/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2016  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ZT_HASHTABLE_HPP
#define ZT_HASHTABLE_HPP

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#include <stdexcept>
#include <vector>
#include <utility>
#include <algorithm>

namespace ZeroTier {

/**
 * A minimal hash table implementation for the ZeroTier core
 *
 * This is not a drop-in replacement for STL containers, and has several
 * limitations. Keys can be uint64_t or an object, and if the latter they
 * must implement a method called hashCode() that returns an unsigned long
 * value that is evenly distributed.
 */
template<typename K,typename V>
class Hashtable
{
private:
	struct _Bucket
	{
		_Bucket(const K &k,const V &v) : k(k),v(v) {}
		_Bucket(const K &k) : k(k),v() {}
		_Bucket(const _Bucket &b) : k(b.k),v(b.v) {}
		inline _Bucket &operator=(const _Bucket &b) { k = b.k; v = b.v; return *this; }
		K k;
		V v;
		_Bucket *next; // must be set manually for each _Bucket
	};

public:
	/**
	 * A simple forward iterator (different from STL)
	 *
	 * It's safe to erase the last key, but not others. Don't use set() since that
	 * may rehash and invalidate the iterator. Note the erasing the key will destroy
	 * the targets of the pointers returned by next().
	 */
	class Iterator
	{
	public:
		/**
		 * @param ht Hash table to iterate over
		 */
		Iterator(Hashtable &ht) :
			_idx(0),
			_ht(&ht),
			_b(ht._t[0])
		{
		}

		/**
		 * @param kptr Pointer to set to point to next key
		 * @param vptr Pointer to set to point to next value
		 * @return True if kptr and vptr are set, false if no more entries
		 */
		inline bool next(K *&kptr,V *&vptr)
		{
			for(;;) {
				if (_b) {
					kptr = &(_b->k);
					vptr = &(_b->v);
					_b = _b->next;
					return true;
				}
				++_idx;
				if (_idx >= _ht->_bc)
					return false;
				_b = _ht->_t[_idx];
			}
		}

	private:
		unsigned long _idx;
		Hashtable *_ht;
		_Bucket *_b;
	};
	friend class Hashtable::Iterator;

	/**
	 * @param bc Initial capacity in buckets (default: 128, must be nonzero)
	 */
	Hashtable(unsigned long bc = 128) :
		_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * bc))),
		_bc(bc),
		_s(0)
	{
		if (!_t)
			throw std::bad_alloc();
		for(unsigned long i=0;i<bc;++i)
			_t[i] = (_Bucket *)0;
	}

	Hashtable(const Hashtable<K,V> &ht) :
		_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * ht._bc))),
		_bc(ht._bc),
		_s(ht._s)
	{
		if (!_t)
			throw std::bad_alloc();
		for(unsigned long i=0;i<_bc;++i)
			_t[i] = (_Bucket *)0;
		for(unsigned long i=0;i<_bc;++i) {
			const _Bucket *b = ht._t[i];
			while (b) {
				_Bucket *nb = new _Bucket(*b);
				nb->next = _t[i];
				_t[i] = nb;
				b = b->next;
			}
		}
	}

	~Hashtable()
	{
		this->clear();
		::free(_t);
	}

	inline Hashtable &operator=(const Hashtable<K,V> &ht)
	{
		this->clear();
		if (ht._s) {
			for(unsigned long i=0;i<ht._bc;++i) {
				const _Bucket *b = ht._t[i];
				while (b) {
					this->set(b->k,b->v);
					b = b->next;
				}
			}
		}
		return *this;
	}

	/**
	 * Erase all entries
	 */
	inline void clear()
	{
		if (_s) {
			for(unsigned long i=0;i<_bc;++i) {
				_Bucket *b = _t[i];
				while (b) {
					_Bucket *const nb = b->next;
					delete b;
					b = nb;
				}
				_t[i] = (_Bucket *)0;
			}
			_s = 0;
		}
	}

	/**
	 * @return Vector of all keys
	 */
	inline typename std::vector<K> keys() const
	{
		typename std::vector<K> k;
		if (_s) {
			k.reserve(_s);
			for(unsigned long i=0;i<_bc;++i) {
				_Bucket *b = _t[i];
				while (b) {
					k.push_back(b->k);
					b = b->next;
				}
			}
		}
		return k;
	}

	/**
	 * Append all keys (in unspecified order) to the supplied vector or list
	 *
	 * @param v Vector, list, or other compliant container
	 * @tparam Type of V (generally inferred)
	 */
	template<typename C>
	inline void appendKeys(C &v) const
	{
		if (_s) {
			for(unsigned long i=0;i<_bc;++i) {
				_Bucket *b = _t[i];
				while (b) {
					v.push_back(b->k);
					b = b->next;
				}
			}
		}
	}

	/**
	 * @return Vector of all entries (pairs of K,V)
	 */
	inline typename std::vector< std::pair<K,V> > entries() const
	{
		typename std::vector< std::pair<K,V> > k;
		if (_s) {
			k.reserve(_s);
			for(unsigned long i=0;i<_bc;++i) {
				_Bucket *b = _t[i];
				while (b) {
					k.push_back(std::pair<K,V>(b->k,b->v));
					b = b->next;
				}
			}
		}
		return k;
	}

	/**
	 * @param k Key
	 * @return Pointer to value or NULL if not found
	 */
	inline V *get(const K &k)
	{
		_Bucket *b = _t[_hc(k) % _bc];
		while (b) {
			if (b->k == k)
				return &(b->v);
			b = b->next;
		}
		return (V *)0;
	}
	inline const V *get(const K &k) const { return const_cast<Hashtable *>(this)->get(k); }

	/**
	 * @param k Key to check
	 * @return True if key is present
	 */
	inline bool contains(const K &k) const
	{
		_Bucket *b = _t[_hc(k) % _bc];
		while (b) {
			if (b->k == k)
				return true;
			b = b->next;
		}
		return false;
	}

	/**
	 * @param k Key
	 * @return True if value was present
	 */
	inline bool erase(const K &k)
	{
		const unsigned long bidx = _hc(k) % _bc;
		_Bucket *lastb = (_Bucket *)0;
		_Bucket *b = _t[bidx];
		while (b) {
			if (b->k == k) {
				if (lastb)
					lastb->next = b->next;
				else _t[bidx] = b->next;
				delete b;
				--_s;
				return true;
			}
			lastb = b;
			b = b->next;
		}
		return false;
	}

	/**
	 * @param k Key
	 * @param v Value
	 * @return Reference to value in table
	 */
	inline V &set(const K &k,const V &v)
	{
		const unsigned long h = _hc(k);
		unsigned long bidx = h % _bc;

		_Bucket *b = _t[bidx];
		while (b) {
			if (b->k == k) {
				b->v = v;
				return b->v;
			}
			b = b->next;
		}

		if (_s >= _bc) {
			_grow();
			bidx = h % _bc;
		}

		b = new _Bucket(k,v);
		b->next = _t[bidx];
		_t[bidx] = b;
		++_s;
		return b->v;
	}

	/**
	 * @param k Key
	 * @return Value, possibly newly created
	 */
	inline V &operator[](const K &k)
	{
		const unsigned long h = _hc(k);
		unsigned long bidx = h % _bc;

		_Bucket *b = _t[bidx];
		while (b) {
			if (b->k == k)
				return b->v;
			b = b->next;
		}

		if (_s >= _bc) {
			_grow();
			bidx = h % _bc;
		}

		b = new _Bucket(k);
		b->next = _t[bidx];
		_t[bidx] = b;
		++_s;
		return b->v;
	}

	/**
	 * @return Number of entries
	 */
	inline unsigned long size() const throw() { return _s; }

	/**
	 * @return True if table is empty
	 */
	inline bool empty() const throw() { return (_s == 0); }

private:
	template<typename O>
	static inline unsigned long _hc(const O &obj)
	{
		return obj.hashCode();
	}
	static inline unsigned long _hc(const uint64_t i)
	{
		/* NOTE: this assumes that 'i' is evenly distributed, which is the case for
		 * packet IDs and network IDs -- the two use cases in ZT for uint64_t keys.
		 * These values are also greater than 0xffffffff so they'll map onto a full
		 * bucket count just fine no matter what happens. Normally you'd want to
		 * hash an integer key index in a hash table. */
		return (unsigned long)i;
	}
	static inline unsigned long _hc(const uint32_t i)
	{
		return ((unsigned long)i * (unsigned long)0x9e3779b1);
	}
	static inline unsigned long _hc(const uint16_t i)
	{
		return ((unsigned long)i * (unsigned long)0x9e3779b1);
	}

	inline void _grow()
	{
		const unsigned long nc = _bc * 2;
		_Bucket **nt = reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * nc));
		if (nt) {
			for(unsigned long i=0;i<nc;++i)
				nt[i] = (_Bucket *)0;
			for(unsigned long i=0;i<_bc;++i) {
				_Bucket *b = _t[i];
				while (b) {
					_Bucket *const nb = b->next;
					const unsigned long nidx = _hc(b->k) % nc;
					b->next = nt[nidx];
					nt[nidx] = b;
					b = nb;
				}
			}
			::free(_t);
			_t = nt;
			_bc = nc;
		}
	}

	_Bucket **_t;
	unsigned long _bc;
	unsigned long _s;
};

} // namespace ZeroTier

#endif