char key2[32];
_mangleKey((const unsigned char *)key,key2);
Salsa20 s20(key2,256,_b + ZT_PACKET_IDX_IV);
s20.decrypt(_b + ZT_PACKET_IDX_VERB,_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0);
_b[ZT_PACKET_IDX_FLAGS] &= (char)(~ZT_PROTO_FLAG_ENCRYPTED);
}
/**
* Attempt to compress payload if not already (must be unencrypted)
*
* This requires that the payload at least contain the verb byte already
* set. The compressed flag in the verb is set if compression successfully
* results in a size reduction. If no size reduction occurs, compression
* is not done and the flag is left cleared.
*
* @return True if compression occurred
*/
inline bool compress()
throw()
{
unsigned char buf[ZT_PROTO_MAX_PACKET_LENGTH * 2];
if ((!compressed())&&(_l > (ZT_PACKET_IDX_PAYLOAD + 32))) {
int pl = (int)(_l - ZT_PACKET_IDX_PAYLOAD);
int cl = LZ4_compress((const char *)(_b + ZT_PACKET_IDX_PAYLOAD),(char *)buf,pl);
if ((cl > 0)&&(cl < pl)) {
_b[ZT_PACKET_IDX_VERB] |= (char)ZT_PROTO_VERB_FLAG_COMPRESSED;
memcpy(_b + ZT_PACKET_IDX_PAYLOAD,buf,cl);
_l = (unsigned int)cl + ZT_PACKET_IDX_PAYLOAD;
return true;
}
}
_b[ZT_PACKET_IDX_VERB] &= (char)(~ZT_PROTO_VERB_FLAG_COMPRESSED);
return false;
}
/**
* Attempt to decompress payload if it is compressed (must be unencrypted)
*
* If payload is compressed, it is decompressed and the compressed verb
* flag is cleared. Otherwise nothing is done and true is returned.
*
* @return True if data is now decompressed and valid, false on error
*/
inline bool uncompress()
throw()
{
unsigned char buf[ZT_PROTO_MAX_PACKET_LENGTH];
if ((compressed())&&(_l >= ZT_PROTO_MIN_PACKET_LENGTH)) {
if (_l > ZT_PACKET_IDX_PAYLOAD) {
int ucl = LZ4_uncompress_unknownOutputSize((const char *)(_b + ZT_PACKET_IDX_PAYLOAD),(char *)buf,_l - ZT_PACKET_IDX_PAYLOAD,sizeof(buf));
if ((ucl > 0)&&(ucl <= (int)(capacity() - ZT_PACKET_IDX_PAYLOAD))) {
memcpy(_b + ZT_PACKET_IDX_PAYLOAD,buf,ucl);
_l = (unsigned int)ucl + ZT_PACKET_IDX_PAYLOAD;
} else return false;
}
_b[ZT_PACKET_IDX_VERB] &= ~ZT_PROTO_VERB_FLAG_COMPRESSED;
}
return true;
}
private:
/**
* Deterministically mangle a 256-bit crypto key based on packet characteristics
*
* This takes the static agreed-upon input key and mangles it using
* info from the packet. This serves two purposes:
*
* (1) It reduces the (already minute) probability of a duplicate key /
* IV combo, which is good since keys are extremely long-lived. Another
* way of saying this is that it increases the effective IV size by
* using other parts of the packet as IV material.
* (2) It causes HMAC to fail should any of the following change: ordering
* of source and dest addresses, flags, IV, or packet size. HMAC has
* no explicit scheme for AAD (additional authenticated data).
*
* NOTE: this function will have to be changed if the order of any packet
* fields or their sizes/padding changes in the spec.
*
* @param in Input key (32 bytes)
* @param out Output buffer (32 bytes)
*/
inline void _mangleKey(const unsigned char *in,unsigned char *out) const
throw()
{
// Random IV (Salsa20 also uses the IV natively, but HMAC doesn't), and
// destination and source addresses. Using dest and source addresses
// gives us a (likely) different key space for a->b vs b->a.
for(unsigned int i=0;i<18;++i) // 8 + (ZT_ADDRESS_LENGTH * 2) == 18
out[i] = in[i] ^ (unsigned char)_b[i];
// Flags, but masking off hop count which is altered by forwarding nodes
out[18] = in[18] ^ ((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & 0xf8);
// Raw packet size in bytes -- each raw packet size defines a possibly
// different space of keys.
out[19] = in[19] ^ (unsigned char)(_l & 0xff);
out[20] = in[20] ^ (unsigned char)((_l >> 8) & 0xff); // little endian
// Rest of raw key is used unchanged
for(unsigned int i=21;i<32;++i)
out[i] = in[i];
}
};
} // namespace ZeroTier
#endif