/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include "Constants.hpp"
#include "../version.h"
#include "Network.hpp"
#include "RuntimeEnvironment.hpp"
#include "MAC.hpp"
#include "Address.hpp"
#include "InetAddress.hpp"
#include "Switch.hpp"
#include "Buffer.hpp"
#include "Packet.hpp"
#include "NetworkController.hpp"
#include "Node.hpp"
#include "Peer.hpp"
// Uncomment to enable ZT_NETWORK_RULE_ACTION_DEBUG_LOG rule output to STDOUT
#define ZT_RULES_ENGINE_DEBUGGING 1
namespace ZeroTier {
#ifdef ZT_RULES_ENGINE_DEBUGGING
#define FILTER_TRACE(f,...) { Utils::snprintf(dpbuf,sizeof(dpbuf),f,##__VA_ARGS__); dlog.push_back(std::string(dpbuf)); }
static const char *_rtn(const ZT_VirtualNetworkRuleType rt)
{
switch(rt) {
case ZT_NETWORK_RULE_ACTION_DROP: return "ACTION_DROP";
case ZT_NETWORK_RULE_ACTION_ACCEPT: return "ACTION_ACCEPT";
case ZT_NETWORK_RULE_ACTION_TEE: return "ACTION_TEE";
case ZT_NETWORK_RULE_ACTION_REDIRECT: return "ACTION_REDIRECT";
case ZT_NETWORK_RULE_ACTION_DEBUG_LOG: return "ACTION_DEBUG_LOG";
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: return "MATCH_SOURCE_ZEROTIER_ADDRESS";
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: return "MATCH_DEST_ZEROTIER_ADDRESS";
case ZT_NETWORK_RULE_MATCH_VLAN_ID: return "MATCH_VLAN_ID";
case ZT_NETWORK_RULE_MATCH_VLAN_PCP: return "MATCH_VLAN_PCP";
case ZT_NETWORK_RULE_MATCH_VLAN_DEI: return "MATCH_VLAN_DEI";
case ZT_NETWORK_RULE_MATCH_ETHERTYPE: return "MATCH_ETHERTYPE";
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: return "MATCH_MAC_SOURCE";
case ZT_NETWORK_RULE_MATCH_MAC_DEST: return "MATCH_MAC_DEST";
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: return "MATCH_IPV4_SOURCE";
case ZT_NETWORK_RULE_MATCH_IPV4_DEST: return "MATCH_IPV4_DEST";
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: return "MATCH_IPV6_SOURCE";
case ZT_NETWORK_RULE_MATCH_IPV6_DEST: return "MATCH_IPV6_DEST";
case ZT_NETWORK_RULE_MATCH_IP_TOS: return "MATCH_IP_TOS";
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: return "MATCH_IP_PROTOCOL";
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: return "MATCH_IP_SOURCE_PORT_RANGE";
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: return "MATCH_IP_DEST_PORT_RANGE";
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: return "MATCH_CHARACTERISTICS";
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: return "MATCH_FRAME_SIZE_RANGE";
case ZT_NETWORK_RULE_MATCH_TAGS_SAMENESS: return "MATCH_TAGS_SAMENESS";
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: return "MATCH_TAGS_BITWISE_AND";
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: return "MATCH_TAGS_BITWISE_OR";
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: return "MATCH_TAGS_BITWISE_XOR";
default: return "BAD_RULE_TYPE";
}
}
static const void _dumpFilterTrace(const char *ruleName,uint8_t thisSetMatches,bool noRedirect,bool inbound,const Address &ztSource,const Address &ztDest,const MAC &macSource,const MAC &macDest,const std::vector &dlog,unsigned int frameLen,unsigned int etherType,const char *msg)
{
printf("!! %c %s inbound=%d noRedirect=%d frameLen=%u etherType=%u" ZT_EOL_S,
((thisSetMatches) ? 'Y' : '.'),
ruleName,
(int)inbound,
(int)noRedirect,
frameLen,
etherType
);
for(std::vector::const_iterator m(dlog.begin());m!=dlog.end();++m)
printf(" | %s" ZT_EOL_S,m->c_str());
printf(" + %c %s->%s %.2x:%.2x:%.2x:%.2x:%.2x:%.2x->%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" ZT_EOL_S,
((thisSetMatches) ? 'Y' : '.'),
ztSource.toString().c_str(),
ztDest.toString().c_str(),
(unsigned int)macSource[0],
(unsigned int)macSource[1],
(unsigned int)macSource[2],
(unsigned int)macSource[3],
(unsigned int)macSource[4],
(unsigned int)macSource[5],
(unsigned int)macDest[0],
(unsigned int)macDest[1],
(unsigned int)macDest[2],
(unsigned int)macDest[3],
(unsigned int)macDest[4],
(unsigned int)macDest[5]
);
if (msg)
printf(" + (%s)" ZT_EOL_S,msg);
}
#else
#define FILTER_TRACE(f,...) {}
#endif // ZT_RULES_ENGINE_DEBUGGING
// Returns true if packet appears valid; pos and proto will be set
static bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int &pos,unsigned int &proto)
{
if (frameLen < 40)
return false;
pos = 40;
proto = frameData[6];
while (pos <= frameLen) {
switch(proto) {
case 0: // hop-by-hop options
case 43: // routing
case 60: // destination options
case 135: // mobility options
if ((pos + 8) > frameLen)
return false; // invalid!
proto = frameData[pos];
pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
break;
//case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
//case 50:
//case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
default:
return true;
}
}
return false; // overflow == invalid
}
// 0 == no match, -1 == match/drop, 1 == match/accept
static int _doZtFilter(
const RuntimeEnvironment *RR,
const bool noRedirect,
const NetworkConfig &nconf,
const bool inbound,
const Address &ztSource,
const Address &ztDest,
const MAC &macSource,
const MAC &macDest,
const uint8_t *const frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId,
const ZT_VirtualNetworkRule *rules,
const unsigned int ruleCount,
const Tag *localTags,
const unsigned int localTagCount,
const uint32_t *const remoteTagIds,
const uint32_t *const remoteTagValues,
const unsigned int remoteTagCount)
{
// For each set of rules we start by assuming that they match (since no constraints
// yields a 'match all' rule).
uint8_t thisSetMatches = 1;
#ifdef ZT_RULES_ENGINE_DEBUGGING
std::vector dlog;
char dpbuf[1024];
#endif // ZT_RULES_ENGINE_DEBUGGING
for(unsigned int rn=0;rnidentity.address()) {
// If we are the TEE or REDIRECT destination, don't TEE or REDIRECT
// to self. We should also accept here instead of interpreting
// REDIRECT as DROP since we are the destination.
#ifdef ZT_RULES_ENGINE_DEBUGGING
_dumpFilterTrace(_rtn(rt),thisSetMatches,noRedirect,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,"ignored since we are the destination");
dlog.clear();
#endif // ZT_RULES_ENGINE_DEBUGGING
thisSetMatches = 1;
} else {
if (!noRedirect) {
Packet outp(fwdAddr,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(nconf.networkId);
outp.append((uint8_t)( ((rt == ZT_NETWORK_RULE_ACTION_REDIRECT) ? 0x04 : 0x02) | (inbound ? 0x08 : 0x00) ));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,(rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen);
outp.compress();
RR->sw->send(outp,true);
}
if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) {
#ifdef ZT_RULES_ENGINE_DEBUGGING
_dumpFilterTrace("ACTION_REDIRECT",thisSetMatches,noRedirect,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(noRedirect) ? "second-pass match, not actually redirecting" : (const char *)0);
#endif // ZT_RULES_ENGINE_DEBUGGING
return -1; // match, drop packet (we redirected it)
} else {
#ifdef ZT_RULES_ENGINE_DEBUGGING
_dumpFilterTrace("ACTION_TEE",thisSetMatches,noRedirect,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(noRedirect) ? "second-pass match, not actually teeing" : (const char *)0);
dlog.clear();
#endif // ZT_RULES_ENGINE_DEBUGGING
thisSetMatches = 1; // TEE does not terminate evaluation
}
}
} continue;
case ZT_NETWORK_RULE_ACTION_DEBUG_LOG: // a no-op target specifically for debugging purposes
#ifdef ZT_RULES_ENGINE_DEBUGGING
_dumpFilterTrace("ACTION_DEBUG_LOG",thisSetMatches,noRedirect,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(const char *)0);
dlog.clear();
#endif // ZT_RULES_ENGINE_DEBUGGING
thisSetMatches = 1; // DEBUG_LOG does not terminate evaluation
continue;
default: break;
}
// No need to evaluate MATCH entries beyond where thisSetMatches is no longer still true
if (!thisSetMatches)
continue;
uint8_t thisRuleMatches = 0;
switch(rt) {
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt());
FILTER_TRACE("%u %s %c %.10llx==%.10llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.zt,ztSource.toInt(),(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt());
FILTER_TRACE("%u %s %c %.10llx==%.10llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.zt,ztDest.toInt(),(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId);
FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.vlanId,(unsigned int)vlanId,(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
// NOT SUPPORTED YET
thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0);
FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.vlanPcp,0,(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
// NOT SUPPORTED YET
thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0);
FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.vlanDei,0,(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType);
FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.etherType,etherType,(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac,6) == macSource);
FILTER_TRACE("%u %s %c %.12llx=%.12llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.mac,macSource.toInt(),(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac,6) == macDest);
FILTER_TRACE("%u %s %c %.12llx=%.12llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.mac,macDest.toInt(),(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12),4,0)));
FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).toString().c_str(),InetAddress((const void *)(frameData + 12),4,0).toIpString().c_str(),(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IPv4] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16),4,0)));
FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).toString().c_str(),InetAddress((const void *)(frameData + 16),4,0).toIpString().c_str(),(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IPv4] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8),16,0)));
FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).toString().c_str(),InetAddress((const void *)(frameData + 8),16,0).toIpString().c_str(),(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24),16,0)));
FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).toString().c_str(),InetAddress((const void *)(frameData + 24),16,0).toIpString().c_str(),(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipTos == ((frameData[1] & 0xfc) >> 2));
FILTER_TRACE("%u %s %c (IPv4) %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.ipTos,(unsigned int)((frameData[1] & 0xfc) >> 2),(unsigned int)thisRuleMatches);
} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
const uint8_t trafficClass = ((frameData[0] << 4) & 0xf0) | ((frameData[1] >> 4) & 0x0f);
thisRuleMatches = (uint8_t)(rules[rn].v.ipTos == ((trafficClass & 0xfc) >> 2));
FILTER_TRACE("%u %s %c (IPv6) %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.ipTos,(unsigned int)((trafficClass & 0xfc) >> 2),(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]);
FILTER_TRACE("%u %s %c (IPv4) %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.ipProtocol,(unsigned int)frameData[9],(unsigned int)thisRuleMatches);
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto);
FILTER_TRACE("%u %s %c (IPv6) %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.ipProtocol,proto,(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [invalid IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xf);
int p = -1;
switch(frameData[9]) { // IP protocol number
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (headerLen + 4)) {
unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0);
p = (int)frameData[pos++] << 8;
p |= (int)frameData[pos];
}
break;
}
thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
FILTER_TRACE("%u %s %c (IPv4) %d in %d-%d -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),p,(int)rules[rn].v.port[0],(int)rules[rn].v.port[1],(unsigned int)thisRuleMatches);
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
int p = -1;
switch(proto) { // IP protocol number
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (pos + 4)) {
if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) pos += 2;
p = (int)frameData[pos++] << 8;
p |= (int)frameData[pos];
}
break;
}
thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
FILTER_TRACE("%u %s %c (IPv6) %d in %d-%d -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),p,(int)rules[rn].v.port[0],(int)rules[rn].v.port[1],(unsigned int)thisRuleMatches);
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [invalid IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
} else {
thisRuleMatches = 0;
FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='));
}
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: {
uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL;
if (macDest.isMulticast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST;
if (macDest.isBroadcast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST;
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)&&(frameData[9] == 0x06)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xf);
cf |= (uint64_t)frameData[headerLen + 13];
cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0f)) << 8);
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
if ((proto == 0x06)&&(frameLen > (pos + 14))) {
cf |= (uint64_t)frameData[pos + 13];
cf |= (((uint64_t)(frameData[pos + 12] & 0x0f)) << 8);
}
}
}
thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics[0]) == rules[rn].v.characteristics[1]);
FILTER_TRACE("%u %s %c (%.16llx & %.16llx)==%.16llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),cf,rules[rn].v.characteristics[0],rules[rn].v.characteristics[1],(unsigned int)thisRuleMatches);
} break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0])&&(frameLen <= (unsigned int)rules[rn].v.frameSize[1]));
FILTER_TRACE("%u %s %c %u in %u-%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),frameLen,(unsigned int)rules[rn].v.frameSize[0],(unsigned int)rules[rn].v.frameSize[1],(unsigned int)thisRuleMatches);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_SAMENESS:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: {
const Tag *lt = (const Tag *)0;
for(unsigned int i=0;i 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id);
} else {
const uint32_t *rtv = (const uint32_t *)0;
for(unsigned int i=0;i 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id);
} else {
if (rt == ZT_NETWORK_RULE_MATCH_TAGS_SAMENESS) {
const uint32_t sameness = (lt->value() > *rtv) ? (lt->value() - *rtv) : (*rtv - lt->value());
thisRuleMatches = (uint8_t)(sameness <= rules[rn].v.tag.value);
FILTER_TRACE("%u %s %c TAG %u local:%u remote:%u sameness:%u <= %u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,lt->value(),*rtv,sameness,(unsigned int)rules[rn].v.tag.value,thisRuleMatches);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) {
thisRuleMatches = (uint8_t)((lt->value() & *rtv) == rules[rn].v.tag.value);
FILTER_TRACE("%u %s %c TAG %u local:%.8x & remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,lt->value(),*rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) {
thisRuleMatches = (uint8_t)((lt->value() | *rtv) == rules[rn].v.tag.value);
FILTER_TRACE("%u %s %c TAG %u local:%.8x | remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,lt->value(),*rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) {
thisRuleMatches = (uint8_t)((lt->value() ^ *rtv) == rules[rn].v.tag.value);
FILTER_TRACE("%u %s %c TAG %u local:%.8x ^ remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,lt->value(),*rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches);
} else { // sanity check, can't really happen
thisRuleMatches = 0;
}
}
}
} break;
default: // rules we don't know do not match -- this means upgrading may be necessary before shipping new rules on a network or old clients might get blocked
thisRuleMatches = 0;
break;
}
// thisSetMatches remains true if the current rule matched (or did NOT match if NOT bit is set)
thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1));
}
return 0;
}
const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL),0);
Network::Network(const RuntimeEnvironment *renv,uint64_t nwid,void *uptr) :
RR(renv),
_uPtr(uptr),
_id(nwid),
_mac(renv->identity.address(),nwid),
_portInitialized(false),
_inboundConfigPacketId(0),
_lastConfigUpdate(0),
_lastRequestedConfiguration(0),
_destroyed(false),
_netconfFailure(NETCONF_FAILURE_NONE),
_portError(0)
{
char confn[128];
Utils::snprintf(confn,sizeof(confn),"networks.d/%.16llx.conf",_id);
bool gotConf = false;
Dictionary *dconf = new Dictionary();
NetworkConfig *nconf = new NetworkConfig();
try {
std::string conf(RR->node->dataStoreGet(confn));
if (conf.length()) {
dconf->load(conf.c_str());
if (nconf->fromDictionary(*dconf)) {
this->setConfiguration(*nconf,false);
_lastConfigUpdate = 0; // we still want to re-request a new config from the network
gotConf = true;
}
}
} catch ( ... ) {} // ignore invalids, we'll re-request
delete nconf;
delete dconf;
if (!gotConf) {
// Save a one-byte CR to persist membership while we request a real netconf
RR->node->dataStorePut(confn,"\n",1,false);
}
if (!_portInitialized) {
ZT_VirtualNetworkConfig ctmp;
_externalConfig(&ctmp);
_portError = RR->node->configureVirtualNetworkPort(_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP,&ctmp);
_portInitialized = true;
}
}
Network::~Network()
{
ZT_VirtualNetworkConfig ctmp;
_externalConfig(&ctmp);
char n[128];
if (_destroyed) {
RR->node->configureVirtualNetworkPort(_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
Utils::snprintf(n,sizeof(n),"networks.d/%.16llx.conf",_id);
RR->node->dataStoreDelete(n);
} else {
RR->node->configureVirtualNetworkPort(_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN,&ctmp);
}
}
bool Network::filterOutgoingPacket(
const bool noRedirect,
const Address &ztSource,
const Address &ztDest,
const MAC &macSource,
const MAC &macDest,
const uint8_t *frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId)
{
uint32_t remoteTagIds[ZT_MAX_NETWORK_TAGS];
uint32_t remoteTagValues[ZT_MAX_NETWORK_TAGS];
Mutex::Lock _l(_lock);
Membership &m = _memberships[ztDest];
const unsigned int remoteTagCount = m.getAllTags(_config,remoteTagIds,remoteTagValues,ZT_MAX_NETWORK_TAGS);
switch(_doZtFilter(RR,noRedirect,_config,false,ztSource,ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.rules,_config.ruleCount,_config.tags,_config.tagCount,remoteTagIds,remoteTagValues,remoteTagCount)) {
case -1:
if (ztDest)
m.sendCredentialsIfNeeded(RR,RR->node->now(),ztDest,_config,(const Capability *)0);
return false;
case 1:
if (ztDest)
m.sendCredentialsIfNeeded(RR,RR->node->now(),ztDest,_config,(const Capability *)0);
return true;
}
for(unsigned int c=0;c<_config.capabilityCount;++c) {
switch (_doZtFilter(RR,noRedirect,_config,false,ztSource,ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.capabilities[c].rules(),_config.capabilities[c].ruleCount(),_config.tags,_config.tagCount,remoteTagIds,remoteTagValues,remoteTagCount)) {
case -1:
if (ztDest)
m.sendCredentialsIfNeeded(RR,RR->node->now(),ztDest,_config,(const Capability *)0);
return false;
case 1:
if (ztDest)
m.sendCredentialsIfNeeded(RR,RR->node->now(),ztDest,_config,&(_config.capabilities[c]));
return true;
}
}
return false;
}
bool Network::filterIncomingPacket(
const SharedPtr &sourcePeer,
const Address &ztDest,
const MAC &macSource,
const MAC &macDest,
const uint8_t *frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId)
{
uint32_t remoteTagIds[ZT_MAX_NETWORK_TAGS];
uint32_t remoteTagValues[ZT_MAX_NETWORK_TAGS];
Mutex::Lock _l(_lock);
Membership &m = _memberships[ztDest];
const unsigned int remoteTagCount = m.getAllTags(_config,remoteTagIds,remoteTagValues,ZT_MAX_NETWORK_TAGS);
switch (_doZtFilter(RR,false,_config,true,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.rules,_config.ruleCount,_config.tags,_config.tagCount,remoteTagIds,remoteTagValues,remoteTagCount)) {
case -1:
return false;
case 1:
return true;
}
Membership::CapabilityIterator mci(m);
const Capability *c;
while ((c = mci.next(_config))) {
switch(_doZtFilter(RR,false,_config,false,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,c->rules(),c->ruleCount(),_config.tags,_config.tagCount,remoteTagIds,remoteTagValues,remoteTagCount)) {
case -1:
return false;
case 1:
return true;
}
}
return false;
}
bool Network::subscribedToMulticastGroup(const MulticastGroup &mg,bool includeBridgedGroups) const
{
Mutex::Lock _l(_lock);
if (std::binary_search(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg))
return true;
else if (includeBridgedGroups)
return _multicastGroupsBehindMe.contains(mg);
else return false;
}
void Network::multicastSubscribe(const MulticastGroup &mg)
{
{
Mutex::Lock _l(_lock);
if (std::binary_search(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg))
return;
_myMulticastGroups.push_back(mg);
std::sort(_myMulticastGroups.begin(),_myMulticastGroups.end());
}
_announceMulticastGroups();
}
void Network::multicastUnsubscribe(const MulticastGroup &mg)
{
Mutex::Lock _l(_lock);
std::vector nmg;
for(std::vector::const_iterator i(_myMulticastGroups.begin());i!=_myMulticastGroups.end();++i) {
if (*i != mg)
nmg.push_back(*i);
}
if (nmg.size() != _myMulticastGroups.size())
_myMulticastGroups.swap(nmg);
}
bool Network::tryAnnounceMulticastGroupsTo(const SharedPtr &peer)
{
Mutex::Lock _l(_lock);
if (
(_isAllowed(peer)) ||
(peer->address() == this->controller()) ||
(RR->topology->isUpstream(peer->identity()))
) {
_announceMulticastGroupsTo(peer,_allMulticastGroups());
return true;
}
return false;
}
bool Network::applyConfiguration(const NetworkConfig &conf)
{
if (_destroyed) // sanity check
return false;
try {
if ((conf.networkId == _id)&&(conf.issuedTo == RR->identity.address())) {
ZT_VirtualNetworkConfig ctmp;
bool portInitialized;
{
Mutex::Lock _l(_lock);
_config = conf;
_lastConfigUpdate = RR->node->now();
_netconfFailure = NETCONF_FAILURE_NONE;
_externalConfig(&ctmp);
portInitialized = _portInitialized;
_portInitialized = true;
}
_portError = RR->node->configureVirtualNetworkPort(_id,&_uPtr,(portInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP,&ctmp);
return true;
} else {
TRACE("ignored invalid configuration for network %.16llx (configuration contains mismatched network ID or issued-to address)",(unsigned long long)_id);
}
} catch (std::exception &exc) {
TRACE("ignored invalid configuration for network %.16llx (%s)",(unsigned long long)_id,exc.what());
} catch ( ... ) {
TRACE("ignored invalid configuration for network %.16llx (unknown exception)",(unsigned long long)_id);
}
return false;
}
int Network::setConfiguration(const NetworkConfig &nconf,bool saveToDisk)
{
try {
{
Mutex::Lock _l(_lock);
if (_config == nconf)
return 1; // OK config, but duplicate of what we already have
}
if (applyConfiguration(nconf)) {
if (saveToDisk) {
char n[64];
Utils::snprintf(n,sizeof(n),"networks.d/%.16llx.conf",_id);
Dictionary d;
if (nconf.toDictionary(d,false))
RR->node->dataStorePut(n,(const void *)d.data(),d.sizeBytes(),true);
}
return 2; // OK and configuration has changed
}
} catch ( ... ) {
TRACE("ignored invalid configuration for network %.16llx",(unsigned long long)_id);
}
return 0;
}
void Network::handleInboundConfigChunk(const uint64_t inRePacketId,const void *data,unsigned int chunkSize,unsigned int chunkIndex,unsigned int totalSize)
{
std::string newConfig;
if ((_inboundConfigPacketId == inRePacketId)&&(totalSize < ZT_NETWORKCONFIG_DICT_CAPACITY)&&((chunkIndex + chunkSize) <= totalSize)) {
Mutex::Lock _l(_lock);
_inboundConfigChunks[chunkIndex].append((const char *)data,chunkSize);
unsigned int totalWeHave = 0;
for(std::map::iterator c(_inboundConfigChunks.begin());c!=_inboundConfigChunks.end();++c)
totalWeHave += (unsigned int)c->second.length();
if (totalWeHave == totalSize) {
TRACE("have all chunks for network config request %.16llx, assembling...",inRePacketId);
for(std::map::iterator c(_inboundConfigChunks.begin());c!=_inboundConfigChunks.end();++c)
newConfig.append(c->second);
_inboundConfigPacketId = 0;
_inboundConfigChunks.clear();
} else if (totalWeHave > totalSize) {
_inboundConfigPacketId = 0;
_inboundConfigChunks.clear();
}
} else {
return;
}
if ((newConfig.length() > 0)&&(newConfig.length() < ZT_NETWORKCONFIG_DICT_CAPACITY)) {
Dictionary *dict = new Dictionary(newConfig.c_str());
NetworkConfig *nc = new NetworkConfig();
try {
Identity controllerId(RR->topology->getIdentity(this->controller()));
if (controllerId) {
if (nc->fromDictionary(*dict)) {
this->setConfiguration(*nc,true);
} else {
TRACE("error parsing new config with length %u: deserialization of NetworkConfig failed (certificate error?)",(unsigned int)newConfig.length());
}
}
delete nc;
delete dict;
} catch ( ... ) {
TRACE("error parsing new config with length %u: unexpected exception",(unsigned int)newConfig.length());
delete nc;
delete dict;
throw;
}
}
}
void Network::requestConfiguration()
{
// Sanity limit: do not request more often than once per second
const uint64_t now = RR->node->now();
if ((now - _lastRequestedConfiguration) < 1000ULL)
return;
_lastRequestedConfiguration = RR->node->now();
const Address ctrl(controller());
Dictionary rmd;
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION,(uint64_t)ZT_NETWORKCONFIG_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,(uint64_t)ZT_PROTO_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MAJOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MINOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,(uint64_t)ZEROTIER_ONE_VERSION_REVISION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES,(uint64_t)ZT_MAX_NETWORK_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES,(uint64_t)ZT_MAX_NETWORK_CAPABILITIES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES,(uint64_t)ZT_MAX_CAPABILITY_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS,(uint64_t)ZT_MAX_NETWORK_TAGS);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS,(uint64_t)0);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV,(uint64_t)ZT_RULES_ENGINE_REVISION);
if (ctrl == RR->identity.address()) {
if (RR->localNetworkController) {
NetworkConfig nconf;
switch(RR->localNetworkController->doNetworkConfigRequest(InetAddress(),RR->identity,RR->identity,_id,rmd,nconf)) {
case NetworkController::NETCONF_QUERY_OK:
this->setConfiguration(nconf,true);
return;
case NetworkController::NETCONF_QUERY_OBJECT_NOT_FOUND:
this->setNotFound();
return;
case NetworkController::NETCONF_QUERY_ACCESS_DENIED:
this->setAccessDenied();
return;
default:
return;
}
} else {
this->setNotFound();
return;
}
}
TRACE("requesting netconf for network %.16llx from controller %s",(unsigned long long)_id,ctrl.toString().c_str());
Packet outp(ctrl,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append((uint64_t)_id);
const unsigned int rmdSize = rmd.sizeBytes();
outp.append((uint16_t)rmdSize);
outp.append((const void *)rmd.data(),rmdSize);
if (_config) {
outp.append((uint64_t)_config.revision);
outp.append((uint64_t)_config.timestamp);
} else {
outp.append((unsigned char)0,16);
}
outp.compress();
RR->sw->send(outp,true);
// Expect replies with this in-re packet ID
_inboundConfigPacketId = outp.packetId();
_inboundConfigChunks.clear();
}
void Network::clean()
{
const uint64_t now = RR->node->now();
Mutex::Lock _l(_lock);
if (_destroyed)
return;
{
Hashtable< MulticastGroup,uint64_t >::Iterator i(_multicastGroupsBehindMe);
MulticastGroup *mg = (MulticastGroup *)0;
uint64_t *ts = (uint64_t *)0;
while (i.next(mg,ts)) {
if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2))
_multicastGroupsBehindMe.erase(*mg);
}
}
{
Address *a = (Address *)0;
Membership *m = (Membership *)0;
Hashtable::Iterator i(_memberships);
while (i.next(a,m)) {
if ((now - m->clean(now)) > ZT_MEMBERSHIP_EXPIRATION_TIME)
_memberships.erase(*a);
}
}
}
void Network::learnBridgeRoute(const MAC &mac,const Address &addr)
{
Mutex::Lock _l(_lock);
_remoteBridgeRoutes[mac] = addr;
// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
while (_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
Hashtable< Address,unsigned long > counts;
Address maxAddr;
unsigned long maxCount = 0;
MAC *m = (MAC *)0;
Address *a = (Address *)0;
// Find the address responsible for the most entries
{
Hashtable::Iterator i(_remoteBridgeRoutes);
while (i.next(m,a)) {
const unsigned long c = ++counts[*a];
if (c > maxCount) {
maxCount = c;
maxAddr = *a;
}
}
}
// Kill this address from our table, since it's most likely spamming us
{
Hashtable::Iterator i(_remoteBridgeRoutes);
while (i.next(m,a)) {
if (*a == maxAddr)
_remoteBridgeRoutes.erase(*m);
}
}
}
}
void Network::learnBridgedMulticastGroup(const MulticastGroup &mg,uint64_t now)
{
Mutex::Lock _l(_lock);
const unsigned long tmp = (unsigned long)_multicastGroupsBehindMe.size();
_multicastGroupsBehindMe.set(mg,now);
if (tmp != _multicastGroupsBehindMe.size())
_announceMulticastGroups();
}
void Network::destroy()
{
Mutex::Lock _l(_lock);
_destroyed = true;
}
ZT_VirtualNetworkStatus Network::_status() const
{
// assumes _lock is locked
if (_portError)
return ZT_NETWORK_STATUS_PORT_ERROR;
switch(_netconfFailure) {
case NETCONF_FAILURE_ACCESS_DENIED:
return ZT_NETWORK_STATUS_ACCESS_DENIED;
case NETCONF_FAILURE_NOT_FOUND:
return ZT_NETWORK_STATUS_NOT_FOUND;
case NETCONF_FAILURE_NONE:
return ((_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION);
default:
return ZT_NETWORK_STATUS_PORT_ERROR;
}
}
void Network::_externalConfig(ZT_VirtualNetworkConfig *ec) const
{
// assumes _lock is locked
ec->nwid = _id;
ec->mac = _mac.toInt();
if (_config)
Utils::scopy(ec->name,sizeof(ec->name),_config.name);
else ec->name[0] = (char)0;
ec->status = _status();
ec->type = (_config) ? (_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
ec->mtu = ZT_IF_MTU;
ec->dhcp = 0;
std::vector ab(_config.activeBridges());
ec->bridge = ((_config.allowPassiveBridging())||(std::find(ab.begin(),ab.end(),RR->identity.address()) != ab.end())) ? 1 : 0;
ec->broadcastEnabled = (_config) ? (_config.enableBroadcast() ? 1 : 0) : 0;
ec->portError = _portError;
ec->netconfRevision = (_config) ? (unsigned long)_config.revision : 0;
ec->assignedAddressCount = 0;
for(unsigned int i=0;iassignedAddresses[i]),&(_config.staticIps[i]),sizeof(struct sockaddr_storage));
++ec->assignedAddressCount;
} else {
memset(&(ec->assignedAddresses[i]),0,sizeof(struct sockaddr_storage));
}
}
ec->routeCount = 0;
for(unsigned int i=0;iroutes[i]),&(_config.routes[i]),sizeof(ZT_VirtualNetworkRoute));
++ec->routeCount;
} else {
memset(&(ec->routes[i]),0,sizeof(ZT_VirtualNetworkRoute));
}
}
}
bool Network::_isAllowed(const SharedPtr &peer) const
{
// Assumes _lock is locked
try {
if (_config) {
const Membership *const m = _memberships.get(peer->address());
if (m)
return m->isAllowedOnNetwork(_config);
}
} catch ( ... ) {
TRACE("isAllowed() check failed for peer %s: unexpected exception",peer->address().toString().c_str());
}
return false;
}
class _MulticastAnnounceAll
{
public:
_MulticastAnnounceAll(const RuntimeEnvironment *renv,Network *nw) :
_now(renv->node->now()),
_controller(nw->controller()),
_network(nw),
_anchors(nw->config().anchors()),
_upstreamAddresses(renv->topology->upstreamAddresses())
{}
inline void operator()(Topology &t,const SharedPtr &p)
{
if ( (_network->_isAllowed(p)) || // FIXME: this causes multicast LIKEs for public networks to get spammed, which isn't terrible but is a bit stupid
(p->address() == _controller) ||
(std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),p->address()) != _upstreamAddresses.end()) ||
(std::find(_anchors.begin(),_anchors.end(),p->address()) != _anchors.end()) ) {
peers.push_back(p);
}
}
std::vector< SharedPtr > peers;
private:
const uint64_t _now;
const Address _controller;
Network *const _network;
const std::vector _anchors;
const std::vector _upstreamAddresses;
};
void Network::_announceMulticastGroups()
{
// Assumes _lock is locked
std::vector allMulticastGroups(_allMulticastGroups());
_MulticastAnnounceAll gpfunc(RR,this);
RR->topology->eachPeer<_MulticastAnnounceAll &>(gpfunc);
for(std::vector< SharedPtr >::const_iterator i(gpfunc.peers.begin());i!=gpfunc.peers.end();++i)
_announceMulticastGroupsTo(*i,allMulticastGroups);
}
void Network::_announceMulticastGroupsTo(const SharedPtr &peer,const std::vector &allMulticastGroups)
{
// Assumes _lock is locked
// Anyone we announce multicast groups to will need our COM to authenticate GATHER requests.
{
Membership *m = _memberships.get(peer->address());
if (m)
m->sendCredentialsIfNeeded(RR,RR->node->now(),peer->address(),_config,(const Capability *)0);
}
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_MULTICAST_LIKE);
for(std::vector::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
if ((outp.size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) {
outp.compress();
RR->sw->send(outp,true);
outp.reset(peer->address(),RR->identity.address(),Packet::VERB_MULTICAST_LIKE);
}
// network ID, MAC, ADI
outp.append((uint64_t)_id);
mg->mac().appendTo(outp);
outp.append((uint32_t)mg->adi());
}
if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH) {
outp.compress();
RR->sw->send(outp,true);
}
}
std::vector Network::_allMulticastGroups() const
{
// Assumes _lock is locked
std::vector mgs;
mgs.reserve(_myMulticastGroups.size() + _multicastGroupsBehindMe.size() + 1);
mgs.insert(mgs.end(),_myMulticastGroups.begin(),_myMulticastGroups.end());
_multicastGroupsBehindMe.appendKeys(mgs);
if ((_config)&&(_config.enableBroadcast()))
mgs.push_back(Network::BROADCAST);
std::sort(mgs.begin(),mgs.end());
mgs.erase(std::unique(mgs.begin(),mgs.end()),mgs.end());
return mgs;
}
} // namespace ZeroTier