/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../node/Constants.hpp" #ifdef __WINDOWS__ #include #include #include #include #endif #include #include #include #include #ifdef __UNIX_LIKE__ #include #include #include #include #include #include #include #include #include #include #include #include #endif #include #include #include #include "RoutingTable.hpp" #define ZT_BSD_ROUTE_CMD "/sbin/route" #define ZT_LINUX_IP_COMMAND "/sbin/ip" namespace ZeroTier { // --------------------------------------------------------------------------- #ifdef __LINUX__ std::vector RoutingTable::get(bool includeLinkLocal,bool includeLoopback) { char buf[131072]; char *stmp,*stmp2; std::vector entries; { int fd = ::open("/proc/net/route",O_RDONLY); if (fd <= 0) buf[0] = (char)0; else { int n = (int)::read(fd,buf,sizeof(buf) - 1); ::close(fd); if (n < 0) n = 0; buf[n] = (char)0; } } int lineno = 0; for(char *line=Utils::stok(buf,"\r\n",&stmp);(line);line=Utils::stok((char *)0,"\r\n",&stmp)) { if (lineno == 0) { ++lineno; continue; // skip header } char *iface = (char *)0; uint32_t destination = 0; uint32_t gateway = 0; int metric = 0; uint32_t mask = 0; int fno = 0; for(char *f=Utils::stok(line,"\t \r\n",&stmp2);(f);f=Utils::stok((char *)0,"\t \r\n",&stmp2)) { switch(fno) { case 0: iface = f; break; case 1: destination = (uint32_t)Utils::hexStrToULong(f); break; case 2: gateway = (uint32_t)Utils::hexStrToULong(f); break; case 6: metric = (int)Utils::strToInt(f); break; case 7: mask = (uint32_t)Utils::hexStrToULong(f); break; } ++fno; } if ((iface)&&(destination)) { RoutingTable::Entry e; if (destination) e.destination.set(&destination,4,Utils::countBits(mask)); e.gateway.set(&gateway,4,0); e.deviceIndex = 0; // not used on Linux e.metric = metric; Utils::scopy(e.device,sizeof(e.device),iface); if ((e.destination)&&((includeLinkLocal)||(!e.destination.isLinkLocal()))&&((includeLoopback)||((!e.destination.isLoopback())&&(!e.gateway.isLoopback())&&(strcmp(iface,"lo"))))) entries.push_back(e); } ++lineno; } { int fd = ::open("/proc/net/ipv6_route",O_RDONLY); if (fd <= 0) buf[0] = (char)0; else { int n = (int)::read(fd,buf,sizeof(buf) - 1); ::close(fd); if (n < 0) n = 0; buf[n] = (char)0; } } for(char *line=Utils::stok(buf,"\r\n",&stmp);(line);line=Utils::stok((char *)0,"\r\n",&stmp)) { char *destination = (char *)0; unsigned int destPrefixLen = 0; char *gateway = (char *)0; // next hop in ipv6 terminology int metric = 0; char *device = (char *)0; int fno = 0; for(char *f=Utils::stok(line,"\t \r\n",&stmp2);(f);f=Utils::stok((char *)0,"\t \r\n",&stmp2)) { switch(fno) { case 0: destination = f; break; case 1: destPrefixLen = (unsigned int)Utils::hexStrToULong(f); break; case 4: gateway = f; break; case 5: metric = (int)Utils::hexStrToLong(f); break; case 9: device = f; break; } ++fno; } if ((device)&&(destination)) { unsigned char tmp[16]; RoutingTable::Entry e; Utils::unhex(destination,tmp,16); if ((!Utils::isZero(tmp,16))&&(tmp[0] != 0xff)) e.destination.set(tmp,16,destPrefixLen); Utils::unhex(gateway,tmp,16); e.gateway.set(tmp,16,0); e.deviceIndex = 0; // not used on Linux e.metric = metric; Utils::scopy(e.device,sizeof(e.device),device); if ((e.destination)&&((includeLinkLocal)||(!e.destination.isLinkLocal()))&&((includeLoopback)||((!e.destination.isLoopback())&&(!e.gateway.isLoopback())&&(strcmp(device,"lo"))))) entries.push_back(e); } } std::sort(entries.begin(),entries.end()); return entries; } RoutingTable::Entry RoutingTable::set(const InetAddress &destination,const InetAddress &gateway,const char *device,int metric,bool ifscope) { char metstr[128]; if ((!gateway)&&((!device)||(!device[0]))) return RoutingTable::Entry(); Utils::snprintf(metstr,sizeof(metstr),"%d",metric); if (metric < 0) { long pid = (long)vfork(); if (pid == 0) { if (gateway) { if ((device)&&(device[0])) { ::execl(ZT_LINUX_IP_COMMAND,ZT_LINUX_IP_COMMAND,"route","del",destination.toString().c_str(),"via",gateway.toIpString().c_str(),"dev",device,(const char *)0); } else { ::execl(ZT_LINUX_IP_COMMAND,ZT_LINUX_IP_COMMAND,"route","del",destination.toString().c_str(),"via",gateway.toIpString().c_str(),(const char *)0); } } else { ::execl(ZT_LINUX_IP_COMMAND,ZT_LINUX_IP_COMMAND,"route","del",destination.toString().c_str(),"dev",device,(const char *)0); } ::_exit(-1); } else if (pid > 0) { int exitcode = -1; ::waitpid(pid,&exitcode,0); } } else { long pid = (long)vfork(); if (pid == 0) { if (gateway) { if ((device)&&(device[0])) { ::execl(ZT_LINUX_IP_COMMAND,ZT_LINUX_IP_COMMAND,"route","replace",destination.toString().c_str(),"metric",metstr,"via",gateway.toIpString().c_str(),"dev",device,(const char *)0); } else { ::execl(ZT_LINUX_IP_COMMAND,ZT_LINUX_IP_COMMAND,"route","replace",destination.toString().c_str(),"metric",metstr,"via",gateway.toIpString().c_str(),(const char *)0); } } else { ::execl(ZT_LINUX_IP_COMMAND,ZT_LINUX_IP_COMMAND,"route","replace",destination.toString().c_str(),"metric",metstr,"dev",device,(const char *)0); } ::_exit(-1); } else if (pid > 0) { int exitcode = -1; ::waitpid(pid,&exitcode,0); } } std::vector rtab(get(true,true)); std::vector::iterator bestEntry(rtab.end()); for(std::vector::iterator e(rtab.begin());e!=rtab.end();++e) { if ((e->destination == destination)&&(e->gateway.ipsEqual(gateway))) { if ((device)&&(device[0])) { if (!strcmp(device,e->device)) { if (metric == e->metric) bestEntry = e; } } if (bestEntry == rtab.end()) bestEntry = e; } } if (bestEntry != rtab.end()) return *bestEntry; return RoutingTable::Entry(); } #endif // __LINUX__ // --------------------------------------------------------------------------- #ifdef __BSD__ std::vector RoutingTable::get(bool includeLinkLocal,bool includeLoopback) { std::vector entries; int mib[6]; size_t needed; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = 0; mib[4] = NET_RT_DUMP; mib[5] = 0; if (!sysctl(mib,6,NULL,&needed,NULL,0)) { if (needed <= 0) return entries; char *buf = (char *)::malloc(needed); if (buf) { if (!sysctl(mib,6,buf,&needed,NULL,0)) { struct rt_msghdr *rtm; for(char *next=buf,*end=buf+needed;nextrtm_msglen; if (((rtm->rtm_flags & RTF_LLINFO) == 0)&&((rtm->rtm_flags & RTF_HOST) == 0)&&((rtm->rtm_flags & RTF_UP) != 0)&&((rtm->rtm_flags & RTF_MULTICAST) == 0)) { RoutingTable::Entry e; e.deviceIndex = -9999; // unset int which = 0; while (saptr < saend) { struct sockaddr *sa = (struct sockaddr *)saptr; unsigned int salen = sa->sa_len; if (!salen) break; // Skip missing fields in rtm_addrs bit field while ((rtm->rtm_addrs & 1) == 0) { rtm->rtm_addrs >>= 1; ++which; if (which > 6) break; } if (which > 6) break; rtm->rtm_addrs >>= 1; switch(which++) { case 0: //printf("RTA_DST\n"); if (sa->sa_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; // Nobody expects the Spanish inquisition! if ((sin6->sin6_addr.s6_addr[0] == 0xfe)&&((sin6->sin6_addr.s6_addr[1] & 0xc0) == 0x80)) { // Our chief weapon is... in-band signaling! // Seriously who in the living fuck thought this was a good idea and // then had the sadistic idea to not document it anywhere? Of course it's // not like there is any documentation on BSD sysctls anyway. unsigned int interfaceIndex = ((((unsigned int)sin6->sin6_addr.s6_addr[2]) << 8) & 0xff) | (((unsigned int)sin6->sin6_addr.s6_addr[3]) & 0xff); sin6->sin6_addr.s6_addr[2] = 0; sin6->sin6_addr.s6_addr[3] = 0; if (!sin6->sin6_scope_id) sin6->sin6_scope_id = interfaceIndex; } } e.destination = *sa; break; case 1: //printf("RTA_GATEWAY\n"); switch(sa->sa_family) { case AF_LINK: e.deviceIndex = (int)((const struct sockaddr_dl *)sa)->sdl_index; break; case AF_INET: case AF_INET6: e.gateway = *sa; break; } break; case 2: { if (e.destination.isV6()) { salen = sizeof(struct sockaddr_in6); // Confess! unsigned int bits = 0; for(int i=0;i<16;++i) { unsigned char c = (unsigned char)((const struct sockaddr_in6 *)sa)->sin6_addr.s6_addr[i]; if (c == 0xff) bits += 8; else break; /* must they be multiples of 8? Most of the BSD source I can find says yes..? else { while ((c & 0x80) == 0x80) { ++bits; c <<= 1; } break; } */ } e.destination.setPort(bits); } else { salen = sizeof(struct sockaddr_in); // Confess! e.destination.setPort((unsigned int)Utils::countBits((uint32_t)((const struct sockaddr_in *)sa)->sin_addr.s_addr)); } //printf("RTA_NETMASK\n"); } break; /* case 3: //printf("RTA_GENMASK\n"); break; case 4: //printf("RTA_IFP\n"); break; case 5: //printf("RTA_IFA\n"); break; case 6: //printf("RTA_AUTHOR\n"); break; */ } saptr += salen; } e.metric = (int)rtm->rtm_rmx.rmx_hopcount; if (e.metric < 0) e.metric = 0; InetAddress::IpScope dscope = e.destination.ipScope(); if ( ((includeLinkLocal)||(dscope != InetAddress::IP_SCOPE_LINK_LOCAL)) && ((includeLoopback)||((dscope != InetAddress::IP_SCOPE_LOOPBACK) && (e.gateway.ipScope() != InetAddress::IP_SCOPE_LOOPBACK) ))) entries.push_back(e); } next = saend; } } ::free(buf); } } for(std::vector::iterator e1(entries.begin());e1!=entries.end();++e1) { if ((!e1->device[0])&&(e1->deviceIndex >= 0)) if_indextoname(e1->deviceIndex,e1->device); } for(std::vector::iterator e1(entries.begin());e1!=entries.end();++e1) { if ((!e1->device[0])&&(e1->gateway)) { int bestMetric = 9999999; for(std::vector::iterator e2(entries.begin());e2!=entries.end();++e2) { if ((e2->destination.containsAddress(e1->gateway))&&(e2->metric <= bestMetric)) { bestMetric = e2->metric; Utils::scopy(e1->device,sizeof(e1->device),e2->device); } } } } std::sort(entries.begin(),entries.end()); return entries; } RoutingTable::Entry RoutingTable::set(const InetAddress &destination,const InetAddress &gateway,const char *device,int metric,bool ifscope) { if ((!gateway)&&((!device)||(!device[0]))) return RoutingTable::Entry(); std::vector rtab(get(true,true)); for(std::vector::iterator e(rtab.begin());e!=rtab.end();++e) { if (e->destination == destination) { if (((!device)||(!device[0]))||(!strcmp(device,e->device))) { long p = (long)fork(); if (p > 0) { int exitcode = -1; ::waitpid(p,&exitcode,0); } else if (p == 0) { ::close(STDOUT_FILENO); ::close(STDERR_FILENO); ::execl(ZT_BSD_ROUTE_CMD,ZT_BSD_ROUTE_CMD,"delete",(destination.isV6() ? "-inet6" : "-inet"),destination.toString().c_str(),(const char *)0); ::_exit(-1); } } } } if (metric < 0) return RoutingTable::Entry(); { char hcstr[64]; Utils::snprintf(hcstr,sizeof(hcstr),"%d",metric); long p = (long)fork(); if (p > 0) { int exitcode = -1; ::waitpid(p,&exitcode,0); } else if (p == 0) { ::close(STDOUT_FILENO); ::close(STDERR_FILENO); if (gateway) { ::execl(ZT_BSD_ROUTE_CMD,ZT_BSD_ROUTE_CMD,"add",(destination.isV6() ? "-inet6" : "-inet"),destination.toString().c_str(),gateway.toIpString().c_str(),"-hopcount",hcstr,(const char *)0); } else if ((device)&&(device[0])) { ::execl(ZT_BSD_ROUTE_CMD,ZT_BSD_ROUTE_CMD,"add",(destination.isV6() ? "-inet6" : "-inet"),destination.toString().c_str(),"-interface",device,"-hopcount",hcstr,(const char *)0); } ::_exit(-1); } } rtab = get(true,true); std::vector::iterator bestEntry(rtab.end()); for(std::vector::iterator e(rtab.begin());e!=rtab.end();++e) { if ((e->destination == destination)&&(e->gateway.ipsEqual(gateway))) { if ((device)&&(device[0])) { if (!strcmp(device,e->device)) { if (metric == e->metric) bestEntry = e; } } if (bestEntry == rtab.end()) bestEntry = e; } } if (bestEntry != rtab.end()) return *bestEntry; return RoutingTable::Entry(); } #endif // __BSD__ // --------------------------------------------------------------------------- #ifdef __WINDOWS__ static void _copyInetAddressToSockaddrInet(const InetAddress &a,SOCKADDR_INET &sinet) { memset(&sinet,0,sizeof(sinet)); if (a.isV4()) { sinet.Ipv4.sin_addr.S_un.S_addr = *((const uint32_t *)a.rawIpData()); sinet.Ipv4.sin_family = AF_INET; sinet.Ipv4.sin_port = htons(a.port()); } else if (a.isV6()) { memcpy(sinet.Ipv6.sin6_addr.u.Byte,a.rawIpData(),16); sinet.Ipv6.sin6_family = AF_INET6; sinet.Ipv6.sin6_port = htons(a.port()); } } std::vector RoutingTable::get(bool includeLinkLocal,bool includeLoopback) const { std::vector entries; PMIB_IPFORWARD_TABLE2 rtbl = NULL; if (GetIpForwardTable2(AF_UNSPEC,&rtbl) != NO_ERROR) return entries; if (!rtbl) return entries; for(ULONG r=0;rNumEntries;++r) { RoutingTable::Entry e; switch(rtbl->Table[r].DestinationPrefix.Prefix.si_family) { case AF_INET: e.destination.set(&(rtbl->Table[r].DestinationPrefix.Prefix.Ipv4.sin_addr.S_un.S_addr),4,rtbl->Table[r].DestinationPrefix.PrefixLength); break; case AF_INET6: e.destination.set(rtbl->Table[r].DestinationPrefix.Prefix.Ipv6.sin6_addr.u.Byte,16,rtbl->Table[r].DestinationPrefix.PrefixLength); break; } switch(rtbl->Table[r].NextHop.si_family) { case AF_INET: e.gateway.set(&(rtbl->Table[r].NextHop.Ipv4.sin_addr.S_un.S_addr),4,0); break; case AF_INET6: e.gateway.set(rtbl->Table[r].NextHop.Ipv6.sin6_addr.u.Byte,16,0); break; } e.deviceIndex = (int)rtbl->Table[r].InterfaceIndex; e.metric = (int)rtbl->Table[r].Metric; ConvertInterfaceLuidToNameA(&(rtbl->Table[r].InterfaceLuid),e.device,sizeof(e.device)); if ((e.destination)&&((includeLinkLocal)||(!e.destination.isLinkLocal()))&&((includeLoopback)||((!e.destination.isLoopback())&&(!e.gateway.isLoopback())))) entries.push_back(e); } FreeMibTable(rtbl); std::sort(entries.begin(),entries.end()); return entries; } RoutingTable::Entry RoutingTable::set(const InetAddress &destination,const InetAddress &gateway,const char *device,int metric,bool ifscope) { NET_LUID luid; luid.Value = 0; if (ConvertInterfaceNameToLuidA(device,&luid) != NO_ERROR) return RoutingTable::Entry(); bool needCreate = true; PMIB_IPFORWARD_TABLE2 rtbl = NULL; if (GetIpForwardTable2(AF_UNSPEC,&rtbl) != NO_ERROR) return RoutingTable::Entry(); if (!rtbl) return RoutingTable::Entry(); for(ULONG r=0;rNumEntries;++r) { if (rtbl->Table[r].InterfaceLuid.Value == luid.Value) { InetAddress rdest; switch(rtbl->Table[r].DestinationPrefix.Prefix.si_family) { case AF_INET: rdest.set(&(rtbl->Table[r].DestinationPrefix.Prefix.Ipv4.sin_addr.S_un.S_addr),4,rtbl->Table[r].DestinationPrefix.PrefixLength); break; case AF_INET6: rdest.set(rtbl->Table[r].DestinationPrefix.Prefix.Ipv6.sin6_addr.u.Byte,16,rtbl->Table[r].DestinationPrefix.PrefixLength); break; } if (rdest == destination) { if (metric >= 0) { _copyInetAddressToSockaddrInet(gateway,rtbl->Table[r].NextHop); rtbl->Table[r].Metric = metric; SetIpForwardEntry2(&(rtbl->Table[r])); needCreate = false; } else { DeleteIpForwardEntry2(&(rtbl->Table[r])); FreeMibTable(rtbl); return RoutingTable::Entry(); } } } } FreeMibTable(rtbl); if ((metric >= 0)&&(needCreate)) { MIB_IPFORWARD_ROW2 nr; InitializeIpForwardEntry(&nr); nr.InterfaceLuid.Value = luid.Value; _copyInetAddressToSockaddrInet(destination,nr.DestinationPrefix.Prefix); nr.DestinationPrefix.PrefixLength = destination.netmaskBits(); _copyInetAddressToSockaddrInet(gateway,nr.NextHop); nr.Metric = metric; nr.Protocol = MIB_IPPROTO_NETMGMT; DWORD result = CreateIpForwardEntry2(&nr); if (result != NO_ERROR) return RoutingTable::Entry(); } std::vector rtab(get(true,true)); std::vector::iterator bestEntry(rtab.end()); for(std::vector::iterator e(rtab.begin());e!=rtab.end();++e) { if ((e->destination == destination)&&(e->gateway.ipsEqual(gateway))) { if ((device)&&(device[0])) { if (!strcmp(device,e->device)) { if (metric == e->metric) bestEntry = e; } } if (bestEntry == rtab.end()) bestEntry = e; } } if (bestEntry != rtab.end()) return *bestEntry; return RoutingTable::Entry(); } #endif // __WINDOWS__ // --------------------------------------------------------------------------- } // namespace ZeroTier