/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_BINDER_HPP #define ZT_BINDER_HPP #include "../node/Constants.hpp" #include #include #include #include #ifdef __WINDOWS__ #include #include #include #include #include #else #include #include #include #include #include #ifdef __LINUX__ #include #include #include #endif #endif #if (defined(__unix__) || defined(__APPLE__)) && !defined(__LINUX__) #include #include #include #endif #include "../node/InetAddress.hpp" #include "../node/Mutex.hpp" #include "../node/Utils.hpp" #include "OSUtils.hpp" #include "Phy.hpp" #include #include #include #include #include #include #include // Period between refreshes of bindings #define ZT_BINDER_REFRESH_PERIOD 30000 // Max number of bindings #define ZT_BINDER_MAX_BINDINGS 256 namespace ZeroTier { /** * Enumerates local devices and binds to all potential ZeroTier path endpoints * * This replaces binding to wildcard (0.0.0.0 and ::0) with explicit binding * as part of the path to default gateway support. Under the hood it uses * different queries on different OSes to enumerate devices, and also exposes * device enumeration and endpoint IP data for use elsewhere. * * On OSes that do not support local port enumeration or where this is not * meaningful, this degrades to binding to wildcard. */ class Binder { private: struct _Binding { _Binding() : udpSock((PhySocket*)0), tcpListenSock((PhySocket*)0) { } PhySocket* udpSock; PhySocket* tcpListenSock; InetAddress address; }; public: Binder() : _bindingCount(0) { } /** * Close all bound ports, should be called on shutdown * * @param phy Physical interface */ template void closeAll(Phy& phy) { Mutex::Lock _l(_lock); for (unsigned int b = 0, c = _bindingCount; b < c; ++b) { phy.close(_bindings[b].udpSock, false); phy.close(_bindings[b].tcpListenSock, false); } _bindingCount = 0; } /** * Scan local devices and addresses and rebind TCP and UDP * * This should be called after wake from sleep, on detected network device * changes, on startup, or periodically (e.g. every 30-60s). * * @param phy Physical interface * @param ports Ports to bind on all interfaces * @param portCount Number of ports * @param explicitBind If present, override interface IP detection and bind to these (if possible) * @param ifChecker Interface checker function to see if an interface should be used * @tparam PHY_HANDLER_TYPE Type for Phy<> template * @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method */ template void refresh(Phy& phy, unsigned int* ports, unsigned int portCount, const std::vector explicitBind, INTERFACE_CHECKER& ifChecker) { std::map localIfAddrs; PhySocket *udps, *tcps; Mutex::Lock _l(_lock); bool interfacesEnumerated = true; if (explicitBind.empty()) { #ifdef __WINDOWS__ char aabuf[32768]; ULONG aalen = sizeof(aabuf); if (GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_ANYCAST | GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER, (void*)0, reinterpret_cast(aabuf), &aalen) == NO_ERROR) { PIP_ADAPTER_ADDRESSES a = reinterpret_cast(aabuf); while (a) { PIP_ADAPTER_UNICAST_ADDRESS ua = a->FirstUnicastAddress; while (ua) { // Don't bind temporary/random IPv6 addresses if (ua->SuffixOrigin != IpSuffixOriginRandom) { InetAddress ip(ua->Address.lpSockaddr); char strBuf[128] = { 0 }; wcstombs(strBuf, a->FriendlyName, sizeof(strBuf)); if (ifChecker.shouldBindInterface(strBuf, ip)) { switch (ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for (int x = 0; x < (int)portCount; ++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip, std::string())); } break; } } } ua = ua->Next; } a = a->Next; } } else { interfacesEnumerated = false; } #else // not __WINDOWS__ /* On Linux we use an alternative method if available since getifaddrs() * gets very slow when there are lots of network namespaces. This won't * work unless /proc/PID/net/if_inet6 exists and it may not on some * embedded systems, so revert to getifaddrs() there. */ #ifdef __LINUX__ char fn[256], tmp[256]; std::set ifnames; const unsigned long pid = (unsigned long)getpid(); // Get all device names OSUtils::ztsnprintf(fn, sizeof(fn), "/proc/%lu/net/dev", pid); FILE* procf = fopen(fn, "r"); if (procf) { while (fgets(tmp, sizeof(tmp), procf)) { tmp[255] = 0; char* saveptr = (char*)0; for (char* f = Utils::stok(tmp, " \t\r\n:|", &saveptr); (f); f = Utils::stok((char*)0, " \t\r\n:|", &saveptr)) { if ((strcmp(f, "Inter-") != 0) && (strcmp(f, "face") != 0) && (f[0] != 0)) ifnames.insert(f); break; // we only want the first field } } fclose(procf); } else { interfacesEnumerated = false; } // Get IPv6 addresses (and any device names we don't already know) OSUtils::ztsnprintf(fn, sizeof(fn), "/proc/%lu/net/if_inet6", pid); procf = fopen(fn, "r"); if (procf) { while (fgets(tmp, sizeof(tmp), procf)) { tmp[255] = 0; char* saveptr = (char*)0; unsigned char ipbits[16]; memset(ipbits, 0, sizeof(ipbits)); char* devname = (char*)0; int flags = 0; int n = 0; for (char* f = Utils::stok(tmp, " \t\r\n", &saveptr); (f); f = Utils::stok((char*)0, " \t\r\n", &saveptr)) { switch (n++) { case 0: // IP in hex Utils::unhex(f, 32, ipbits, 16); break; case 4: flags = atoi(f); break; case 5: // device name devname = f; break; } } if ( (flags & IFA_F_TEMPORARY) != 0) { continue; } if (devname) { ifnames.insert(devname); InetAddress ip(ipbits, 16, 0); if (ifChecker.shouldBindInterface(devname, ip)) { switch (ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for (int x = 0; x < (int)portCount; ++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip, std::string(devname))); } break; } } } } fclose(procf); } // Get IPv4 addresses for each device if (! ifnames.empty()) { const int controlfd = (int)socket(AF_INET, SOCK_DGRAM, 0); struct ifconf configuration; configuration.ifc_len = 0; configuration.ifc_buf = nullptr; if (controlfd < 0) goto ip4_address_error; if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error; configuration.ifc_buf = (char*)malloc(configuration.ifc_len); if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error; for (int i = 0; i < (int)(configuration.ifc_len / sizeof(ifreq)); i++) { struct ifreq& request = configuration.ifc_req[i]; struct sockaddr* addr = &request.ifr_ifru.ifru_addr; if (addr->sa_family != AF_INET) continue; std::string ifname = request.ifr_ifrn.ifrn_name; // name can either be just interface name or interface name followed by ':' and arbitrary label if (ifname.find(':') != std::string::npos) ifname = ifname.substr(0, ifname.find(':')); InetAddress ip(&(((struct sockaddr_in*)addr)->sin_addr), 4, 0); if (ifChecker.shouldBindInterface(ifname.c_str(), ip)) { switch (ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for (int x = 0; x < (int)portCount; ++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip, ifname)); } break; } } } ip4_address_error: free(configuration.ifc_buf); if (controlfd > 0) close(controlfd); } const bool gotViaProc = (! localIfAddrs.empty()); #else const bool gotViaProc = false; #endif #if ! defined(ZT_SDK) || ! defined(__ANDROID__) // getifaddrs() freeifaddrs() not available on Android if (! gotViaProc) { struct ifaddrs* ifatbl = (struct ifaddrs*)0; struct ifaddrs* ifa; #if (defined(__unix__) || defined(__APPLE__)) && !defined(__LINUX__) // set up an IPv6 socket so we can check the state of interfaces via SIOCGIFAFLAG_IN6 int infoSock = socket(AF_INET6, SOCK_DGRAM, 0); #endif if ((getifaddrs(&ifatbl) == 0) && (ifatbl)) { ifa = ifatbl; while (ifa) { if ((ifa->ifa_name) && (ifa->ifa_addr)) { InetAddress ip = *(ifa->ifa_addr); #if (defined(__unix__) || defined(__APPLE__)) && !defined(__LINUX__) // Check if the address is an IPv6 Temporary Address, macOS/BSD version if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* sa6 = (struct sockaddr_in6*)ifa->ifa_addr; struct in6_ifreq ifr6; memset(&ifr6, 0, sizeof(ifr6)); strcpy(ifr6.ifr_name, ifa->ifa_name); ifr6.ifr_ifru.ifru_addr = *sa6; int flags = 0; if (ioctl(infoSock, SIOCGIFAFLAG_IN6, (unsigned long long)&ifr6) != -1) { flags = ifr6.ifr_ifru.ifru_flags6; } // if this is a temporary IPv6 address, skip to the next address if (flags & IN6_IFF_TEMPORARY) { char buf[64]; #ifdef ZT_TRACE fprintf(stderr, "skip binding to temporary IPv6 address: %s\n", ip.toIpString(buf)); #endif ifa = ifa->ifa_next; continue; } } #endif if (ifChecker.shouldBindInterface(ifa->ifa_name, ip)) { switch (ip.ipScope()) { default: break; case InetAddress::IP_SCOPE_PSEUDOPRIVATE: case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_PRIVATE: for (int x = 0; x < (int)portCount; ++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip, std::string(ifa->ifa_name))); } break; } } } ifa = ifa->ifa_next; } freeifaddrs(ifatbl); } else { interfacesEnumerated = false; } #if defined(__unix__) && !defined(__LINUX__) close(infoSock); #endif } #endif #endif } else { for (std::vector::const_iterator i(explicitBind.begin()); i != explicitBind.end(); ++i) { InetAddress ip = InetAddress(*i); for (int x = 0; x < (int)portCount; ++x) { ip.setPort(ports[x]); localIfAddrs.insert(std::pair(ip, std::string())); } } } // Default to binding to wildcard if we can't enumerate addresses if (! interfacesEnumerated && localIfAddrs.empty()) { for (int x = 0; x < (int)portCount; ++x) { localIfAddrs.insert(std::pair(InetAddress((uint32_t)0, ports[x]), std::string())); localIfAddrs.insert(std::pair(InetAddress((const void*)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 16, ports[x]), std::string())); } } const unsigned int oldBindingCount = _bindingCount; _bindingCount = 0; // Save bindings that are still valid, close those that are not for (unsigned int b = 0; b < oldBindingCount; ++b) { if (localIfAddrs.find(_bindings[b].address) != localIfAddrs.end()) { if (_bindingCount != b) _bindings[(unsigned int)_bindingCount] = _bindings[b]; ++_bindingCount; } else { PhySocket* const udps = _bindings[b].udpSock; PhySocket* const tcps = _bindings[b].tcpListenSock; _bindings[b].udpSock = (PhySocket*)0; _bindings[b].tcpListenSock = (PhySocket*)0; phy.close(udps, false); phy.close(tcps, false); } } // Create new bindings for those not already bound for (std::map::const_iterator ii(localIfAddrs.begin()); ii != localIfAddrs.end(); ++ii) { unsigned int bi = 0; while (bi != _bindingCount) { if (_bindings[bi].address == ii->first) break; ++bi; } if (bi == _bindingCount) { udps = phy.udpBind(reinterpret_cast(&(ii->first)), (void*)0, ZT_UDP_DESIRED_BUF_SIZE); tcps = phy.tcpListen(reinterpret_cast(&(ii->first)), (void*)0); if ((udps) && (tcps)) { #ifdef __LINUX__ // Bind Linux sockets to their device so routes that we manage do not override physical routes (wish all platforms had this!) if (ii->second.length() > 0) { char tmp[256]; Utils::scopy(tmp, sizeof(tmp), ii->second.c_str()); int fd = (int)Phy::getDescriptor(udps); if (fd >= 0) setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, tmp, strlen(tmp)); fd = (int)Phy::getDescriptor(tcps); if (fd >= 0) setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, tmp, strlen(tmp)); } #endif // __LINUX__ if (_bindingCount < ZT_BINDER_MAX_BINDINGS) { _bindings[_bindingCount].udpSock = udps; _bindings[_bindingCount].tcpListenSock = tcps; _bindings[_bindingCount].address = ii->first; phy.setIfName(udps, (char*)ii->second.c_str(), (int)ii->second.length()); ++_bindingCount; } } else { phy.close(udps, false); phy.close(tcps, false); } } } } /** * @return All currently bound local interface addresses */ inline std::vector allBoundLocalInterfaceAddresses() const { std::vector aa; Mutex::Lock _l(_lock); for (unsigned int b = 0, c = _bindingCount; b < c; ++b) aa.push_back(_bindings[b].address); return aa; } /** * Send from all bound UDP sockets */ template inline bool udpSendAll(Phy& phy, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl) { bool r = false; Mutex::Lock _l(_lock); for (unsigned int b = 0, c = _bindingCount; b < c; ++b) { if (ttl) phy.setIp4UdpTtl(_bindings[b].udpSock, ttl); if (phy.udpSend(_bindings[b].udpSock, (const struct sockaddr*)addr, data, len)) r = true; if (ttl) phy.setIp4UdpTtl(_bindings[b].udpSock, 255); } return r; } /** * @param addr Address to check * @return True if this is a bound local interface address */ inline bool isBoundLocalInterfaceAddress(const InetAddress& addr) const { Mutex::Lock _l(_lock); for (unsigned int b = 0; b < _bindingCount; ++b) { if (_bindings[b].address == addr) return true; } return false; } /** * Quickly check that a UDP socket is valid * * @param udpSock UDP socket to check * @return True if socket is currently bound/allocated */ inline bool isUdpSocketValid(PhySocket* const udpSock) { for (unsigned int b = 0, c = _bindingCount; b < c; ++b) { if (_bindings[b].udpSock == udpSock) return (b < _bindingCount); // double check atomic which may have changed } return false; } private: _Binding _bindings[ZT_BINDER_MAX_BINDINGS]; std::atomic _bindingCount; Mutex _lock; }; } // namespace ZeroTier #endif