/* * Copyright (c)2013-2021 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Bond.hpp" #include "Switch.hpp" #include #include #include namespace ZeroTier { static unsigned char s_freeRandomByteCounter = 0; int Bond::_minReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL; uint8_t Bond::_defaultPolicy = ZT_BOND_POLICY_NONE; Phy* Bond::_phy; Binder* Bond::_binder; Mutex Bond::_bonds_m; Mutex Bond::_links_m; std::string Bond::_defaultPolicyStr; std::map > Bond::_bonds; std::map Bond::_policyTemplateAssignments; std::map > Bond::_bondPolicyTemplates; std::map > > Bond::_linkDefinitions; std::map > > Bond::_interfaceToLinkMap; bool Bond::linkAllowed(std::string& policyAlias, SharedPtr link) { if (! link) { return false; } bool foundInDefinitions = false; if (_linkDefinitions.count(policyAlias)) { auto it = _linkDefinitions[policyAlias].begin(); while (it != _linkDefinitions[policyAlias].end()) { if (link->ifname() == (*it)->ifname()) { foundInDefinitions = true; break; } ++it; } } return _linkDefinitions[policyAlias].empty() || foundInDefinitions; } void Bond::addCustomLink(std::string& policyAlias, SharedPtr link) { Mutex::Lock _l(_links_m); _linkDefinitions[policyAlias].push_back(link); auto search = _interfaceToLinkMap[policyAlias].find(link->ifname()); if (search == _interfaceToLinkMap[policyAlias].end()) { link->setAsUserSpecified(true); _interfaceToLinkMap[policyAlias].insert(std::pair >(link->ifname(), link)); } } bool Bond::addCustomPolicy(const SharedPtr& newBond) { Mutex::Lock _l(_bonds_m); if (! _bondPolicyTemplates.count(newBond->policyAlias())) { _bondPolicyTemplates[newBond->policyAlias()] = newBond; return true; } return false; } bool Bond::assignBondingPolicyToPeer(int64_t identity, const std::string& policyAlias) { Mutex::Lock _l(_bonds_m); if (! _policyTemplateAssignments.count(identity)) { _policyTemplateAssignments[identity] = policyAlias; return true; } return false; } SharedPtr Bond::getBondByPeerId(int64_t identity) { Mutex::Lock _l(_bonds_m); return _bonds.count(identity) ? _bonds[identity] : SharedPtr(); } SharedPtr Bond::createBond(const RuntimeEnvironment* renv, const SharedPtr& peer) { Mutex::Lock _l(_bonds_m); int64_t identity = peer->identity().address().toInt(); Bond* bond = nullptr; if (! _bonds.count(identity)) { if (! _policyTemplateAssignments.count(identity)) { if (_defaultPolicy) { bond = new Bond(renv, _defaultPolicy, peer); bond->debug("new default bond"); } if (! _defaultPolicy && _defaultPolicyStr.length()) { bond = new Bond(renv, _bondPolicyTemplates[_defaultPolicyStr].ptr(), peer); bond->debug("new default custom bond (based on %s)", bond->getPolicyStrByCode(bond->policy()).c_str()); } } else { if (! _bondPolicyTemplates[_policyTemplateAssignments[identity]]) { bond = new Bond(renv, _defaultPolicy, peer); bond->debug("peer-specific bond, was specified as %s but the bond definition was not found, using default %s", _policyTemplateAssignments[identity].c_str(), getPolicyStrByCode(_defaultPolicy).c_str()); } else { bond = new Bond(renv, _bondPolicyTemplates[_policyTemplateAssignments[identity]].ptr(), peer); bond->debug("new default bond"); } } } if (bond) { _bonds[identity] = bond; /** * Determine if user has specified anything that could affect the bonding policy's decisions */ if (_interfaceToLinkMap.count(bond->policyAlias())) { std::map >::iterator it = _interfaceToLinkMap[bond->policyAlias()].begin(); while (it != _interfaceToLinkMap[bond->policyAlias()].end()) { if (it->second->isUserSpecified()) { bond->_userHasSpecifiedLinks = true; } if (it->second->isUserSpecified() && it->second->primary()) { bond->_userHasSpecifiedPrimaryLink = true; } if (it->second->isUserSpecified() && it->second->userHasSpecifiedFailoverInstructions()) { bond->_userHasSpecifiedFailoverInstructions = true; } if (it->second->isUserSpecified() && (it->second->speed() > 0)) { bond->_userHasSpecifiedLinkSpeeds = true; } ++it; } } return bond; } return SharedPtr(); } void Bond::destroyBond(uint64_t peerId) { Mutex::Lock _l(_bonds_m); _bonds.erase(peerId); } SharedPtr Bond::getLinkBySocket(const std::string& policyAlias, uint64_t localSocket, bool createIfNeeded = false) { Mutex::Lock _l(_links_m); char ifname[ZT_MAX_PHYSIFNAME] = {}; _binder->getIfName((PhySocket*)((uintptr_t)localSocket), ifname, sizeof(ifname) - 1); std::string ifnameStr(ifname); auto search = _interfaceToLinkMap[policyAlias].find(ifnameStr); if (search == _interfaceToLinkMap[policyAlias].end()) { if (createIfNeeded) { SharedPtr s = new Link(ifnameStr, 0, 0, true, ZT_BOND_SLAVE_MODE_PRIMARY, ""); _interfaceToLinkMap[policyAlias].insert(std::pair >(ifnameStr, s)); return s; } else { return SharedPtr(); } } else { return search->second; } } SharedPtr Bond::getLinkByName(const std::string& policyAlias, const std::string& ifname) { Mutex::Lock _l(_links_m); auto search = _interfaceToLinkMap[policyAlias].find(ifname); if (search != _interfaceToLinkMap[policyAlias].end()) { return search->second; } return SharedPtr(); } void Bond::processBackgroundTasks(void* tPtr, const int64_t now) { unsigned long _currMinReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL; Mutex::Lock _l(_bonds_m); std::map >::iterator bondItr = _bonds.begin(); while (bondItr != _bonds.end()) { // Update Bond Controller's background processing timer _currMinReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)(bondItr->second->monitorInterval())); bondItr->second->processBackgroundBondTasks(tPtr, now); ++bondItr; } _minReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)ZT_BOND_FAILOVER_DEFAULT_INTERVAL); } Bond::Bond(const RuntimeEnvironment* renv) : RR(renv) { initTimers(); } Bond::Bond(const RuntimeEnvironment* renv, int policy, const SharedPtr& peer) : RR(renv), _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter), _peer(peer), _peerId(_peer->_id.address().toInt()) { initTimers(); setBondParameters(policy, SharedPtr(), false); _policyAlias = getPolicyStrByCode(policy); } Bond::Bond(const RuntimeEnvironment* renv, std::string& basePolicy, std::string& policyAlias, const SharedPtr& peer) : RR(renv), _policyAlias(policyAlias), _peer(peer) { initTimers(); setBondParameters(getPolicyCodeByStr(basePolicy), SharedPtr(), false); } Bond::Bond(const RuntimeEnvironment* renv, SharedPtr originalBond, const SharedPtr& peer) : RR(renv) , _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter) , _peer(peer) , _peerId(_peer->_id.address().toInt()) { initTimers(); setBondParameters(originalBond->_policy, originalBond, true); } void Bond::nominatePathToBond(const SharedPtr& path, int64_t now) { Mutex::Lock _l(_paths_m); debug("attempting to nominate link %s", pathToStr(path).c_str()); /** * Ensure the link is allowed and the path is not already present */ if (! RR->bc->linkAllowed(_policyAlias, getLinkBySocket(_policyAlias, path->localSocket(), true))) { debug("link %s is not permitted according to user-specified rules", pathToStr(path).c_str()); return; } bool alreadyPresent = false; for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { // Sanity check if (path.ptr() == _paths[i].p.ptr()) { alreadyPresent = true; debug("link %s already exists", pathToStr(path).c_str()); break; } } if (! alreadyPresent) { SharedPtr link = getLink(path); if (link) { std::string ifnameStr = std::string(link->ifname()); memset(path->_ifname, 0x0, ZT_MAX_PHYSIFNAME); memcpy(path->_ifname, ifnameStr.c_str(), std::min((int)ifnameStr.length(), ZT_MAX_PHYSIFNAME)); } /** * Find somewhere to stick it */ for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { _paths[i].set(now, path); /** * Set user preferences and update state variables of other paths on the same link */ SharedPtr sl = getLink(_paths[i].p); if (sl) { // Determine if there are any other paths on this link bool bFoundCommonLink = false; SharedPtr commonLink = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (commonLink) { for (unsigned int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; ++j) { if (_paths[j].p && _paths[j].p.ptr() != _paths[i].p.ptr()) { if (RR->bc->getLinkBySocket(_policyAlias, _paths[j].p->localSocket(), true) == commonLink) { bFoundCommonLink = true; _paths[j].onlyPathOnLink = false; } } } _paths[i].ipvPref = sl->ipvPref(); _paths[i].mode = sl->mode(); _paths[i].enabled = sl->enabled(); _paths[i].onlyPathOnLink = ! bFoundCommonLink; } } log("nominated link %s", pathToStr(path).c_str()); break; } } } curateBond(now, true); estimatePathQuality(now); } void Bond::addPathToBond(int nominatedIdx, int bondedIdx) { // Map bonded set to nominated set _bondIdxMap[bondedIdx] = nominatedIdx; // Tell the bonding layer that we can now use this path for traffic _paths[nominatedIdx].bonded = true; } SharedPtr Bond::getAppropriatePath(int64_t now, int32_t flowId) { Mutex::Lock _l(_paths_m); /** * active-backup */ if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) { if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && _paths[_abPathIdx].p) { return _paths[_abPathIdx].p; } } /** * broadcast */ if (_policy == ZT_BOND_POLICY_BROADCAST) { return SharedPtr(); // Handled in Switch::_trySend() } if (! _numBondedPaths) { return SharedPtr(); // No paths assigned to bond yet, cannot balance traffic } /** * balance-rr */ if (_policy == ZT_BOND_POLICY_BALANCE_RR) { if (! _allowFlowHashing) { if (_packetsPerLink == 0) { // Randomly select a path return _paths[_bondIdxMap[_freeRandomByte % _numBondedPaths]].p; } if (_rrPacketsSentOnCurrLink < _packetsPerLink) { // Continue to use this link ++_rrPacketsSentOnCurrLink; return _paths[_bondIdxMap[_rrIdx]].p; } // Reset striping counter _rrPacketsSentOnCurrLink = 0; if (_numBondedPaths == 1 || _rrIdx >= (ZT_MAX_PEER_NETWORK_PATHS - 1)) { _rrIdx = 0; } else { int _tempIdx = _rrIdx; for (int searchCount = 0; searchCount < (_numBondedPaths - 1); searchCount++) { _tempIdx = (_tempIdx == (_numBondedPaths - 1)) ? 0 : _tempIdx + 1; if (_bondIdxMap[_tempIdx] != ZT_MAX_PEER_NETWORK_PATHS) { if (_paths[_bondIdxMap[_tempIdx]].p && _paths[_bondIdxMap[_tempIdx]].eligible) { _rrIdx = _tempIdx; break; } } } } if (_paths[_bondIdxMap[_rrIdx]].p) { return _paths[_bondIdxMap[_rrIdx]].p; } } } /** * balance-xor */ if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) { if (! _allowFlowHashing || flowId == -1) { // No specific path required for unclassified traffic, send on anything int m_idx = _bondIdxMap[_freeRandomByte % _numBondedPaths]; return _paths[m_idx].p; } else if (_allowFlowHashing) { Mutex::Lock _l(_flows_m); SharedPtr flow; if (_flows.count(flowId)) { flow = _flows[flowId]; flow->lastActivity = now; } else { unsigned char entropy; Utils::getSecureRandom(&entropy, 1); flow = createFlow(ZT_MAX_PEER_NETWORK_PATHS, flowId, entropy, now); } if (flow) { return _paths[flow->assignedPath].p; } } } return SharedPtr(); } void Bond::recordIncomingInvalidPacket(const SharedPtr& path) { Mutex::Lock _l(_paths_m); for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p == path) { //_paths[i].packetValiditySamples.push(false); } } } void Bond::recordOutgoingPacket(const SharedPtr& path, uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now) { _freeRandomByte += (unsigned char)(packetId >> 8); // Grab entropy to use in path selection logic bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME); bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT)); if (isFrame || shouldRecord) { Mutex::Lock _l(_paths_m); int pathIdx = getNominatedPathIdx(path); if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) { return; } if (isFrame) { ++(_paths[pathIdx].packetsOut); _lastFrame = now; } if (shouldRecord) { //_paths[pathIdx].expectingAckAsOf = now; //_paths[pathIdx].totalBytesSentSinceLastAckRecieved += payloadLength; //_paths[pathIdx].unackedBytes += payloadLength; if (_paths[pathIdx].qosStatsOut.size() < ZT_QOS_MAX_PENDING_RECORDS) { _paths[pathIdx].qosStatsOut[packetId] = now; } } } if (_allowFlowHashing && (flowId != ZT_QOS_NO_FLOW)) { Mutex::Lock _l(_flows_m); if (_flows.count(flowId)) { _flows[flowId]->bytesOut += payloadLength; } } } void Bond::recordIncomingPacket(const SharedPtr& path, uint64_t packetId, uint16_t payloadLength, Packet::Verb verb, int32_t flowId, int64_t now) { bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME); bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT)); Mutex::Lock _l(_paths_m); int pathIdx = getNominatedPathIdx(path); if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) { return; } // Take note of the time that this previously-dead path received a packet if (! _paths[pathIdx].alive) { _paths[pathIdx].lastAliveToggle = now; } if (isFrame || shouldRecord) { if (_paths[pathIdx].allowed()) { if (isFrame) { ++(_paths[pathIdx].packetsIn); _lastFrame = now; } if (shouldRecord) { if (_paths[pathIdx].qosStatsIn.size() < ZT_QOS_MAX_PENDING_RECORDS) { // debug("Recording QoS information (table size = %d)", _paths[pathIdx].qosStatsIn.size()); _paths[pathIdx].qosStatsIn[packetId] = now; ++(_paths[pathIdx].packetsReceivedSinceLastQoS); //_paths[pathIdx].packetValiditySamples.push(true); } else { debug("QoS buffer full, will not record information"); } /* if (_paths[pathIdx].ackStatsIn.size() < ZT_ACK_MAX_PENDING_RECORDS) { //debug("Recording ACK information (table size = %d)", _paths[pathIdx].ackStatsIn.size()); _paths[pathIdx].ackStatsIn[packetId] = payloadLength; ++(_paths[pathIdx].packetsReceivedSinceLastAck); } else { debug("ACK buffer full, will not record information"); } */ } } } /** * Learn new flows and pro-actively create entries for them in the bond so * that the next time we send a packet out that is part of a flow we know * which path to use. */ if ((flowId != ZT_QOS_NO_FLOW) && (_policy == ZT_BOND_POLICY_BALANCE_RR || _policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE)) { Mutex::Lock _l(_flows_m); SharedPtr flow; if (! _flows.count(flowId)) { flow = createFlow(pathIdx, flowId, 0, now); } else { flow = _flows[flowId]; } if (flow) { flow->bytesIn += payloadLength; } } } void Bond::receivedQoS(const SharedPtr& path, int64_t now, int count, uint64_t* rx_id, uint16_t* rx_ts) { Mutex::Lock _l(_paths_m); int pathIdx = getNominatedPathIdx(path); if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) { return; } _paths[pathIdx].lastQoSReceived = now; debug("received QoS packet (sampling %d frames) via %s", count, pathToStr(path).c_str()); // Look up egress times and compute latency values for each record std::map::iterator it; for (int j = 0; j < count; j++) { it = _paths[pathIdx].qosStatsOut.find(rx_id[j]); if (it != _paths[pathIdx].qosStatsOut.end()) { _paths[pathIdx].latencySamples.push(((uint16_t)(now - it->second) - rx_ts[j]) / 2); _paths[pathIdx].qosStatsOut.erase(it); } } _paths[pathIdx].qosRecordSize.push(count); } void Bond::receivedAck(int pathIdx, int64_t now, int32_t ackedBytes) { /* Mutex::Lock _l(_paths_m); debug("received ACK of %d bytes on path %s, there are still %d un-acked bytes", ackedBytes, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].unackedBytes); _paths[pathIdx].lastAckReceived = now; _paths[pathIdx].unackedBytes = (ackedBytes > _paths[pathIdx].unackedBytes) ? 0 : _paths[pathIdx].unackedBytes - ackedBytes; */ } int32_t Bond::generateQoSPacket(int pathIdx, int64_t now, char* qosBuffer) { int32_t len = 0; std::map::iterator it = _paths[pathIdx].qosStatsIn.begin(); int i = 0; int numRecords = std::min(_paths[pathIdx].packetsReceivedSinceLastQoS, ZT_QOS_TABLE_SIZE); debug("numRecords=%3d, packetsReceivedSinceLastQoS=%3d, _paths[pathIdx].qosStatsIn.size()=%3lu", numRecords, _paths[pathIdx].packetsReceivedSinceLastQoS, _paths[pathIdx].qosStatsIn.size()); while (i < numRecords && it != _paths[pathIdx].qosStatsIn.end()) { uint64_t id = it->first; memcpy(qosBuffer, &id, sizeof(uint64_t)); qosBuffer += sizeof(uint64_t); uint16_t holdingTime = (uint16_t)(now - it->second); memcpy(qosBuffer, &holdingTime, sizeof(uint16_t)); qosBuffer += sizeof(uint16_t); len += sizeof(uint64_t) + sizeof(uint16_t); _paths[pathIdx].qosStatsIn.erase(it++); ++i; } return len; } bool Bond::assignFlowToBondedPath(SharedPtr& flow, int64_t now) { if (! _numBondedPaths) { debug("unable to assign flow %x (bond has no links)\n", flow->id); return false; } unsigned int idx = ZT_MAX_PEER_NETWORK_PATHS; if (_policy == ZT_BOND_POLICY_BALANCE_XOR) { idx = abs((int)(flow->id % (_numBondedPaths))); flow->assignPath(_bondIdxMap[idx], now); ++(_paths[_bondIdxMap[idx]].assignedFlowCount); } if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) { unsigned char entropy; Utils::getSecureRandom(&entropy, 1); if (_totalBondUnderload) { entropy %= _totalBondUnderload; } /* Since there may be scenarios where a path is removed before we can re-estimate relative qualities (and thus allocations) we need to down-modulate the entropy value that we use to randomly assign among the surviving paths, otherwise we risk not being able to find a path to assign this flow to. */ int totalIncompleteAllocation = 0; for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].bonded) { totalIncompleteAllocation += _paths[i].allocation; } } entropy %= totalIncompleteAllocation; for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].bonded) { uint8_t probabilitySegment = (_totalBondUnderload > 0) ? _paths[i].affinity : _paths[i].allocation; if (entropy <= probabilitySegment) { idx = i; break; } entropy -= probabilitySegment; } } if (idx < ZT_MAX_PEER_NETWORK_PATHS) { flow->assignPath(idx, now); ++(_paths[idx].assignedFlowCount); } else { debug("unable to assign out-flow %x (unknown reason)", flow->id); return false; } } if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) { if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) { debug("unable to assign out-flow %x (no active backup link)", flow->id); } flow->assignPath(_abPathIdx, now); } debug("assign out-flow %04x to link %s (%u / %lu flows)", flow->id, pathToStr(_paths[flow->assignedPath].p).c_str(), _paths[flow->assignedPath].assignedFlowCount, _flows.size()); return true; } SharedPtr Bond::createFlow(int pathIdx, int32_t flowId, unsigned char entropy, int64_t now) { if (! _numBondedPaths) { debug("unable to assign flow %x (bond has no links)\n", flowId); return SharedPtr(); } if (_flows.size() >= ZT_FLOW_MAX_COUNT) { debug("forget oldest flow (max flows reached: %d)\n", ZT_FLOW_MAX_COUNT); forgetFlowsWhenNecessary(0, true, now); } SharedPtr flow = new Flow(flowId, now); _flows[flowId] = flow; /** * Add a flow with a given Path already provided. This is the case when a packet * is received on a path but no flow exists, in this case we simply assign the path * that the remote peer chose for us. */ if (pathIdx != ZT_MAX_PEER_NETWORK_PATHS) { flow->assignPath(pathIdx, now); _paths[pathIdx].assignedFlowCount++; debug("assign in-flow %x to link %s (%u / %lu)", flow->id, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].assignedFlowCount, _flows.size()); } /** * Add a flow when no path was provided. This means that it is an outgoing packet * and that it is up to the local peer to decide how to load-balance its transmission. */ else { assignFlowToBondedPath(flow, now); } return flow; } void Bond::forgetFlowsWhenNecessary(uint64_t age, bool oldest, int64_t now) { std::map >::iterator it = _flows.begin(); std::map >::iterator oldestFlow = _flows.end(); SharedPtr expiredFlow; if (age) { // Remove by specific age while (it != _flows.end()) { if (it->second->age(now) > age) { debug("forget flow %x (age %llu) (%u / %lu)", it->first, (unsigned long long)it->second->age(now), _paths[it->second->assignedPath].assignedFlowCount, (_flows.size() - 1)); _paths[it->second->assignedPath].assignedFlowCount--; it = _flows.erase(it); } else { ++it; } } } else if (oldest) { // Remove single oldest by natural expiration uint64_t maxAge = 0; while (it != _flows.end()) { if (it->second->age(now) > maxAge) { maxAge = (now - it->second->age(now)); oldestFlow = it; } ++it; } if (oldestFlow != _flows.end()) { debug("forget oldest flow %x (age %llu) (total flows: %lu)", oldestFlow->first, (unsigned long long)oldestFlow->second->age(now), (unsigned long)(_flows.size() - 1)); _paths[oldestFlow->second->assignedPath].assignedFlowCount--; _flows.erase(oldestFlow); } } } void Bond::processIncomingPathNegotiationRequest(uint64_t now, SharedPtr& path, int16_t remoteUtility) { char pathStr[64] = { 0 }; if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) { return; } Mutex::Lock _l(_paths_m); int pathIdx = getNominatedPathIdx(path); if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) { return; } _paths[pathIdx].p->address().toString(pathStr); if (! _lastPathNegotiationCheck) { return; } SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[pathIdx].p->localSocket()); if (link) { if (remoteUtility > _localUtility) { _paths[pathIdx].p->address().toString(pathStr); debug("peer suggests alternate link %s/%s, remote utility (%d) greater than local utility (%d), switching to suggested link\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility); _negotiatedPathIdx = pathIdx; } if (remoteUtility < _localUtility) { debug("peer suggests alternate link %s/%s, remote utility (%d) less than local utility (%d), not switching\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility); } if (remoteUtility == _localUtility) { debug("peer suggests alternate link %s/%s, remote utility (%d) equal to local utility (%d)\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility); if (_peer->_id.address().toInt() > RR->node->identity().address().toInt()) { debug("agree with peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr); _negotiatedPathIdx = pathIdx; } else { debug("ignore petition from peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr); } } } } void Bond::pathNegotiationCheck(void* tPtr, int64_t now) { int maxInPathIdx = ZT_MAX_PEER_NETWORK_PATHS; int maxOutPathIdx = ZT_MAX_PEER_NETWORK_PATHS; uint64_t maxInCount = 0; uint64_t maxOutCount = 0; for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } if (_paths[i].packetsIn > maxInCount) { maxInCount = _paths[i].packetsIn; maxInPathIdx = i; } if (_paths[i].packetsOut > maxOutCount) { maxOutCount = _paths[i].packetsOut; maxOutPathIdx = i; } _paths[i].resetPacketCounts(); } bool _peerLinksSynchronized = ((maxInPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxOutPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxInPathIdx != maxOutPathIdx)) ? false : true; /** * Determine utility and attempt to petition remote peer to switch to our chosen path */ if (! _peerLinksSynchronized) { _localUtility = _paths[maxOutPathIdx].failoverScore - _paths[maxInPathIdx].failoverScore; if (_paths[maxOutPathIdx].negotiated) { _localUtility -= ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED; } if ((now - _lastSentPathNegotiationRequest) > ZT_PATH_NEGOTIATION_CUTOFF_TIME) { // fprintf(stderr, "BT: (sync) it's been long enough, sending more requests.\n"); _numSentPathNegotiationRequests = 0; } if (_numSentPathNegotiationRequests < ZT_PATH_NEGOTIATION_TRY_COUNT) { if (_localUtility >= 0) { // fprintf(stderr, "BT: (sync) paths appear to be out of sync (utility=%d)\n", _localUtility); sendPATH_NEGOTIATION_REQUEST(tPtr, _paths[maxOutPathIdx].p); ++_numSentPathNegotiationRequests; _lastSentPathNegotiationRequest = now; // fprintf(stderr, "sending request to use %s on %s, ls=%llx, utility=%d\n", pathStr, link->ifname().c_str(), _paths[maxOutPathIdx].p->localSocket(), _localUtility); } } /** * Give up negotiating and consider switching */ else if ((now - _lastSentPathNegotiationRequest) > (2 * ZT_BOND_OPTIMIZE_INTERVAL)) { if (_localUtility == 0) { // There's no loss to us, just switch without sending a another request // fprintf(stderr, "BT: (sync) giving up, switching to remote peer's path.\n"); _negotiatedPathIdx = maxInPathIdx; } } } } void Bond::sendPATH_NEGOTIATION_REQUEST(void* tPtr, int pathIdx) { debug("send link negotiation request to peer via link %s, local utility is %d", pathToStr(_paths[pathIdx].p).c_str(), _localUtility); if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) { return; } Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_PATH_NEGOTIATION_REQUEST); outp.append(_localUtility); if (_paths[pathIdx].p->address()) { outp.armor(_peer->key(), false, _peer->aesKeysIfSupported()); RR->node->putPacket(tPtr, _paths[pathIdx].p->localSocket(), _paths[pathIdx].p->address(), outp.data(), outp.size()); _overheadBytes += outp.size(); } } void Bond::sendACK(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now) { /* Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_ACK); int32_t bytesToAck = 0; std::map::iterator it = _paths[pathIdx].ackStatsIn.begin(); while (it != _paths[pathIdx].ackStatsIn.end()) { bytesToAck += it->second; ++it; } debug("sending ACK of %d bytes on path %s (table size = %d)", bytesToAck, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].ackStatsIn.size()); outp.append(bytesToAck); if (atAddress) { outp.armor(_peer->key(), false, _peer->aesKeysIfSupported()); RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size()); } else { RR->sw->send(tPtr, outp, false); } _paths[pathIdx].ackStatsIn.clear(); _paths[pathIdx].packetsReceivedSinceLastAck = 0; _paths[pathIdx].lastAckSent = now; */ } void Bond::sendQOS_MEASUREMENT(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now) { int64_t _now = RR->node->now(); Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_QOS_MEASUREMENT); char qosData[ZT_QOS_MAX_PACKET_SIZE]; int16_t len = generateQoSPacket(pathIdx, _now, qosData); if (len) { debug("sending QOS via link %s (len=%d)", pathToStr(_paths[pathIdx].p).c_str(), len); outp.append(qosData, len); if (atAddress) { outp.armor(_peer->key(), false, _peer->aesKeysIfSupported()); RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size()); } else { RR->sw->send(tPtr, outp, false); } _paths[pathIdx].packetsReceivedSinceLastQoS = 0; _paths[pathIdx].lastQoSMeasurement = now; _overheadBytes += outp.size(); } } void Bond::processBackgroundBondTasks(void* tPtr, int64_t now) { if (! _peer->_localMultipathSupported || (now - _lastBackgroundTaskCheck) < ZT_BOND_BACKGROUND_TASK_MIN_INTERVAL) { return; } _lastBackgroundTaskCheck = now; Mutex::Lock _l(_paths_m); curateBond(now, false); if ((now - _lastQualityEstimation) > _qualityEstimationInterval) { _lastQualityEstimation = now; estimatePathQuality(now); } dumpInfo(now, false); // Send ambient monitoring traffic for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].allowed()) { if (_isLeaf) { if ((_monitorInterval > 0) && (((now - _paths[i].p->_lastIn) >= (_paths[i].alive ? _monitorInterval : _failoverInterval)))) { if ((_peer->remoteVersionProtocol() >= 5) && (! ((_peer->remoteVersionMajor() == 1) && (_peer->remoteVersionMinor() == 1) && (_peer->remoteVersionRevision() == 0)))) { Packet outp(_peer->address(), RR->identity.address(), Packet::VERB_ECHO); // ECHO (this is our bond's heartbeat) outp.armor(_peer->key(), true, _peer->aesKeysIfSupported()); RR->node->expectReplyTo(outp.packetId()); RR->node->putPacket(tPtr, _paths[i].p->localSocket(), _paths[i].p->address(), outp.data(), outp.size()); _paths[i].p->_lastOut = now; _overheadBytes += outp.size(); debug("tx: verb 0x%-2x of len %4d via %s (ECHO)", Packet::VERB_ECHO, outp.size(), pathToStr(_paths[i].p).c_str()); } } // QOS if (_paths[i].needsToSendQoS(now, _qosSendInterval)) { sendQOS_MEASUREMENT(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now); } // ACK /* if (_paths[i].needsToSendAck(now, _ackSendInterval)) { sendACK(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now); } */ } } } // Perform periodic background tasks unique to each bonding policy switch (_policy) { case ZT_BOND_POLICY_ACTIVE_BACKUP: processActiveBackupTasks(tPtr, now); break; case ZT_BOND_POLICY_BROADCAST: break; case ZT_BOND_POLICY_BALANCE_RR: case ZT_BOND_POLICY_BALANCE_XOR: case ZT_BOND_POLICY_BALANCE_AWARE: processBalanceTasks(now); break; default: break; } // Check whether or not a path negotiation needs to be performed if (((now - _lastPathNegotiationCheck) > ZT_BOND_OPTIMIZE_INTERVAL) && _allowPathNegotiation) { _lastPathNegotiationCheck = now; pathNegotiationCheck(tPtr, now); } } void Bond::curateBond(int64_t now, bool rebuildBond) { uint8_t tmpNumAliveLinks = 0; uint8_t tmpNumTotalLinks = 0; /** * Update path state variables. State variables are used so that critical * blocks that perform fast packet processing won't need to make as many * function calls or computations. */ for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } // Whether this path is still in its trial period bool inTrial = (now - _paths[i].whenNominated) < ZT_BOND_OPTIMIZE_INTERVAL; /** * Remove expired or invalid links from bond */ SharedPtr link = getLink(_paths[i].p); if (! link) { log("link is no longer valid, removing from bond"); _paths[i].p->_valid = false; _paths[i] = NominatedPath(); _paths[i].p = SharedPtr(); continue; } if ((now - _paths[i].lastEligibility) > (ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD) && ! inTrial) { log("link (%s) has expired or is invalid, removing from bond", pathToStr(_paths[i].p).c_str()); _paths[i] = NominatedPath(); _paths[i].p = SharedPtr(); continue; } tmpNumTotalLinks++; if (_paths[i].eligible) { tmpNumAliveLinks++; } /** * Determine aliveness */ _paths[i].alive = _isLeaf ? (now - _paths[i].p->_lastIn) < _failoverInterval : (now - _paths[i].p->_lastIn) < ZT_PEER_PATH_EXPIRATION; /** * Determine current eligibility */ bool currEligibility = false; // Simple RX age (driven by packets of any type and gratuitous VERB_HELLOs) bool acceptableAge = _isLeaf ? (_paths[i].p->age(now) < (_failoverInterval + _downDelay)) : _paths[i].alive; // Whether we've waited long enough since the link last came online bool satisfiedUpDelay = (now - _paths[i].lastAliveToggle) >= _upDelay; // How long since the last QoS was received (Must be less than ZT_PEER_PATH_EXPIRATION since the remote peer's _qosSendInterval isn't known) bool acceptableQoSAge = _paths[i].lastQoSReceived == 0 || ((now - _paths[i].lastQoSReceived) < ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD); currEligibility = _paths[i].allowed() && ((acceptableAge && satisfiedUpDelay && acceptableQoSAge) || inTrial); if (currEligibility) { _paths[i].lastEligibility = now; } /** * Note eligibility state change (if any) and take appropriate action */ if (currEligibility != _paths[i].eligible) { if (currEligibility == 0) { log("link %s is no longer eligible", pathToStr(_paths[i].p).c_str()); } if (currEligibility == 1) { log("link %s is eligible", pathToStr(_paths[i].p).c_str()); } debug("\t[%d] allowed=%d, age=%d, qa=%d, ud=%d, trial=%d", i, _paths[i].allowed(), acceptableAge, acceptableQoSAge, satisfiedUpDelay, inTrial); dumpPathStatus(now, i); if (currEligibility) { rebuildBond = true; } if (! currEligibility) { _paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, ! currEligibility); if (_paths[i].bonded) { if (_allowFlowHashing) { debug("link %s was bonded, flow reallocation will occur soon", pathToStr(_paths[i].p).c_str()); rebuildBond = true; _paths[i].shouldReallocateFlows = _paths[i].bonded; } _paths[i].bonded = false; } } } if (currEligibility) { _paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, false); } _paths[i].eligible = currEligibility; } /** * Trigger status report if number of links change */ _numAliveLinks = tmpNumAliveLinks; _numTotalLinks = tmpNumTotalLinks; if ((_numAliveLinks != tmpNumAliveLinks) || (_numTotalLinks != tmpNumTotalLinks)) { dumpInfo(now, true); } /** * Check for failure of (all) primary links and inform bond to use spares if present */ bool foundUsablePrimaryPath = false; for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].bonded && _paths[i].alive) { foundUsablePrimaryPath = true; } } rebuildBond = rebuildBond ? true : ! foundUsablePrimaryPath; /** * Curate the set of paths that are part of the bond proper. Select a set of paths * per logical link according to eligibility and user-specified constraints. */ if ((_policy == ZT_BOND_POLICY_BALANCE_RR) || (_policy == ZT_BOND_POLICY_BALANCE_XOR) || (_policy == ZT_BOND_POLICY_BALANCE_AWARE)) { if (! _numBondedPaths) { rebuildBond = true; } if (rebuildBond) { debug("rebuilding bond"); // Clear previous bonded index mapping for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { _bondIdxMap[i] = ZT_MAX_PEER_NETWORK_PATHS; _paths[i].bonded = false; } int updatedBondedPathCount = 0; // Build map associating paths with local physical links. Will be selected from in next step std::map, std::vector > linkMap; for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p) { SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (link) { linkMap[link].push_back(i); } } } // Re-form bond from link<->path map std::map, std::vector >::iterator it = linkMap.begin(); while (it != linkMap.end()) { SharedPtr link = it->first; int ipvPref = link->ipvPref(); // Bond a spare link if required (no viable primary links left) if (! foundUsablePrimaryPath) { log("no usable primary links remain, will attempt to use spare if available"); for (int j = 0; j < it->second.size(); j++) { int idx = it->second.at(j); if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || ! _paths[idx].isSpare()) { continue; } addPathToBond(idx, updatedBondedPathCount); ++updatedBondedPathCount; debug("add %s (spare)", pathToStr(_paths[idx].p).c_str()); } } // If user has no address type preference, then use every path we find on a link if (ipvPref == 0) { for (int j = 0; j < it->second.size(); j++) { int idx = it->second.at(j); if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || _paths[idx].isSpare()) { continue; } addPathToBond(idx, updatedBondedPathCount); ++updatedBondedPathCount; debug("add %s (no user addr preference)", pathToStr(_paths[idx].p).c_str()); } } // If the user prefers to only use one address type (IPv4 or IPv6) if (ipvPref == 4 || ipvPref == 6) { for (int j = 0; j < it->second.size(); j++) { int idx = it->second.at(j); if (! _paths[idx].p || ! _paths[idx].eligible || _paths[idx].isSpare()) { continue; } if (! _paths[idx].allowed()) { debug("did not add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref); continue; } addPathToBond(idx, updatedBondedPathCount); ++updatedBondedPathCount; debug("add path %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref); } } // If the users prefers one address type to another, try to find at least // one path of that type before considering others. if (ipvPref == 46 || ipvPref == 64) { bool foundPreferredPath = false; // Search for preferred paths for (int j = 0; j < it->second.size(); j++) { int idx = it->second.at(j); if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || _paths[idx].isSpare()) { continue; } if (_paths[idx].preferred()) { addPathToBond(idx, updatedBondedPathCount); ++updatedBondedPathCount; debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref); foundPreferredPath = true; } } // Unable to find a path that matches user preference, settle for another address type if (! foundPreferredPath) { debug("did not find first-choice path type on link %s (user preference %d)", link->ifname().c_str(), ipvPref); for (int j = 0; j < it->second.size(); j++) { int idx = it->second.at(j); if (! _paths[idx].p || ! _paths[idx].eligible || _paths[idx].isSpare()) { continue; } addPathToBond(idx, updatedBondedPathCount); ++updatedBondedPathCount; debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref); foundPreferredPath = true; } } } ++it; // Next link } _numBondedPaths = updatedBondedPathCount; if (_policy == ZT_BOND_POLICY_BALANCE_RR) { // Cause a RR reset since the current index might no longer be valid _rrPacketsSentOnCurrLink = _packetsPerLink; _rrIdx = 0; } } } } void Bond::estimatePathQuality(int64_t now) { uint32_t totUserSpecifiedLinkSpeed = 0; if (_numBondedPaths) { // Compute relative user-specified speeds of links for (unsigned int i = 0; i < _numBondedPaths; ++i) { if (_paths[i].p && _paths[i].allowed()) { SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (link) { totUserSpecifiedLinkSpeed += link->speed(); } } } for (unsigned int i = 0; i < _numBondedPaths; ++i) { if (_paths[i].p && _paths[i].allowed()) { SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (link) { link->setRelativeSpeed((uint8_t)round(((float)link->speed() / (float)totUserSpecifiedLinkSpeed) * 255)); } } } } float lat[ZT_MAX_PEER_NETWORK_PATHS] = { 0 }; float pdv[ZT_MAX_PEER_NETWORK_PATHS] = { 0 }; float plr[ZT_MAX_PEER_NETWORK_PATHS] = { 0 }; float per[ZT_MAX_PEER_NETWORK_PATHS] = { 0 }; float maxLAT = 0; float maxPDV = 0; float maxPLR = 0; float maxPER = 0; float quality[ZT_MAX_PEER_NETWORK_PATHS] = { 0 }; uint8_t alloc[ZT_MAX_PEER_NETWORK_PATHS] = { 0 }; float totQuality = 0.0f; // Compute initial summary statistics for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p || ! _paths[i].allowed()) { continue; } // Compute/Smooth average of real-world observations _paths[i].latencyMean = _paths[i].latencySamples.mean(); _paths[i].latencyVariance = _paths[i].latencySamples.stddev(); // Write values to external path object so that it can be propagated to the user _paths[i].p->_latencyMean = _paths[i].latencyMean; _paths[i].p->_latencyVariance = _paths[i].latencyVariance; _paths[i].p->_packetLossRatio = _paths[i].packetLossRatio; _paths[i].p->_packetErrorRatio = _paths[i].packetErrorRatio; _paths[i].p->_bonded = _paths[i].bonded; _paths[i].p->_eligible = _paths[i].eligible; // _valid is written elsewhere _paths[i].p->_allocation = _paths[i].allocation; SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (link) { _paths[i].p->_givenLinkSpeed = link->speed(); } //_paths[i].packetErrorRatio = 1.0 - (_paths[i].packetValiditySamples.count() ? _paths[i].packetValiditySamples.mean() : 1.0); // Drain unacknowledged QoS records int qosRecordTimeout = (_qosSendInterval * 3); std::map::iterator it = _paths[i].qosStatsOut.begin(); int numDroppedQosOutRecords = 0; while (it != _paths[i].qosStatsOut.end()) { if ((now - it->second) >= qosRecordTimeout) { it = _paths[i].qosStatsOut.erase(it); ++numDroppedQosOutRecords; } else { ++it; } } if (numDroppedQosOutRecords) { debug("Dropped %d QOS out-records", numDroppedQosOutRecords); } /* for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } // if ((now - _paths[i].lastAckReceived) > ackSendInterval) { // debug("been a while since ACK"); // if (_paths[i].unackedBytes > 0) { // _paths[i].unackedBytes / _paths[i].bytesSen // } // } } */ it = _paths[i].qosStatsIn.begin(); int numDroppedQosInRecords = 0; while (it != _paths[i].qosStatsIn.end()) { if ((now - it->second) >= qosRecordTimeout) { it = _paths[i].qosStatsIn.erase(it); ++numDroppedQosInRecords; } else { ++it; } } if (numDroppedQosInRecords) { log("Dropped %d QOS in-records", numDroppedQosInRecords); } quality[i] = 0; totQuality = 0; // Normalize raw observations according to sane limits and/or user specified values lat[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latencyMean, 0, _maxAcceptableLatency, 0, 1)); pdv[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latencyVariance, 0, _maxAcceptablePacketDelayVariance, 0, 1)); plr[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetLossRatio, 0, _maxAcceptablePacketLossRatio, 0, 1)); per[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetErrorRatio, 0, _maxAcceptablePacketErrorRatio, 0, 1)); // Record bond-wide maximums to determine relative values maxLAT = lat[i] > maxLAT ? lat[i] : maxLAT; maxPDV = pdv[i] > maxPDV ? pdv[i] : maxPDV; maxPLR = plr[i] > maxPLR ? plr[i] : maxPLR; maxPER = per[i] > maxPER ? per[i] : maxPER; } // Convert metrics to relative quantities and apply contribution weights for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].bonded) { quality[i] += ((maxLAT > 0.0f ? lat[i] / maxLAT : 0.0f) * _qw[ZT_QOS_LAT_IDX]); quality[i] += ((maxPDV > 0.0f ? pdv[i] / maxPDV : 0.0f) * _qw[ZT_QOS_PDV_IDX]); quality[i] += ((maxPLR > 0.0f ? plr[i] / maxPLR : 0.0f) * _qw[ZT_QOS_PLR_IDX]); quality[i] += ((maxPER > 0.0f ? per[i] / maxPER : 0.0f) * _qw[ZT_QOS_PER_IDX]); totQuality += quality[i]; } } // Normalize to 8-bit allocation values for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].bonded) { alloc[i] = (uint8_t)(std::ceil((quality[i] / totQuality) * (float)255)); _paths[i].allocation = alloc[i]; } } } void Bond::processBalanceTasks(int64_t now) { if (_allowFlowHashing) { /** * Clean up and reset flows if necessary */ if ((now - _lastFlowExpirationCheck) > ZT_PEER_PATH_EXPIRATION) { Mutex::Lock _l(_flows_m); forgetFlowsWhenNecessary(ZT_PEER_PATH_EXPIRATION, false, now); std::map >::iterator it = _flows.begin(); while (it != _flows.end()) { it->second->resetByteCounts(); ++it; } _lastFlowExpirationCheck = now; } /** * Re-allocate flows from dead paths */ if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) { Mutex::Lock _l(_flows_m); for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } if (! _paths[i].eligible && _paths[i].shouldReallocateFlows) { log("reallocate flows from dead link %s", pathToStr(_paths[i].p).c_str()); std::map >::iterator flow_it = _flows.begin(); while (flow_it != _flows.end()) { if (_paths[flow_it->second->assignedPath].p == _paths[i].p) { if (assignFlowToBondedPath(flow_it->second, now)) { _paths[i].assignedFlowCount--; } } ++flow_it; } _paths[i].shouldReallocateFlows = false; } } } /** * Re-allocate flows from under-performing * NOTE: This could be part of the above block but was kept separate for clarity. */ if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) { int totalAllocation = 0; for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } if (_paths[i].p && _paths[i].bonded && _paths[i].eligible) { totalAllocation += _paths[i].allocation; } } unsigned char minimumAllocationValue = (uint8_t)(0.33 * ((float)totalAllocation / (float)_numBondedPaths)); Mutex::Lock _l(_flows_m); for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } if (_paths[i].p && _paths[i].bonded && _paths[i].eligible && (_paths[i].allocation < minimumAllocationValue) && _paths[i].assignedFlowCount) { log("reallocate flows from under-performing link %s\n", pathToStr(_paths[i].p).c_str()); std::map >::iterator flow_it = _flows.begin(); while (flow_it != _flows.end()) { if (flow_it->second->assignedPath == _paths[i].p) { if (assignFlowToBondedPath(flow_it->second, now)) { _paths[i].assignedFlowCount--; } } ++flow_it; } _paths[i].shouldReallocateFlows = false; } } } } } void Bond::dequeueNextActiveBackupPath(uint64_t now) { if (_abFailoverQueue.empty()) { return; } _abPathIdx = _abFailoverQueue.front(); _abFailoverQueue.pop_front(); _lastActiveBackupPathChange = now; for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p) { _paths[i].resetPacketCounts(); } } } bool Bond::abForciblyRotateLink() { Mutex::Lock _l(_paths_m); if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) { int prevPathIdx = _abPathIdx; dequeueNextActiveBackupPath(RR->node->now()); log("active link rotated from %s to %s", pathToStr(_paths[prevPathIdx].p).c_str(), pathToStr(_paths[_abPathIdx].p).c_str()); return true; } return false; } void Bond::processActiveBackupTasks(void* tPtr, int64_t now) { int prevActiveBackupPathIdx = _abPathIdx; int nonPreferredPathIdx = ZT_MAX_PEER_NETWORK_PATHS; bool bFoundPrimaryLink = false; if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && ! _paths[_abPathIdx].p) { _abPathIdx = ZT_MAX_PEER_NETWORK_PATHS; log("main active-backup path has been removed"); } /** * Generate periodic status report */ if ((now - _lastBondStatusLog) > ZT_BOND_STATUS_INTERVAL) { _lastBondStatusLog = now; if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) { log("no active link"); } else if (_paths[_abPathIdx].p) { log("active link is %s, failover queue size is %zu", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size()); } if (_abFailoverQueue.empty()) { log("failover queue is empty, bond is no longer fault-tolerant"); } } /** * Select initial "active" active-backup link */ if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) { /** * [Automatic mode] * The user has not explicitly specified links or their failover schedule, * the bonding policy will now select the first eligible path and set it as * its active backup path, if a substantially better path is detected the bonding * policy will assign it as the new active backup path. If the path fails it will * simply find the next eligible path. */ if (! userHasSpecifiedLinks()) { for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].eligible) { SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (link) { log("found eligible link %s", pathToStr(_paths[i].p).c_str()); _abPathIdx = i; break; } } } } /** * [Manual mode] * The user has specified links or failover rules that the bonding policy should adhere to. */ else if (userHasSpecifiedLinks()) { if (userHasSpecifiedPrimaryLink()) { for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p) { continue; } SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (link) { if (_paths[i].eligible && link->primary()) { if (! _paths[i].preferred()) { // Found path on primary link, take note in case we don't find a preferred path nonPreferredPathIdx = i; bFoundPrimaryLink = true; } if (_paths[i].preferred()) { _abPathIdx = i; bFoundPrimaryLink = true; if (_paths[_abPathIdx].p) { SharedPtr abLink = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket()); if (abLink) { log("found preferred primary link %s", pathToStr(_paths[_abPathIdx].p).c_str()); } break; // Found preferred path on primary link } } } } } if (bFoundPrimaryLink && (nonPreferredPathIdx != ZT_MAX_PEER_NETWORK_PATHS)) { log("found non-preferred primary link"); _abPathIdx = nonPreferredPathIdx; } } else if (! userHasSpecifiedPrimaryLink()) { for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p && _paths[i].eligible) { _abPathIdx = i; break; } } if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS) { if (_paths[_abPathIdx].p) { SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket()); if (link) { log("select non-primary link %s", pathToStr(_paths[_abPathIdx].p).c_str()); } } } } } } // Short-circuit if we don't have an active link yet. Everything below is optimization from the base case if (_abPathIdx < 0 || _abPathIdx == ZT_MAX_PEER_NETWORK_PATHS || (! _paths[_abPathIdx].p)) { return; } // Remove ineligible paths from the failover link queue for (std::deque::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end();) { if (! _paths[(*it)].p) { log("link is no longer valid, removing from failover queue (%zu links remain in queue)", _abFailoverQueue.size()); it = _abFailoverQueue.erase(it); continue; } if (_paths[(*it)].p && ! _paths[(*it)].eligible) { SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[(*it)].p->localSocket()); it = _abFailoverQueue.erase(it); if (link) { log("link %s is ineligible, removing from failover queue (%zu links remain in queue)", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size()); } continue; } else { ++it; } } /** * Failover instructions were provided by user, build queue according those as well as IPv * preference, disregarding performance. */ if (userHasSpecifiedFailoverInstructions()) { /** * Clear failover scores */ for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p) { _paths[i].failoverScore = 0; } } // Follow user-specified failover instructions for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) { continue; } SharedPtr link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket()); if (! link) { continue; } int failoverScoreHandicap = _paths[i].failoverScore; if (_paths[i].preferred()) { failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PREFERRED; } if (link->primary()) { // If using "optimize" primary re-select mode, ignore user link designations failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PRIMARY; } if (! _paths[i].failoverScore) { // If we didn't inherit a failover score from a "parent" that wants to use this path as a failover int newHandicap = failoverScoreHandicap ? failoverScoreHandicap : _paths[i].allocation; _paths[i].failoverScore = newHandicap; } SharedPtr failoverLink; if (link->failoverToLink().length()) { failoverLink = RR->bc->getLinkByName(_policyAlias, link->failoverToLink()); } if (failoverLink) { for (int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; j++) { if (_paths[j].p && getLink(_paths[j].p) == failoverLink.ptr()) { int inheritedHandicap = failoverScoreHandicap - 10; int newHandicap = _paths[j].failoverScore > inheritedHandicap ? _paths[j].failoverScore : inheritedHandicap; if (! _paths[j].preferred()) { newHandicap--; } _paths[j].failoverScore = newHandicap; } } } if (_paths[i].p) { if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) { bool bFoundPathInQueue = false; for (std::deque::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) { if (_paths[(*it)].p && (_paths[i].p.ptr() == _paths[(*it)].p.ptr())) { bFoundPathInQueue = true; } } if (! bFoundPathInQueue) { _abFailoverQueue.push_front(i); log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size()); addPathToBond(0, i); } } } } } /** * No failover instructions provided by user, build queue according to performance * and IPv preference. */ else if (! userHasSpecifiedFailoverInstructions()) { for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) { continue; } int failoverScoreHandicap = 0; if (_paths[i].preferred()) { failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PREFERRED; } if (! _paths[i].eligible) { failoverScoreHandicap = -10000; } SharedPtr link = getLink(_paths[i].p); if (! link) { continue; } if (link->primary() && _abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) { // If using "optimize" primary re-select mode, ignore user link designations failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PRIMARY; } /* if (_paths[i].p.ptr() == _paths[_negotiatedPathIdx].p.ptr()) { _paths[i].negotiated = true; failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED; } else { _paths[i].negotiated = false; } */ _paths[i].failoverScore = _paths[i].allocation + failoverScoreHandicap; if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) { bool bFoundPathInQueue = false; for (std::deque::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) { if (_paths[i].p.ptr() == _paths[(*it)].p.ptr()) { bFoundPathInQueue = true; } } if (! bFoundPathInQueue) { _abFailoverQueue.push_front(i); log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size()); addPathToBond(0, i); } } } } // Sort queue based on performance if (! _abFailoverQueue.empty()) { for (int i = 0; i < _abFailoverQueue.size(); i++) { int value_to_insert = _abFailoverQueue[i]; int hole_position = i; while (hole_position > 0 && (_abFailoverQueue[hole_position - 1] > value_to_insert)) { _abFailoverQueue[hole_position] = _abFailoverQueue[hole_position - 1]; hole_position = hole_position - 1; } _abFailoverQueue[hole_position] = value_to_insert; } } /** * Short-circuit if we have no queued paths */ if (_abFailoverQueue.empty()) { return; } /** * Fulfill primary re-select obligations */ if (! _paths[_abPathIdx].eligible) { // Implicit ZT_BOND_RESELECTION_POLICY_FAILURE log("link %s has failed, select link from failover queue (%zu links in queue)", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size()); if (! _abFailoverQueue.empty()) { dequeueNextActiveBackupPath(now); log("active link switched to %s", pathToStr(_paths[_abPathIdx].p).c_str()); } else { log("failover queue is empty, no links to choose from"); } } /** * Detect change to prevent flopping during later optimization step. */ if (prevActiveBackupPathIdx != _abPathIdx) { _lastActiveBackupPathChange = now; } if (_abFailoverQueue.empty()) { return; // No sense in continuing since there are no links to switch to } if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_ALWAYS) { SharedPtr abLink = getLink(_paths[_abPathIdx].p); if (! _paths[_abFailoverQueue.front()].p) { log("invalid link. not switching"); return; } SharedPtr abFailoverLink = getLink(_paths[_abFailoverQueue.front()].p); if (abLink && ! abLink->primary() && _paths[_abFailoverQueue.front()].p && abFailoverLink && abFailoverLink->primary()) { dequeueNextActiveBackupPath(now); log("switch back to available primary link %s (select mode: always)", pathToStr(_paths[_abPathIdx].p).c_str()); } } if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_BETTER) { SharedPtr abLink = getLink(_paths[_abPathIdx].p); if (abLink && ! abLink->primary()) { // Active backup has switched to "better" primary link according to re-select policy. SharedPtr abFailoverLink = getLink(_paths[_abFailoverQueue.front()].p); if (_paths[_abFailoverQueue.front()].p && abFailoverLink && abFailoverLink->primary() && (_paths[_abFailoverQueue.front()].failoverScore > _paths[_abPathIdx].failoverScore)) { dequeueNextActiveBackupPath(now); log("switch back to user-defined primary link %s (select mode: better)", pathToStr(_paths[_abPathIdx].p).c_str()); } } } if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_OPTIMIZE && ! _abFailoverQueue.empty()) { /** * Implement link negotiation that was previously-decided */ if (_paths[_abFailoverQueue.front()].negotiated) { dequeueNextActiveBackupPath(now); _lastPathNegotiationCheck = now; log("switch negotiated link %s (select mode: optimize)", pathToStr(_paths[_abPathIdx].p).c_str()); } else { // Try to find a better path and automatically switch to it -- not too often, though. if ((now - _lastActiveBackupPathChange) > ZT_BOND_OPTIMIZE_INTERVAL) { if (! _abFailoverQueue.empty()) { int newFScore = _paths[_abFailoverQueue.front()].failoverScore; int prevFScore = _paths[_abPathIdx].failoverScore; // Establish a minimum switch threshold to prevent flapping int failoverScoreDifference = _paths[_abFailoverQueue.front()].failoverScore - _paths[_abPathIdx].failoverScore; int thresholdQuantity = (int)(ZT_BOND_ACTIVE_BACKUP_OPTIMIZE_MIN_THRESHOLD * (float)_paths[_abPathIdx].allocation); if ((failoverScoreDifference > 0) && (failoverScoreDifference > thresholdQuantity)) { SharedPtr oldPath = _paths[_abPathIdx].p; dequeueNextActiveBackupPath(now); log("switch from %s (score: %d) to better link %s (score: %d) (select mode: optimize)", pathToStr(oldPath).c_str(), prevFScore, pathToStr(_paths[_abPathIdx].p).c_str(), newFScore); } } } } } } void Bond::initTimers() { _lastFlowExpirationCheck = 0; _lastFlowRebalance = 0; _lastSentPathNegotiationRequest = 0; _lastPathNegotiationCheck = 0; _lastPathNegotiationReceived = 0; _lastQoSRateCheck = 0; _lastAckRateCheck = 0; _lastQualityEstimation = 0; _lastBondStatusLog = 0; _lastSummaryDump = 0; _lastActiveBackupPathChange = 0; _lastFrame = 0; _lastBackgroundTaskCheck = 0; } void Bond::setBondParameters(int policy, SharedPtr templateBond, bool useTemplate) { // Sanity check for policy _defaultPolicy = (_defaultPolicy <= ZT_BOND_POLICY_NONE || _defaultPolicy > ZT_BOND_POLICY_BALANCE_AWARE) ? ZT_BOND_POLICY_NONE : _defaultPolicy; _policy = (policy <= ZT_BOND_POLICY_NONE || policy > ZT_BOND_POLICY_BALANCE_AWARE) ? _defaultPolicy : policy; // Check if non-leaf to prevent spamming infrastructure ZT_PeerRole role; if (_peer) { role = RR->topology->role(_peer->address()); } _isLeaf = _peer ? (role != ZT_PEER_ROLE_PLANET && role != ZT_PEER_ROLE_MOON) : false; // Flows _allowFlowHashing = false; // Path negotiation _allowPathNegotiation = false; _pathNegotiationCutoffCount = 0; _localUtility = 0; _negotiatedPathIdx = 0; // User preferences which may override the default bonding algorithm's behavior _userHasSpecifiedPrimaryLink = false; _userHasSpecifiedFailoverInstructions = false; _userHasSpecifiedLinkSpeeds = 0; // Bond status _numAliveLinks = 0; _numTotalLinks = 0; _numBondedPaths = 0; // active-backup _abPathIdx = ZT_MAX_PEER_NETWORK_PATHS; // rr _rrPacketsSentOnCurrLink = 0; _rrIdx = 0; // General parameters _downDelay = 0; _upDelay = 0; _monitorInterval = 0; // (Sane?) limits _maxAcceptableLatency = 100; _maxAcceptablePacketDelayVariance = 50; _maxAcceptablePacketLossRatio = 0.10f; _maxAcceptablePacketErrorRatio = 0.10f; // balance-aware _totalBondUnderload = 0; _overheadBytes = 0; /** * Policy-specific defaults */ switch (_policy) { case ZT_BOND_POLICY_ACTIVE_BACKUP: _abLinkSelectMethod = ZT_BOND_RESELECTION_POLICY_OPTIMIZE; break; case ZT_BOND_POLICY_BROADCAST: _downDelay = 30000; _upDelay = 0; break; case ZT_BOND_POLICY_BALANCE_RR: _packetsPerLink = 64; break; case ZT_BOND_POLICY_BALANCE_XOR: _allowFlowHashing = true; break; case ZT_BOND_POLICY_BALANCE_AWARE: _allowFlowHashing = true; break; default: break; } _qw[ZT_QOS_LAT_IDX] = 0.3f; _qw[ZT_QOS_LTM_IDX] = 0.1f; _qw[ZT_QOS_PDV_IDX] = 0.3f; _qw[ZT_QOS_PLR_IDX] = 0.1f; _qw[ZT_QOS_PER_IDX] = 0.1f; _failoverInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL; /* If a user has specified custom parameters for this bonding policy, overlay them onto the defaults */ if (useTemplate) { _policyAlias = templateBond->_policyAlias; _policy = templateBond->policy(); _failoverInterval = templateBond->_failoverInterval >= ZT_BOND_FAILOVER_MIN_INTERVAL ? templateBond->_failoverInterval : ZT_BOND_FAILOVER_MIN_INTERVAL; _downDelay = templateBond->_downDelay; _upDelay = templateBond->_upDelay; _abLinkSelectMethod = templateBond->_abLinkSelectMethod; memcpy(_qw, templateBond->_qw, ZT_QOS_WEIGHT_SIZE * sizeof(float)); } if (! _isLeaf) { _policy = ZT_BOND_POLICY_ACTIVE_BACKUP; } // Timer geometry _monitorInterval = _failoverInterval / ZT_BOND_ECHOS_PER_FAILOVER_INTERVAL; _qualityEstimationInterval = _failoverInterval * 2; _qosSendInterval = _failoverInterval * 2; _ackSendInterval = _failoverInterval * 2; _qosCutoffCount = 0; _ackCutoffCount = 0; _defaultPathRefractoryPeriod = 8000; } void Bond::setUserQualityWeights(float weights[], int len) { if (len == ZT_QOS_WEIGHT_SIZE) { float weightTotal = 0.0; for (unsigned int i = 0; i < ZT_QOS_WEIGHT_SIZE; ++i) { weightTotal += weights[i]; } if (weightTotal > 0.99 && weightTotal < 1.01) { memcpy(_qw, weights, len * sizeof(float)); } } } SharedPtr Bond::getLink(const SharedPtr& path) { return ! path ? SharedPtr() : RR->bc->getLinkBySocket(_policyAlias, path->localSocket()); } std::string Bond::pathToStr(const SharedPtr& path) { #ifdef ZT_TRACE if (path) { char pathStr[64] = { 0 }; char fullPathStr[384] = { 0 }; path->address().toString(pathStr); SharedPtr link = getLink(path); if (link) { std::string ifnameStr = std::string(link->ifname()); snprintf(fullPathStr, 384, "%.16llx-%s/%s", (unsigned long long)(path->localSocket()), ifnameStr.c_str(), pathStr); return std::string(fullPathStr); } } return ""; #else return ""; #endif } void Bond::dumpPathStatus(int64_t now, int pathIdx) { #ifdef ZT_TRACE std::string aliveOrDead = _paths[pathIdx].alive ? std::string("alive") : std::string("dead"); std::string eligibleOrNot = _paths[pathIdx].eligible ? std::string("eligible") : std::string("ineligible"); std::string bondedOrNot = _paths[pathIdx].bonded ? std::string("bonded") : std::string("unbonded"); log("path[%2u] --- %5s (in %7lld, out: %7lld), %10s, %8s, flows=%-6u lat=%-8.3f pdv=%-7.3f err=%-6.4f loss=%-6.4f alloc=%-3u --- (%s) spare=%d", pathIdx, aliveOrDead.c_str(), static_cast(_paths[pathIdx].p->age(now)), static_cast(_paths[pathIdx].p->_lastOut == 0 ? 0 : now - _paths[pathIdx].p->_lastOut), eligibleOrNot.c_str(), bondedOrNot.c_str(), _paths[pathIdx].assignedFlowCount, _paths[pathIdx].latencyMean, _paths[pathIdx].latencyVariance, _paths[pathIdx].packetErrorRatio, _paths[pathIdx].packetLossRatio, _paths[pathIdx].allocation, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].isSpare()); #endif } void Bond::dumpInfo(int64_t now, bool force) { #ifdef ZT_TRACE uint64_t timeSinceLastDump = now - _lastSummaryDump; if (! force && timeSinceLastDump < ZT_BOND_STATUS_INTERVAL) { return; } _lastSummaryDump = now; float overhead = (_overheadBytes / (timeSinceLastDump / 1000.0f) / 1000.0f); _overheadBytes = 0; log("bond: bp=%d, fi=%d, mi=%d, ud=%d, dd=%d, flows=%lu, leaf=%d, overhead=%f KB/s, links=(%d/%d)", _policy, _failoverInterval, _monitorInterval, _upDelay, _downDelay, (unsigned long)_flows.size(), _isLeaf, overhead, _numAliveLinks, _numTotalLinks); for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if (_paths[i].p) { dumpPathStatus(now, i); } } log(""); #endif } } // namespace ZeroTier