/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef ZT_NETWORKCONFIG_HPP #define ZT_NETWORKCONFIG_HPP #include #include #include #include #include #include #include "../include/ZeroTierOne.h" #include "Constants.hpp" #include "Buffer.hpp" #include "InetAddress.hpp" #include "MulticastGroup.hpp" #include "Address.hpp" #include "CertificateOfMembership.hpp" #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF #include "Dictionary.hpp" #include #endif /** * Flag: allow passive bridging (experimental) */ #define ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING 0x0001 /** * Flag: enable broadcast */ #define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0002 /** * Device is a network preferred relay */ #define ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY 0x0000010000000000ULL /** * Device is an active bridge */ #define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE 0x0000020000000000ULL /** * An anchor is a device that is willing to be one and has been online/stable for a long time on this network */ #define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ANCHOR 0x0000040000000000ULL namespace ZeroTier { #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF // Fields for meta-data sent with network config requests #define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION "majv" #define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION "minv" #define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION "revv" // These dictionary keys are short so they don't take up much room in // netconf response packets. // integer(hex)[,integer(hex),...] #define ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES "et" // network ID #define ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID "nwid" // integer(hex) #define ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP "ts" // integer(hex) #define ZT_NETWORKCONFIG_DICT_KEY_REVISION "r" // address of member #define ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO "id" // integer(hex) #define ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT "ml" // 0/1 #define ZT_NETWORKCONFIG_DICT_KEY_PRIVATE "p" // text #define ZT_NETWORKCONFIG_DICT_KEY_NAME "n" // text #define ZT_NETWORKCONFIG_DICT_KEY_DESC "d" // IP/bits[,IP/bits,...] // Note that IPs that end in all zeroes are routes with no assignment in them. #define ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC "v4s" // IP/bits[,IP/bits,...] // Note that IPs that end in all zeroes are routes with no assignment in them. #define ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC "v6s" // serialized CertificateOfMembership #define ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP "com" // 0/1 #define ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST "eb" // 0/1 #define ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING "pb" // node[,node,...] #define ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES "ab" // node;IP/port[,node;IP/port] #define ZT_NETWORKCONFIG_DICT_KEY_RELAYS "rl" // IP/metric[,IP/metric,...] #define ZT_NETWORKCONFIG_DICT_KEY_GATEWAYS "gw" #endif // ZT_SUPPORT_OLD_STYLE_NETCONF /** * Network configuration received from network controller nodes * * This is a memcpy()'able structure and is safe (in a crash sense) to modify * without locks. */ class NetworkConfig { public: /** * Network preferred relay with optional physical endpoint addresses * * This is used by the convenience relays() method. */ struct Relay { Address address; InetAddress phy4,phy6; }; /** * Create an instance of a NetworkConfig for the test network ID * * The test network ID is defined as ZT_TEST_NETWORK_ID. This is a * "fake" network with no real controller and default options. * * @param self This node's ZT address * @return Configuration for test network ID */ static inline NetworkConfig createTestNetworkConfig(const Address &self) { NetworkConfig nc; nc.networkId = ZT_TEST_NETWORK_ID; nc.timestamp = 1; nc.revision = 1; nc.issuedTo = self; nc.multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT; nc.flags = ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST; nc.type = ZT_NETWORK_TYPE_PUBLIC; nc.rules[0].t = ZT_NETWORK_RULE_ACTION_ACCEPT; nc.ruleCount = 1; Utils::snprintf(nc.name,sizeof(nc.name),"ZT_TEST_NETWORK"); // Make up a V4 IP from 'self' in the 10.0.0.0/8 range -- no // guarantee of uniqueness but collisions are unlikely. uint32_t ip = (uint32_t)((self.toInt() & 0x00ffffff) | 0x0a000000); // 10.x.x.x if ((ip & 0x000000ff) == 0x000000ff) ip ^= 0x00000001; // but not ending in .255 if ((ip & 0x000000ff) == 0x00000000) ip ^= 0x00000001; // or .0 nc.staticIps[0] = InetAddress(Utils::hton(ip),8); // Assign an RFC4193-compliant IPv6 address -- will never collide nc.staticIps[1] = InetAddress::makeIpv6rfc4193(ZT_TEST_NETWORK_ID,self.toInt()); nc.staticIpCount = 2; return nc; } NetworkConfig() { memset(this,0,sizeof(NetworkConfig)); } NetworkConfig(const NetworkConfig &nc) { memcpy(this,&nc,sizeof(NetworkConfig)); } inline NetworkConfig &operator=(const NetworkConfig &nc) { memcpy(this,&nc,sizeof(NetworkConfig)); return *this; } /** * @param etherType Ethernet frame type to check * @return True if allowed on this network */ inline bool permitsEtherType(unsigned int etherType) const { unsigned int et = 0; for(unsigned int i=0;iflags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0); } /** * @return True if broadcast (ff:ff:ff:ff:ff:ff) address should work on this network */ inline bool enableBroadcast() const throw() { return ((this->flags & ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST) != 0); } /** * @return Network type is public (no access control) */ inline bool isPublic() const throw() { return (this->type == ZT_NETWORK_TYPE_PUBLIC); } /** * @return Network type is private (certificate access control) */ inline bool isPrivate() const throw() { return (this->type == ZT_NETWORK_TYPE_PRIVATE); } /** * @return ZeroTier addresses of devices on this network designated as active bridges */ inline std::vector
activeBridges() const { std::vector
r; for(unsigned int i=0;i anchors() const { std::vector
r; for(unsigned int i=0;i relays() const { std::vector r; for(unsigned int i=0;i inline void serialize(Buffer &b) const { b.append((uint16_t)1); // version b.append((uint64_t)networkId); b.append((uint64_t)timestamp); b.append((uint64_t)revision); issuedTo.appendTo(b); b.append((uint32_t)multicastLimit); b.append((uint32_t)flags); b.append((uint8_t)type); unsigned int nl = (unsigned int)strlen(name); if (nl > 255) nl = 255; // sanity check b.append((uint8_t)nl); b.append((const void *)name,nl); b.append((uint16_t)specialistCount); for(unsigned int i=0;i(&(routes[i].target))->serialize(b); reinterpret_cast(&(routes[i].via))->serialize(b); } b.append((uint16_t)staticIpCount); for(unsigned int i=0;icom.serialize(b); b.append((uint16_t)0); // extended bytes, currently 0 since unused } template inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0) { memset(this,0,sizeof(NetworkConfig)); unsigned int p = startAt; if (b.template at(p) != 1) throw std::invalid_argument("unrecognized version"); p += 2; networkId = b.template at(p); p += 8; timestamp = b.template at(p); p += 8; revision = b.template at(p); p += 8; issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; multicastLimit = (unsigned int)b.template at(p); p += 4; flags = (unsigned int)b.template at(p); p += 4; type = (ZT_VirtualNetworkType)b[p++]; unsigned int nl = (unsigned int)b[p++]; memcpy(this->name,b.field(p,nl),std::min(nl,(unsigned int)ZT_MAX_NETWORK_SHORT_NAME_LENGTH)); p += nl; // _name will always be null terminated since field size is ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1 specialistCount = (unsigned int)b.template at(p); p += 2; if (specialistCount > ZT_MAX_NETWORK_SPECIALISTS) throw std::invalid_argument("overflow (specialists)"); for(unsigned int i=0;i(p); p += 8; } routeCount = (unsigned int)b.template at(p); p += 2; if (routeCount > ZT_MAX_NETWORK_ROUTES) throw std::invalid_argument("overflow (routes)"); for(unsigned int i=0;i(&(routes[i].target))->deserialize(b,p); p += reinterpret_cast(&(routes[i].via))->deserialize(b,p); } staticIpCount = (unsigned int)b.template at(p); p += 2; if (staticIpCount > ZT_MAX_ZT_ASSIGNED_ADDRESSES) throw std::invalid_argument("overflow (static IPs)"); for(unsigned int i=0;i(p); p += 2; if (pinnedCount > ZT_MAX_NETWORK_PINNED) throw std::invalid_argument("overflow (static addresses)"); for(unsigned int i=0;i(p); p += 2; if (ruleCount > ZT_MAX_NETWORK_RULES) throw std::invalid_argument("overflow (rules)"); for(unsigned int i=0;i(p); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: rules[i].v.vlanPcp = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: rules[i].v.vlanDei = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: rules[i].v.etherType = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: memcpy(rules[i].v.mac,b.field(p,6),6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: memcpy(&(rules[i].v.ipv4.ip),b.field(p,4),4); rules[i].v.ipv4.mask = (uint8_t)b[p+4]; break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: memcpy(rules[i].v.ipv6.ip,b.field(p,16),16); rules[i].v.ipv6.mask = (uint8_t)b[p+16]; break; case ZT_NETWORK_RULE_MATCH_IP_TOS: rules[i].v.ipTos = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: rules[i].v.ipProtocol = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: rules[i].v.port[0] = b.template at(p); rules[i].v.port[1] = b.template at(p+2); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: rules[i].v.characteristics = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: rules[i].v.frameSize[0] = b.template at(p); rules[i].v.frameSize[1] = b.template at(p+2); break; case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE: rules[i].v.tcpseq[0] = b.template at(p); rules[i].v.tcpseq[1] = b.template at(p + 4); break; } p += rlen; } p += this->com.deserialize(b,p); p += b.template at(p) + 2; return (p - startAt); } #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF void fromDictionary(const char *ds,unsigned int dslen); #endif /* inline void dump() const { printf("networkId==%.16llx\n",networkId); printf("timestamp==%llu\n",timestamp); printf("revision==%llu\n",revision); printf("issuedTo==%.10llx\n",issuedTo.toInt()); printf("multicastLimit==%u\n",multicastLimit); printf("flags=%.8lx\n",(unsigned long)flags); printf("specialistCount==%u\n",specialistCount); for(unsigned int i=0;i(&(routes[i].target))->toString().c_str()); printf(" routes[i].via==%s\n",reinterpret_cast(&(routes[i].via))->toString().c_str()); } printf("staticIpCount==%u\n",staticIpCount); for(unsigned int i=0;itoString().c_str()); printf(" pinned[i].phy==%s\n",pinned[i].zt->toString().c_str()); } printf("ruleCount==%u\n",ruleCount); printf("name==%s\n",name); printf("com==%s\n",com.toString().c_str()); } */ /** * Network ID that this configuration applies to */ uint64_t networkId; /** * Controller-side time of config generation/issue */ uint64_t timestamp; /** * Controller-side revision counter for this configuration */ uint64_t revision; /** * Address of device to which this config is issued */ Address issuedTo; /** * Maximum number of recipients per multicast (not including active bridges) */ unsigned int multicastLimit; /** * Flags (32-bit) */ unsigned int flags; /** * Number of specialists */ unsigned int specialistCount; /** * Number of routes */ unsigned int routeCount; /** * Number of ZT-managed static IP assignments */ unsigned int staticIpCount; /** * Number of pinned devices (devices with physical address hints) */ unsigned int pinnedCount; /** * Number of rule table entries */ unsigned int ruleCount; /** * Specialist devices * * For each entry the least significant 40 bits are the device's ZeroTier * address and the most significant 24 bits are flags indicating its role. */ uint64_t specialists[ZT_MAX_NETWORK_SPECIALISTS]; /** * Statically defined "pushed" routes (including default gateways) */ ZT_VirtualNetworkRoute routes[ZT_MAX_NETWORK_ROUTES]; /** * Static IP assignments */ InetAddress staticIps[ZT_MAX_ZT_ASSIGNED_ADDRESSES]; /** * Pinned devices with physical address hints * * These can be used to specify a physical address where a given device * can be reached. It's usually used with network relays (specialists). */ struct { Address zt; InetAddress phy; } pinned[ZT_MAX_NETWORK_PINNED]; /** * Rules table */ ZT_VirtualNetworkRule rules[ZT_MAX_NETWORK_RULES]; /** * Network type (currently just public or private) */ ZT_VirtualNetworkType type; /** * Network short name or empty string if not defined */ char name[ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1]; /** * Certficiate of membership (for private networks) */ CertificateOfMembership com; }; } // namespace ZeroTier #endif