/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2012-2013 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include "../version.h" #include "Constants.hpp" #include "Defaults.hpp" #include "RuntimeEnvironment.hpp" #include "Topology.hpp" #include "PacketDecoder.hpp" #include "Switch.hpp" #include "Peer.hpp" #include "NodeConfig.hpp" #include "Filter.hpp" #include "Service.hpp" #include "Demarc.hpp" namespace ZeroTier { bool PacketDecoder::tryDecode(const RuntimeEnvironment *_r) throw(std::out_of_range,std::runtime_error) { if ((!encrypted())&&(verb() == Packet::VERB_HELLO)) { // Unencrypted HELLOs are handled here since they are used to // populate our identity cache in the first place. _doHELLO() is special // in that it contains its own authentication logic. TRACE("HELLO from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str()); return _doHELLO(_r); } SharedPtr peer = _r->topology->getPeer(source()); if (peer) { // Resume saved intermediate decode state? if (_step == DECODE_WAITING_FOR_MULTICAST_FRAME_ORIGINAL_SENDER_LOOKUP) { // In this state we have already authenticated and decrypted the // packet and are waiting for the lookup of the original sender // for a multicast frame. So check to see if we've got it. return _doMULTICAST_FRAME(_r,peer); } if (!dearmor(peer->key())) { TRACE("dropped packet from %s(%s), MAC authentication failed (size: %u)",source().toString().c_str(),_remoteAddress.toString().c_str(),size()); return true; } if (!uncompress()) { TRACE("dropped packet from %s(%s), compressed data invalid",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } Packet::Verb v = verb(); // Once a packet is determined to be basically valid, it can be used // to passively learn a new network path to the sending peer. It // also results in statistics updates. peer->onReceive(_r,_localPort,_remoteAddress,hops(),v,Utils::now()); switch(v) { case Packet::VERB_NOP: TRACE("NOP from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; case Packet::VERB_HELLO: return _doHELLO(_r); // legal, but why? :) case Packet::VERB_ERROR: return _doERROR(_r,peer); case Packet::VERB_OK: return _doOK(_r,peer); case Packet::VERB_WHOIS: return _doWHOIS(_r,peer); case Packet::VERB_RENDEZVOUS: return _doRENDEZVOUS(_r,peer); case Packet::VERB_FRAME: return _doFRAME(_r,peer); case Packet::VERB_PROXY_FRAME: return _doPROXY_FRAME(_r,peer); case Packet::VERB_MULTICAST_FRAME: return _doMULTICAST_FRAME(_r,peer); case Packet::VERB_MULTICAST_LIKE: return _doMULTICAST_LIKE(_r,peer); case Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE: return _doNETWORK_MEMBERSHIP_CERTIFICATE(_r,peer); case Packet::VERB_NETWORK_CONFIG_REQUEST: return _doNETWORK_CONFIG_REQUEST(_r,peer); case Packet::VERB_NETWORK_CONFIG_REFRESH: return _doNETWORK_CONFIG_REFRESH(_r,peer); default: // This might be something from a new or old version of the protocol. // Technically it passed MAC so the packet is still valid, but we // ignore it. TRACE("ignored unrecognized verb %.2x from %s(%s)",(unsigned int)v,source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } } else { _step = DECODE_WAITING_FOR_SENDER_LOOKUP; // should already be this... _r->sw->requestWhois(source()); return false; } } bool PacketDecoder::_doERROR(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB]; Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE]; TRACE("ERROR %s from %s(%s) in-re %s",Packet::errorString(errorCode),source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb)); switch(errorCode) { case Packet::ERROR_OBJ_NOT_FOUND: if (inReVerb == Packet::VERB_WHOIS) { // TODO: abort WHOIS if sender is a supernode } break; case Packet::ERROR_IDENTITY_COLLISION: // TODO: if it comes from a supernode, regenerate a new identity break; case Packet::ERROR_NO_MEMBER_CERTIFICATE: // TODO: send member certificate break; default: break; } } catch (std::exception &ex) { TRACE("dropped ERROR from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped ERROR from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doHELLO(const RuntimeEnvironment *_r) { try { unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION]; unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION]; unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION]; unsigned int vRevision = at(ZT_PROTO_VERB_HELLO_IDX_REVISION); uint64_t timestamp = at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); Identity id(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY); if (protoVersion != ZT_PROTO_VERSION) { TRACE("dropped HELLO from %s(%s): protocol version mismatch (%u, expected %u)",source().toString().c_str(),_remoteAddress.toString().c_str(),protoVersion,(unsigned int)ZT_PROTO_VERSION); return true; } if (!id.locallyValidate()) { TRACE("dropped HELLO from %s(%s): identity invalid",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } SharedPtr peer(_r->topology->getPeer(id.address())); if (peer) { if (peer->identity() != id) { unsigned char key[ZT_PEER_SECRET_KEY_LENGTH]; if (_r->identity.agree(id,key,ZT_PEER_SECRET_KEY_LENGTH)) { TRACE("rejected HELLO from %s(%s): address already claimed",source().toString().c_str(),_remoteAddress.toString().c_str()); Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION); outp.armor(key,true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); } return true; } } else peer = _r->topology->addPeer(SharedPtr(new Peer(_r->identity,id))); peer->onReceive(_r,_localPort,_remoteAddress,hops(),Packet::VERB_HELLO,Utils::now()); peer->setRemoteVersion(vMajor,vMinor,vRevision); Packet outp(source(),_r->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(packetId()); outp.append(timestamp); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.armor(peer->key(),true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); } catch (std::exception &ex) { TRACE("dropped HELLO from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped HELLO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doOK(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB]; switch(inReVerb) { case Packet::VERB_HELLO: { // OK from HELLO permits computation of latency. unsigned int latency = std::min((unsigned int)(Utils::now() - at(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff); unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION]; unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION]; unsigned int vRevision = at(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION); TRACE("%s(%s): OK(HELLO), latency: %u, version %u.%u.%u",source().toString().c_str(),_remoteAddress.toString().c_str(),latency,vMajor,vMinor,vRevision); peer->setLatency(_remoteAddress,latency); peer->setRemoteVersion(vMajor,vMinor,vRevision); } break; case Packet::VERB_WHOIS: { // Right now only supernodes are allowed to send OK(WHOIS) to prevent // poisoning attacks. Further decentralization will require some other // kind of trust mechanism. if (_r->topology->isSupernode(source())) { Identity id(*this,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY); if (id.locallyValidate()) _r->sw->doAnythingWaitingForPeer(_r->topology->addPeer(SharedPtr(new Peer(_r->identity,id)))); } } break; case Packet::VERB_NETWORK_CONFIG_REQUEST: { SharedPtr nw(_r->nc->network(at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_NETWORK_ID))); if ((nw)&&(nw->controller() == source())) { // OK(NETWORK_CONFIG_REQUEST) is only accepted from a network's // controller. unsigned int dictlen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT_LEN); std::string dict((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,dictlen),dictlen); if (dict.length()) { Network::Config netconf(dict); TRACE("got network configuration for network %.16llx from %s",(unsigned long long)nw->id(),source().toString().c_str()); nw->setConfiguration(netconf); } } } break; default: //TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb)); break; } } catch (std::exception &ex) { TRACE("dropped OK from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped OK from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doWHOIS(const RuntimeEnvironment *_r,const SharedPtr &peer) { if (payloadLength() == ZT_ADDRESS_LENGTH) { SharedPtr p(_r->topology->getPeer(Address(payload(),ZT_ADDRESS_LENGTH))); if (p) { Packet outp(source(),_r->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_WHOIS); outp.append(packetId()); p->identity().serialize(outp,false); outp.armor(peer->key(),true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); //TRACE("sent WHOIS response to %s for %s",source().toString().c_str(),Address(payload(),ZT_ADDRESS_LENGTH).toString().c_str()); } else { Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_WHOIS); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND); outp.append(payload(),ZT_ADDRESS_LENGTH); outp.armor(peer->key(),true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); //TRACE("sent WHOIS ERROR to %s for %s (not found)",source().toString().c_str(),Address(payload(),ZT_ADDRESS_LENGTH).toString().c_str()); } } else { TRACE("dropped WHOIS from %s(%s): missing or invalid address",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doRENDEZVOUS(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { /* * At the moment, we only obey RENDEZVOUS if it comes from a designated * supernode. If relay offloading is implemented to scale the net, this * will need reconsideration. * * The reason is that RENDEZVOUS could technically be used to cause a * peer to send a weird encrypted UDP packet to an arbitrary IP:port. * The sender of RENDEZVOUS has no control over the content of this * packet, but it's still maybe something we want to not allow just * anyone to order due to possible DDOS or network forensic implications. * So if we diversify relays, we'll need some way of deciding whether the * sender is someone we should trust with a RENDEZVOUS hint. */ if (_r->topology->isSupernode(source())) { Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); SharedPtr withPeer(_r->topology->getPeer(with)); if (withPeer) { unsigned int port = at(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT); unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN]; if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) { InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port); TRACE("RENDEZVOUS from %s says %s might be at %s, starting NAT-t",source().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str()); _r->sw->contact(withPeer,atAddr); } else { TRACE("dropped corrupt RENDEZVOUS from %s(%s) (bad address or port)",source().toString().c_str(),_remoteAddress.toString().c_str()); } } else { TRACE("ignored RENDEZVOUS from %s(%s) to meet unknown peer %s",source().toString().c_str(),_remoteAddress.toString().c_str(),with.toString().c_str()); } } else { TRACE("ignored RENDEZVOUS from %s(%s): source not supernode",source().toString().c_str(),_remoteAddress.toString().c_str()); } } catch (std::exception &ex) { TRACE("dropped RENDEZVOUS from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped RENDEZVOUS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doFRAME(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { SharedPtr network(_r->nc->network(at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID))); if (network) { if (network->isAllowed(source())) { unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE); if (network->permitsEtherType(etherType)) { network->tap().put(source().toMAC(),network->tap().mac(),etherType,data() + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD,size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD); } else if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) { TRACE("dropped FRAME from %s: ethernet type %u not allowed on network %.16llx",source().toString().c_str(),etherType,(unsigned long long)network->id()); } // Source moves "closer" to us in multicast propagation priority when // we receive unicast frames from it. This is called "implicit social // ordering" in other docs. _r->mc->bringCloser(network->id(),source()); } else { TRACE("dropped FRAME from %s(%s): not a member of closed network %llu",source().toString().c_str(),_remoteAddress.toString().c_str(),network->id()); Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_FRAME); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_NO_MEMBER_CERTIFICATE); outp.append(network->id()); outp.armor(peer->key(),true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); } } else { TRACE("dropped FRAME from %s(%s): network %llu unknown",source().toString().c_str(),_remoteAddress.toString().c_str(),at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)); } } catch (std::exception &ex) { TRACE("dropped FRAME from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped FRAME from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doPROXY_FRAME(const RuntimeEnvironment *_r,const SharedPtr &peer) { // TODO: bridging is not implemented yet return true; } bool PacketDecoder::_doMULTICAST_FRAME(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { Address origin(Address(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ORIGIN,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_ORIGIN),ZT_ADDRESS_LENGTH)); SharedPtr originPeer(_r->topology->getPeer(origin)); if (!originPeer) { // We must have the origin's identity in order to authenticate a multicast _r->sw->requestWhois(origin); _step = DECODE_WAITING_FOR_MULTICAST_FRAME_ORIGINAL_SENDER_LOOKUP; // causes processing to come back here return false; } // These fields change unsigned int depth = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_DEPTH); unsigned char *const fifo = field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_FIFO,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); unsigned char *const bloom = field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_BLOOM,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM); // These fields don't -- they're signed by the original sender // const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FLAGS]; const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID); const uint16_t bloomNonce = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_BLOOM_NONCE); const unsigned int prefixBits = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_PREFIX_BITS]; const unsigned int prefix = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_PREFIX]; const uint64_t guid = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_GUID); const MAC sourceMac(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_SOURCE_MAC)); const MulticastGroup dest(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_MAC,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_DEST_MAC)),at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_ADI)); const unsigned int etherType = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE); const unsigned int frameLen = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME_LEN); const unsigned char *const frame = field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME,frameLen); const unsigned int signatureLen = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME + frameLen); const unsigned char *const signature = field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME + frameLen + 2,signatureLen); const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + frameLen; if (!originPeer->identity().verify(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen,signature,signatureLen)) { TRACE("dropped MULTICAST_FRAME from %s(%s): failed signature verification, claims to be from %s",source().toString().c_str(),_remoteAddress.toString().c_str(),origin.toString().c_str()); return true; } #ifdef ZT_TRACE_MULTICAST char mct[256]; unsigned int startingFifoItems = 0; for(unsigned int i=0;itopology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),nwid,guid,origin.toString().c_str(),source().toString().c_str(),prefix,depth,frameLen,startingFifoItems); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif // Security check to prohibit multicasts that are really Ethernet unicasts if (!dest.mac().isMulticast()) { TRACE("dropped MULTICAST_FRAME from %s(%s): %s is not a multicast/broadcast address",source().toString().c_str(),_remoteAddress.toString().c_str(),dest.mac().toString().c_str()); return true; } bool rateLimitsExceeded = false; unsigned int maxDepth = ZT_MULTICAST_GLOBAL_MAX_DEPTH; if ((origin == _r->identity.address())||(_r->mc->deduplicate(nwid,guid))) { // Ordinary frames will drop duplicates. Supernodes keep propagating // them since they're used as hubs to link disparate clusters of // members of the same multicast group. if (!_r->topology->amSupernode()) { #ifdef ZT_TRACE_MULTICAST Utils::snprintf(mct,sizeof(mct),"%c %s dropped %.16llx: duplicate",(_r->topology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),guid); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif TRACE("dropped MULTICAST_FRAME from %s(%s): duplicate",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } } else { // Supernodes however won't do this more than once. If the supernode // does happen to be a member of the network -- which is usually not // true -- we don't want to see a ton of copies of the same frame on // its tap device. Also double or triple counting bandwidth metrics // for the same frame would not be fair. SharedPtr network(_r->nc->network(nwid)); if (network) { maxDepth = std::min((unsigned int)ZT_MULTICAST_GLOBAL_MAX_DEPTH,network->multicastDepth()); if (!network->isAllowed(origin)) { TRACE("didn't inject MULTICAST_FRAME from %s(%s) into %.16llx: sender %s not allowed or we don't have a certificate",source().toString().c_str(),nwid,_remoteAddress.toString().c_str(),origin.toString().c_str()); Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_FRAME); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_NO_MEMBER_CERTIFICATE); outp.append(nwid); outp.armor(peer->key(),true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); // We do not terminate here, since if the member just has an out of // date cert or hasn't sent us a cert yet we still want to propagate // the message so multicast works. } else if ((!network->permitsBridging())&&(!origin.wouldHaveMac(sourceMac))) { TRACE("didn't inject MULTICAST_FRAME from %s(%s) into %.16llx: source mac %s doesn't belong to %s, and bridging is not supported on network",source().toString().c_str(),nwid,_remoteAddress.toString().c_str(),sourceMac.toString().c_str(),origin.toString().c_str()); } else if (!network->permitsEtherType(etherType)) { TRACE("didn't inject MULTICAST_FRAME from %s(%s) into %.16llx: ethertype %u is not allowed",source().toString().c_str(),nwid,_remoteAddress.toString().c_str(),etherType); } else if (!network->updateAndCheckMulticastBalance(origin,dest,frameLen)) { rateLimitsExceeded = true; } else { network->tap().put(sourceMac,dest.mac(),etherType,frame,frameLen); } } } // We can only really know if rate limit was exceeded if we're a member of // this network. This will nearly always be true for anyone getting a // multicast except supernodes, so the net effect will be to truncate // multicast propagation if the rate limit is exceeded. if (rateLimitsExceeded) { #ifdef ZT_TRACE_MULTICAST Utils::snprintf(mct,sizeof(mct),"%c %s dropped %.16llx: rate limits exceeded",(_r->topology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),guid); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif TRACE("dropped MULTICAST_FRAME from %s(%s): rate limits exceeded for sender %s",source().toString().c_str(),_remoteAddress.toString().c_str(),origin.toString().c_str()); return true; } if (depth == 0xffff) { #ifdef ZT_TRACE_MULTICAST Utils::snprintf(mct,sizeof(mct),"%c %s not forwarding %.16llx: depth == 0xffff (do not forward)",(_r->topology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),guid); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif TRACE("not forwarding MULTICAST_FRAME from %s(%s): depth == 0xffff (do not forward)",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } if (++depth > maxDepth) { #ifdef ZT_TRACE_MULTICAST Utils::snprintf(mct,sizeof(mct),"%c %s not forwarding %.16llx: max propagation depth reached",(_r->topology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),guid); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif TRACE("not forwarding MULTICAST_FRAME from %s(%s): max propagation depth reached",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } setAt(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PROPAGATION_DEPTH,(uint16_t)depth); // New FIFO with room for one extra, since head will be next hop unsigned char newFifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH]; unsigned char *newFifoPtr = newFifo; unsigned char *const newFifoEnd = newFifo + sizeof(newFifo); // Copy old FIFO into new buffer, terminating at first NULL address for(unsigned char *f=fifo,*const fifoEnd=(fifo + ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO);f!=fifoEnd;) { unsigned char *nf = newFifoPtr; unsigned char *e = nf + ZT_ADDRESS_LENGTH; unsigned char *ftmp = f; unsigned char zeroCheckMask = 0; while (nf != e) zeroCheckMask |= (*(nf++) = *(ftmp++)); if (zeroCheckMask) { f = ftmp; newFifoPtr = nf; } else break; } // Add any next hops we know about to FIFO #ifdef ZT_TRACE_MULTICAST unsigned char *beforeAdd = newFifoPtr; #endif _r->mc->getNextHops(nwid,dest,Multicaster::AddToPropagationQueue(&newFifoPtr,newFifoEnd,bloom,bloomNonce,origin,prefixBits,prefix)); #ifdef ZT_TRACE_MULTICAST unsigned int numAdded = (unsigned int)(newFifoPtr - beforeAdd) / ZT_ADDRESS_LENGTH; #endif // Zero-terminate new FIFO if not completely full while (newFifoPtr != newFifoEnd) *(newFifoPtr++) = (unsigned char)0; // First element in newFifo[] is next hop Address nextHop(newFifo,ZT_ADDRESS_LENGTH); if ((!nextHop)&&(!_r->topology->amSupernode())) { SharedPtr supernode(_r->topology->getBestSupernode(&origin,1,true)); if (supernode) nextHop = supernode->address(); } if ((!nextHop)||(nextHop == _r->identity.address())) { // check against our addr is a sanity check #ifdef ZT_TRACE_MULTICAST Utils::snprintf(mct,sizeof(mct),"%c %s not forwarding %.16llx: no next hop",(_r->topology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),guid); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif //TRACE("not forwarding MULTICAST_FRAME from %s(%s): no next hop",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } // The rest of newFifo[] goes back into the packet memcpy(fifo,newFifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); #ifdef ZT_TRACE_MULTICAST Utils::snprintf(mct,sizeof(mct),"%c %s -> %.16llx %.16llx %s to next hop %s +fifo:%u",(_r->topology->amSupernode() ? 'S' : '-'),_r->identity.address().toString().c_str(),nwid,guid,origin.toString().c_str(),nextHop.toString().c_str(),numAdded); _r->demarc->send(Demarc::ANY_PORT,ZT_DEFAULTS.multicastTraceWatcher,mct,strlen(mct),-1); #endif // Send to next hop, reusing this packet as scratch space newInitializationVector(); setDestination(nextHop); setSource(_r->identity.address()); compress(); // note: bloom filters and empty FIFOs are highly compressable! _r->sw->send(*this,true); return true; } catch (std::exception &ex) { TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doMULTICAST_LIKE(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; if (ptr >= size()) return true; uint64_t now = Utils::now(); Address src(source()); // Iterate through 18-byte network,MAC,ADI tuples for(;;) { _r->mc->likesGroup(at(ptr),src,MulticastGroup(MAC(field(ptr + 8,6)),at(ptr + 14)),now); if ((ptr += 18) >= size()) break; } } catch (std::exception &ex) { TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doNETWORK_MEMBERSHIP_CERTIFICATE(const RuntimeEnvironment *_r,const SharedPtr &peer) { // TODO: not implemented yet, will be needed for private networks. return true; } bool PacketDecoder::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID); #ifndef __WINDOWS__ if (_r->netconfService) { char tmp[128]; unsigned int dictLen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN); Dictionary request; if (dictLen) request["meta"] = std::string((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,dictLen),dictLen); request["type"] = "netconf-request"; request["peerId"] = peer->identity().toString(false); Utils::snprintf(tmp,sizeof(tmp),"%llx",(unsigned long long)nwid); request["nwid"] = tmp; Utils::snprintf(tmp,sizeof(tmp),"%llx",(unsigned long long)packetId()); request["requestId"] = tmp; //TRACE("to netconf:\n%s",request.toString().c_str()); _r->netconfService->send(request); } else { #endif // !__WINDOWS__ Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION); outp.append(nwid); outp.armor(peer->key(),true); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); #ifndef __WINDOWS__ } #endif // !__WINDOWS__ } catch (std::exception &exc) { TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what()); } catch ( ... ) { TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doNETWORK_CONFIG_REFRESH(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REFRESH_IDX_NETWORK_ID); SharedPtr nw(_r->nc->network(nwid)); if ((nw)&&(source() == nw->controller())) // only respond to requests from controller nw->requestConfiguration(); } catch (std::exception &exc) { TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what()); } catch ( ... ) { TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } } // namespace ZeroTier