/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_UTILS_HPP #define ZT_UTILS_HPP #include #include #include #include #include #include #include #include #include #include "Constants.hpp" namespace ZeroTier { /** * Miscellaneous utility functions and global constants */ class Utils { public: /** * Hexadecimal characters 0-f */ static const char HEXCHARS[16]; /** * Perform a time-invariant binary comparison * * @param a First binary string * @param b Second binary string * @param len Length of strings * @return True if strings are equal */ static ZT_ALWAYS_INLINE bool secureEq(const void *a,const void *b,unsigned int len) { uint8_t diff = 0; for(unsigned int i=0;i(a))[i] ^ (reinterpret_cast(b))[i] ); return (diff == 0); } /** * Zero memory, ensuring to avoid any compiler optimizations or other things that may stop this. */ static void burn(void *ptr,unsigned int len); /** * @param n Number to convert * @param s Buffer, at least 24 bytes in size * @return String containing 'n' in base 10 form */ static char *decimal(unsigned long n,char s[24]); static inline char *hex(uint64_t i,char s[17]) { s[0] = HEXCHARS[(i >> 60) & 0xf]; s[1] = HEXCHARS[(i >> 56) & 0xf]; s[2] = HEXCHARS[(i >> 52) & 0xf]; s[3] = HEXCHARS[(i >> 48) & 0xf]; s[4] = HEXCHARS[(i >> 44) & 0xf]; s[5] = HEXCHARS[(i >> 40) & 0xf]; s[6] = HEXCHARS[(i >> 36) & 0xf]; s[7] = HEXCHARS[(i >> 32) & 0xf]; s[8] = HEXCHARS[(i >> 28) & 0xf]; s[9] = HEXCHARS[(i >> 24) & 0xf]; s[10] = HEXCHARS[(i >> 20) & 0xf]; s[11] = HEXCHARS[(i >> 16) & 0xf]; s[12] = HEXCHARS[(i >> 12) & 0xf]; s[13] = HEXCHARS[(i >> 8) & 0xf]; s[14] = HEXCHARS[(i >> 4) & 0xf]; s[15] = HEXCHARS[i & 0xf]; s[16] = (char)0; return s; } static inline char *hex10(uint64_t i,char s[11]) { s[0] = HEXCHARS[(i >> 36) & 0xf]; s[1] = HEXCHARS[(i >> 32) & 0xf]; s[2] = HEXCHARS[(i >> 28) & 0xf]; s[3] = HEXCHARS[(i >> 24) & 0xf]; s[4] = HEXCHARS[(i >> 20) & 0xf]; s[5] = HEXCHARS[(i >> 16) & 0xf]; s[6] = HEXCHARS[(i >> 12) & 0xf]; s[7] = HEXCHARS[(i >> 8) & 0xf]; s[8] = HEXCHARS[(i >> 4) & 0xf]; s[9] = HEXCHARS[i & 0xf]; s[10] = (char)0; return s; } static inline char *hex(uint32_t i,char s[9]) { s[0] = HEXCHARS[(i >> 28) & 0xf]; s[1] = HEXCHARS[(i >> 24) & 0xf]; s[2] = HEXCHARS[(i >> 20) & 0xf]; s[3] = HEXCHARS[(i >> 16) & 0xf]; s[4] = HEXCHARS[(i >> 12) & 0xf]; s[5] = HEXCHARS[(i >> 8) & 0xf]; s[6] = HEXCHARS[(i >> 4) & 0xf]; s[7] = HEXCHARS[i & 0xf]; s[8] = (char)0; return s; } static inline char *hex(uint16_t i,char s[5]) { s[0] = HEXCHARS[(i >> 12) & 0xf]; s[1] = HEXCHARS[(i >> 8) & 0xf]; s[2] = HEXCHARS[(i >> 4) & 0xf]; s[3] = HEXCHARS[i & 0xf]; s[4] = (char)0; return s; } static inline char *hex(uint8_t i,char s[3]) { s[0] = HEXCHARS[(i >> 4) & 0xf]; s[1] = HEXCHARS[i & 0xf]; s[2] = (char)0; return s; } static inline char *hex(const void *d,unsigned int l,char *s) { char *const save = s; for(unsigned int i=0;i(d)[i]; *(s++) = HEXCHARS[b >> 4]; *(s++) = HEXCHARS[b & 0xf]; } *s = (char)0; return save; } static unsigned int unhex(const char *h,void *buf,unsigned int buflen); static unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen); /** * Generate secure random bytes * * This will try to use whatever OS sources of entropy are available. It's * guarded by an internal mutex so it's thread-safe. * * @param buf Buffer to fill * @param bytes Number of random bytes to generate */ static void getSecureRandom(void *buf,unsigned int bytes); /** * Get a 64-bit unsigned secure random number */ static ZT_ALWAYS_INLINE uint64_t getSecureRandom64() { uint64_t x; getSecureRandom(&x,sizeof(x)); return x; } static int b32e(const uint8_t *data,int length,char *result,int bufSize); static int b32d(const char *encoded, uint8_t *result, int bufSize); static ZT_ALWAYS_INLINE unsigned int b64MaxEncodedSize(const unsigned int s) { return ((((s + 2) / 3) * 4) + 1); } static unsigned int b64e(const uint8_t *in,unsigned int inlen,char *out,unsigned int outlen); static unsigned int b64d(const char *in,uint8_t *out,unsigned int outlen); /** * Get a non-cryptographic random integer */ static uint64_t random(); static ZT_ALWAYS_INLINE float normalize(float value, int64_t bigMin, int64_t bigMax, int32_t targetMin, int32_t targetMax) { int64_t bigSpan = bigMax - bigMin; int64_t smallSpan = targetMax - targetMin; float valueScaled = (value - (float)bigMin) / (float)bigSpan; return (float)targetMin + valueScaled * (float)smallSpan; } /** * Tokenize a string (alias for strtok_r or strtok_s depending on platform) * * @param str String to split * @param delim Delimiters * @param saveptr Pointer to a char * for temporary reentrant storage */ static ZT_ALWAYS_INLINE char *stok(char *str,const char *delim,char **saveptr) { #ifdef __WINDOWS__ return strtok_s(str,delim,saveptr); #else return strtok_r(str,delim,saveptr); #endif } static ZT_ALWAYS_INLINE unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,10); } static ZT_ALWAYS_INLINE int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); } static ZT_ALWAYS_INLINE unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); } static ZT_ALWAYS_INLINE long strToLong(const char *s) { return strtol(s,(char **)0,10); } static ZT_ALWAYS_INLINE unsigned long long strToU64(const char *s) { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,(char **)0,10); #else return strtoull(s,(char **)0,10); #endif } static ZT_ALWAYS_INLINE long long strTo64(const char *s) { #ifdef __WINDOWS__ return (long long)_strtoi64(s,(char **)0,10); #else return strtoll(s,(char **)0,10); #endif } static ZT_ALWAYS_INLINE unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); } static ZT_ALWAYS_INLINE int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); } static ZT_ALWAYS_INLINE unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); } static ZT_ALWAYS_INLINE long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); } static ZT_ALWAYS_INLINE unsigned long long hexStrToU64(const char *s) { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,(char **)0,16); #else return strtoull(s,(char **)0,16); #endif } static ZT_ALWAYS_INLINE long long hexStrTo64(const char *s) { #ifdef __WINDOWS__ return (long long)_strtoi64(s,(char **)0,16); #else return strtoll(s,(char **)0,16); #endif } /** * Perform a safe C string copy, ALWAYS null-terminating the result * * This will never ever EVER result in dest[] not being null-terminated * regardless of any input parameter (other than len==0 which is invalid). * * @param dest Destination buffer (must not be NULL) * @param len Length of dest[] (if zero, false is returned and nothing happens) * @param src Source string (if NULL, dest will receive a zero-length string and true is returned) * @return True on success, false on overflow (buffer will still be 0-terminated) */ static ZT_ALWAYS_INLINE bool scopy(char *dest,unsigned int len,const char *src) { if (!len) return false; // sanity check if (!src) { *dest = (char)0; return true; } char *end = dest + len; while ((*dest++ = *src++)) { if (dest == end) { *(--dest) = (char)0; return false; } } return true; } /** * Count the number of bits set in an integer * * @param v Unsigned integer * @return Number of bits set in this integer (0-bits in integer) */ template static ZT_ALWAYS_INLINE uint64_t countBits(T v) { v = v - ((v >> 1) & (T)~(T)0/3); v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); v = (v + (v >> 4)) & (T)~(T)0/255*15; return (T)(v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8); } // Byte swappers for big/little endian conversion #if __BYTE_ORDER == __LITTLE_ENDIAN static ZT_ALWAYS_INLINE uint8_t hton(uint8_t n) { return n; } static ZT_ALWAYS_INLINE int8_t hton(int8_t n) { return n; } static ZT_ALWAYS_INLINE uint16_t hton(uint16_t n) { return htons(n); } static ZT_ALWAYS_INLINE int16_t hton(int16_t n) { return (int16_t)Utils::hton((uint16_t)n); } static ZT_ALWAYS_INLINE uint32_t hton(uint32_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return htonl(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap32(n); #endif #else return htonl(n); #endif } static ZT_ALWAYS_INLINE int32_t hton(int32_t n) { return (int32_t)Utils::hton((uint32_t)n); } static ZT_ALWAYS_INLINE uint64_t hton(uint64_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return bswap64(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap64(n); #endif #else return ( ((n & 0x00000000000000FFULL) << 56) | ((n & 0x000000000000FF00ULL) << 40) | ((n & 0x0000000000FF0000ULL) << 24) | ((n & 0x00000000FF000000ULL) << 8) | ((n & 0x000000FF00000000ULL) >> 8) | ((n & 0x0000FF0000000000ULL) >> 24) | ((n & 0x00FF000000000000ULL) >> 40) | ((n & 0xFF00000000000000ULL) >> 56) ); #endif } static ZT_ALWAYS_INLINE int64_t hton(int64_t n) { return (int64_t)hton((uint64_t)n); } #else template static ZT_ALWAYS_INLINE T hton(T n) { return n; } #endif #if __BYTE_ORDER == __LITTLE_ENDIAN static ZT_ALWAYS_INLINE uint8_t ntoh(uint8_t n) { return n; } static ZT_ALWAYS_INLINE int8_t ntoh(int8_t n) { return n; } static ZT_ALWAYS_INLINE uint16_t ntoh(uint16_t n) { return ntohs(n); } static ZT_ALWAYS_INLINE int16_t ntoh(int16_t n) { return (int16_t)Utils::ntoh((uint16_t)n); } static ZT_ALWAYS_INLINE uint32_t ntoh(uint32_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return ntohl(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap32(n); #endif #else return ntohl(n); #endif } static ZT_ALWAYS_INLINE int32_t ntoh(int32_t n) { return (int32_t)Utils::ntoh((uint32_t)n); } static ZT_ALWAYS_INLINE uint64_t ntoh(uint64_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return bswap64(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap64(n); #endif #else return ( ((n & 0x00000000000000FFULL) << 56) | ((n & 0x000000000000FF00ULL) << 40) | ((n & 0x0000000000FF0000ULL) << 24) | ((n & 0x00000000FF000000ULL) << 8) | ((n & 0x000000FF00000000ULL) >> 8) | ((n & 0x0000FF0000000000ULL) >> 24) | ((n & 0x00FF000000000000ULL) >> 40) | ((n & 0xFF00000000000000ULL) >> 56) ); #endif } static ZT_ALWAYS_INLINE int64_t ntoh(int64_t n) { return (int64_t)ntoh((uint64_t)n); } #else template static ZT_ALWAYS_INLINE T ntoh(T n) { return n; } #endif }; } // namespace ZeroTier #endif