/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #ifdef ZT_ENABLE_NETCON #include #include #include //#include #include "NetconEthernetTap.hpp" #include "../node/Utils.hpp" #include "../osdep/OSUtils.hpp" #include "../osdep/Phy.hpp" #include "lwip/tcp_impl.h" #include "netif/etharp.h" #include "lwip/ip.h" #include "lwip/ip_addr.h" #include "lwip/ip_frag.h" #include "lwip/tcp.h" #include "LWIPStack.hpp" #include "NetconService.hpp" #include "Intercept.h" #include "NetconUtilities.hpp" #define APPLICATION_POLL_FREQ 1 namespace ZeroTier { NetconEthernetTap::NetconEthernetTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int), void *arg) : _phy(this,false,true), _unixListenSocket((PhySocket *)0), _handler(handler), _arg(arg), _nwid(nwid), _mac(mac), _homePath(homePath), _mtu(mtu), _enabled(true), _run(true) { char sockPath[4096]; Utils::snprintf(sockPath,sizeof(sockPath),"/tmp/.ztnc_%.16llx",(unsigned long long)nwid); _dev = sockPath; lwipstack = new LWIPStack("ext/bin/lwip/liblwip.so"); // ext/bin/liblwip.so.debug for debug symbols if(!lwipstack) // TODO double check this check throw std::runtime_error("unable to load lwip lib."); lwipstack->lwip_init(); _unixListenSocket = _phy.unixListen(sockPath,(void *)this); if (!_unixListenSocket) throw std::runtime_error(std::string("unable to bind to ")+sockPath); _thread = Thread::start(this); } NetconEthernetTap::~NetconEthernetTap() { _run = false; _phy.whack(); _phy.whack(); Thread::join(_thread); _phy.close(_unixListenSocket,false); delete lwipstack; } void NetconEthernetTap::setEnabled(bool en) { _enabled = en; } bool NetconEthernetTap::enabled() const { return _enabled; } bool NetconEthernetTap::addIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) { _ips.push_back(ip); std::sort(_ips.begin(),_ips.end()); if (ip.isV4()) { // Set IP static ip_addr_t ipaddr, netmask, gw; IP4_ADDR(&gw,192,168,0,1); ipaddr.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); // Set up the lwip-netif for LWIP's sake lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input); interface.state = this; interface.output = lwipstack->_etharp_output; _mac.copyTo(interface.hwaddr, 6); interface.mtu = _mtu; interface.name[0] = 't'; interface.name[1] = 'p'; interface.linkoutput = low_level_output; interface.hwaddr_len = 6; interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP; lwipstack->netif_set_default(&interface); lwipstack->netif_set_up(&interface); } } return true; } bool NetconEthernetTap::removeIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip)); if (i == _ips.end()) return false; _ips.erase(i); if (ip.isV4()) { // TODO: dealloc from LWIP } return true; } std::vector NetconEthernetTap::ips() const { Mutex::Lock _l(_ips_m); return _ips; } void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { struct pbuf *p,*q; //fprintf(stderr, "_put(%s,%s,%.4x,[data],%u)\n",from.toString().c_str(),to.toString().c_str(),etherType,len); if (!_enabled) return; //printf(">> %.4x %s\n",etherType,Utils::hex(data,len).c_str()); struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); // We allocate a pbuf chain of pbufs from the pool. p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL); if (p != NULL) { const char *dataptr = reinterpret_cast(data); // First pbuf gets ethernet header at start q = p; if (q->len < sizeof(ethhdr)) { fprintf(stderr,"_put(): Dropped packet: first pbuf smaller than ethernet header\n"); return; } memcpy(q->payload,ðhdr,sizeof(ethhdr)); memcpy(q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr)); dataptr += q->len - sizeof(ethhdr); // Remaining pbufs (if any) get rest of data while ((q = q->next)) { memcpy(q->payload,dataptr,q->len); dataptr += q->len; } } else { fprintf(stderr, "_put(): Dropped packet: no pbufs available\n"); return; } //printf("p->len == %u, p->payload == %s\n",p->len,Utils::hex(p->payload,p->len).c_str()); { Mutex::Lock _l2(lwipstack->_lock); if(interface.input(p, &interface) != ERR_OK) { fprintf(stderr, "_put(): Error while RXing packet (netif->input)\n"); } } } std::string NetconEthernetTap::deviceName() const { return _dev; } void NetconEthernetTap::setFriendlyName(const char *friendlyName) { } void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed) { std::vector newGroups; Mutex::Lock _l(_multicastGroups_m); // TODO: get multicast subscriptions from LWIP std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } TcpConnection *NetconEthernetTap::getConnectionByPCB(struct tcp_pcb *pcb) { for(size_t i=0; ipcb == pcb) return tcp_connections[i]; } return NULL; } TcpConnection *NetconEthernetTap::getConnectionByTheirFD(int fd) { for(size_t i=0; iperceived_fd == fd) return tcp_connections[i]; } return NULL; } /* * Closes a TcpConnection and associated LWIP PCB strcuture. */ void NetconEthernetTap::closeConnection(TcpConnection *conn) { //fprintf(stderr, "closeConnection(): closing: conn->type = %d, fd=%d\n", conn->type, _phy.getDescriptor(conn->sock)); lwipstack->_tcp_arg(conn->pcb, NULL); lwipstack->_tcp_sent(conn->pcb, NULL); lwipstack->_tcp_recv(conn->pcb, NULL); lwipstack->_tcp_err(conn->pcb, NULL); lwipstack->_tcp_poll(conn->pcb, NULL, 0); lwipstack->_tcp_close(conn->pcb); close(_phy.getDescriptor(conn->dataSock)); close(conn->their_fd); _phy.close(conn->dataSock); for(int i=0; i= ZT_LWIP_TCP_TIMER_INTERVAL) { prev_tcp_time = now; lwipstack->tcp_tmr(); } else { tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp; } if (since_etharp >= ARP_TMR_INTERVAL) { prev_etharp_time = now; lwipstack->etharp_tmr(); } else { etharp_remaining = ARP_TMR_INTERVAL - since_etharp; } _phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining)); } //closeAllClients(); // TODO: cleanup -- destroy LWIP state, kill any clients, unload .so, etc. } void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) { //fprintf(stderr, "phyOnUnixClose() CLOSING: %d\n", _phy.getDescriptor(sock)); //closeClient(sock); // FIXME: } /* * Handles data on a client's data buffer. Data is sent to LWIP to be enqueued. */ void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) { if(readable) { int r; TcpConnection *conn = (TcpConnection*)*uptr; if(conn->idx < DEFAULT_READ_BUFFER_SIZE) { int read_fd = _phy.getDescriptor(sock); if((r = read(read_fd, (&conn->buf)+conn->idx, DEFAULT_READ_BUFFER_SIZE-(conn->idx))) > 0) { conn->idx += r; Mutex::Lock _l(lwipstack->_lock); handle_write(conn); } } } } // Unused -- no UDP or TCP from this thread/Phy<> void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {} void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {} void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {} void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {} void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {} /* * Creates a new NetconClient for the accepted RPC connection (unix domain socket) * * Subsequent socket connections from this client will be associated with this * NetconClient object. */ void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) { //fprintf(stderr, "phyOnUnixAccept() NEW CLIENT RPC: %d\n", _phy.getDescriptor(sockN)); rpc_sockets.push_back(sockN); } /* * Processes incoming data on a client-specific RPC connection */ void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) { unsigned char *buf = (unsigned char*)data; switch(buf[0]) { case RPC_SOCKET: fprintf(stderr, "RPC_SOCKET\n"); struct socket_st socket_rpc; memcpy(&socket_rpc, &buf[1], sizeof(struct socket_st)); handle_socket(sock, uptr, &socket_rpc); break; case RPC_LISTEN: fprintf(stderr, "RPC_LISTEN\n"); struct listen_st listen_rpc; memcpy(&listen_rpc, &buf[1], sizeof(struct listen_st)); handle_listen(sock, uptr, &listen_rpc); break; case RPC_BIND: fprintf(stderr, "RPC_BIND\n"); struct bind_st bind_rpc; memcpy(&bind_rpc, &buf[1], sizeof(struct bind_st)); handle_bind(sock, uptr, &bind_rpc); break; case RPC_KILL_INTERCEPT: fprintf(stderr, "RPC_KILL_INTERCEPT\n"); //scloseClient(sock); break; case RPC_CONNECT: fprintf(stderr, "RPC_CONNECT\n"); struct connect_st connect_rpc; memcpy(&connect_rpc, &buf[1], sizeof(struct connect_st)); handle_connect(sock, uptr, &connect_rpc); break; case RPC_FD_MAP_COMPLETION: fprintf(stderr, "RPC_FD_MAP_COMPLETION\n"); handle_retval(sock, uptr, buf); break; default: break; } } /* * Send a return value to the client for an RPC */ int NetconEthernetTap::send_return_value(TcpConnection *conn, int retval) { char retmsg[4]; memset(&retmsg, '\0', sizeof(retmsg)); retmsg[0]=RPC_RETVAL; memcpy(&retmsg[1], &retval, sizeof(retval)); int n = write(_phy.getDescriptor(conn->rpcSock), &retmsg, sizeof(retmsg)); if(n > 0) { // signal that we've satisfied this requirement conn->pending = false; } else { fprintf(stderr, "unable to send return value to the intercept\n"); closeConnection(conn); } return n; } /*------------------------------------------------------------------------------ --------------------------------- LWIP callbacks ------------------------------- ------------------------------------------------------------------------------*/ // NOTE: these are called from within LWIP, meaning that lwipstack->_lock is ALREADY // locked in this case! /* * Callback from LWIP to do whatever work we might need to do. * * @param associated service state object * @param PCB we're polling on * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *tpcb) { //fprintf(stderr, "nc_poll\n"); Larg *l = (Larg*)arg; TcpConnection *conn = l->conn; NetconEthernetTap *tap = l->tap; if(conn && conn->idx) // if valid connection and non-zero index (indicating data present) tap->handle_write(conn); return ERR_OK; } /* * Callback from LWIP for when a connection has been accepted and the PCB has been * put into an ACCEPT state. * * A socketpair is created, one end is kept and wrapped into a PhySocket object * for use in the main ZT I/O loop, and one end is sent to the client. The client * is then required to tell the service what new file descriptor it has allocated * for this connection. After the mapping is complete, the accepted socket can be * used. * * @param associated service state object * @param newly allocated PCB * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newpcb, err_t err) { fprintf(stderr, "nc_accept()\n"); Larg *l = (Larg*)arg; TcpConnection *conn = l->conn; NetconEthernetTap *tap = l->tap; int larg_fd = tap->_phy.getDescriptor(conn->dataSock); if(conn) { ZT_PHY_SOCKFD_TYPE fds[2]; socketpair(PF_LOCAL, SOCK_STREAM, 0, fds); TcpConnection *new_tcp_conn = new TcpConnection(); new_tcp_conn->dataSock = tap->_phy.wrapSocket(fds[0], new_tcp_conn); new_tcp_conn->rpcSock = conn->rpcSock; new_tcp_conn->pcb = newpcb; new_tcp_conn->their_fd = fds[1]; tap->tcp_connections.push_back(new_tcp_conn); int send_fd = tap->_phy.getDescriptor(conn->rpcSock); int n = write(larg_fd, "z", 1); if(n > 0) { if(sock_fd_write(send_fd, fds[1]) > 0) { new_tcp_conn->pending = true; fprintf(stderr, "nc_accept(): socketpair = { our=%d, their=%d}\n", fds[0], fds[1]); } else { fprintf(stderr, "nc_accept(%d): unable to send fd to client\n", larg_fd); } } else { fprintf(stderr, "nc_accept(%d): error writing signal byte (send_fd = %d, perceived_fd = %d)\n", larg_fd, send_fd, fds[1]); return -1; } tap->lwipstack->_tcp_arg(newpcb, new Larg(tap, new_tcp_conn)); tap->lwipstack->_tcp_recv(newpcb, nc_recved); tap->lwipstack->_tcp_err(newpcb, nc_err); tap->lwipstack->_tcp_sent(newpcb, nc_sent); tap->lwipstack->_tcp_poll(newpcb, nc_poll, 1); tcp_accepted(conn->pcb); return ERR_OK; } else { fprintf(stderr, "nc_accept(%d): can't locate Connection object for PCB.\n", larg_fd); } return -1; } /* * Callback from LWIP for when data is available to be read from the network. * * Data is in the form of a linked list of struct pbufs, it is then recombined and * send to the client over the associated unix socket. * * @param associated service state object * @param allocated PCB * @param chain of pbufs * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err) { fprintf(stderr, "nc_recved()\n"); Larg *l = (Larg*)arg; int n; struct pbuf* q = p; if(!l->conn) { fprintf(stderr, "nc_recved(): no connection object\n"); return ERR_OK; // ? } if(p == NULL) { if(l->conn) { fprintf(stderr, "nc_recved(): closing connection\n"); l->tap->closeConnection(l->conn); } else { fprintf(stderr, "nc_recved(): can't locate connection via (arg)\n"); } return err; } q = p; while(p != NULL) { // Cycle through pbufs and write them to the socket if(p->len <= 0) break; // ? if((n = l->tap->_phy.streamSend(l->conn->dataSock,p->payload, p->len)) > 0) { if(n < p->len) { fprintf(stderr, "nc_recved(): unable to write entire pbuf to buffer\n"); } l->tap->lwipstack->_tcp_recved(tpcb, n); // TODO: would it be more efficient to call this once at the end? } else { fprintf(stderr, "nc_recved(): No data written to intercept buffer\n"); } p = p->next; } l->tap->lwipstack->_pbuf_free(q); // free pbufs return ERR_OK; } /* * Callback from LWIP when an internal error is associtated with the given (arg) * * Since the PCB related to this error might no longer exist, only its perviously * associated (arg) is provided to us. * * @param associated service state object * @param error code * */ void NetconEthernetTap::nc_err(void *arg, err_t err) { fprintf(stderr, "nc_err\n"); Larg *l = (Larg*)arg; if(l->conn) { l->tap->closeConnection(l->conn); } else { fprintf(stderr, "nc_err(): can't locate connection object for PCB\n"); } } /* * Callback from LWIP * * This could be used to track the amount of data sent by a connection. * * @param associated service state object * @param relevant PCB * @param length of data sent * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *tpcb, u16_t len) { fprintf(stderr, "nc_sent\n"); return ERR_OK; } /* * Callback from LWIP which sends a return value to the client to signal that * a connection was established for this PCB * * @param associated service state object * @param relevant PCB * @param error code * @return ERR_OK if everything is ok, -1 otherwise * */ err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *tpcb, err_t err) { fprintf(stderr, "nc_connected\n"); Larg *l = (Larg*)arg; l->tap->send_return_value(l->conn, err); return ERR_OK; } /*------------------------------------------------------------------------------ ----------------------------- RPC Handler functions ---------------------------- ------------------------------------------------------------------------------*/ /* * Handles an RPC to bind an LWIP PCB to a given address and port * * @param Client that is making the RPC * @param structure containing the data and parameters for this client's RPC * */ void NetconEthernetTap::handle_bind(PhySocket *sock, void **uptr, struct bind_st *bind_rpc) { struct sockaddr_in *connaddr; connaddr = (struct sockaddr_in *) &bind_rpc->addr; int conn_port = lwipstack->ntohs(connaddr->sin_port); ip_addr_t conn_addr; conn_addr.addr = *((u32_t *)_ips[0].rawIpData()); TcpConnection *conn = getConnectionByTheirFD(bind_rpc->sockfd); if(conn) { if(conn->pcb->state == CLOSED){ int err = lwipstack->tcp_bind(conn->pcb, &conn_addr, conn_port); if(err != ERR_OK) { int ip = connaddr->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; fprintf(stderr, "handle_bind(): error binding to %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], conn_port); } } else fprintf(stderr, "handle_bind(): PCB not in CLOSED state. Ignoring BIND request.\n"); } else fprintf(stderr, "handle_bind(): can't locate connection for PCB\n"); } /* * Handles an RPC to put an LWIP PCB into LISTEN mode * * @param Client that is making the RPC * @param structure containing the data and parameters for this client's RPC * */ void NetconEthernetTap::handle_listen(PhySocket *sock, void **uptr, struct listen_st *listen_rpc) { TcpConnection *conn = getConnectionByTheirFD(listen_rpc->sockfd); if(conn) { if(conn->pcb->state == LISTEN) { fprintf(stderr, "handle_listen(): PCB is already in listening state.\n"); return; } struct tcp_pcb* listening_pcb = lwipstack->tcp_listen(conn->pcb); if(listening_pcb != NULL) { conn->pcb = listening_pcb; lwipstack->tcp_accept(listening_pcb, nc_accept); lwipstack->tcp_arg(listening_pcb, new Larg(this, conn)); /* we need to wait for the client to send us the fd allocated on their end for this listening socket */ conn->pending = true; } else { fprintf(stderr, "handle_listen(): unable to allocate memory for new listening PCB\n"); } } else { fprintf(stderr, "handle_listen(): can't locate connection for PCB\n"); } } /** * Handles a return value (client's perceived fd) and completes a mapping * so that we know what connection an RPC call should be associated with. * * @param Client that is making the RPC * @param structure containing the data and parameters for this client's RPC * */ void NetconEthernetTap::handle_retval(PhySocket *sock, void **uptr, unsigned char* buf) { TcpConnection *conn = (TcpConnection*)*uptr; if(conn->pending) { memcpy(&(conn->perceived_fd), &buf[1], sizeof(int)); fprintf(stderr, "handle_retval(): Mapping [our=%d -> their=%d]\n", _phy.getDescriptor(conn->dataSock), conn->perceived_fd); conn->pending = false; } } /* * Handles an RPC to create a socket (LWIP PCB and associated socketpair) * * A socketpair is created, one end is kept and wrapped into a PhySocket object * for use in the main ZT I/O loop, and one end is sent to the client. The client * is then required to tell the service what new file descriptor it has allocated * for this connection. After the mapping is complete, the socket can be used. * * @param Client that is making the RPC * @param structure containing the data and parameters for this client's RPC * */ void NetconEthernetTap::handle_socket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { struct tcp_pcb *newpcb = lwipstack->tcp_new(); if(newpcb != NULL) { ZT_PHY_SOCKFD_TYPE fds[2]; socketpair(PF_LOCAL, SOCK_STREAM, 0, fds); TcpConnection *new_conn = new TcpConnection(); new_conn->dataSock = _phy.wrapSocket(fds[0], new_conn); *uptr = new_conn; new_conn->rpcSock = sock; new_conn->pcb = newpcb; new_conn->their_fd = fds[1]; tcp_connections.push_back(new_conn); sock_fd_write(_phy.getDescriptor(sock), fds[1]); fprintf(stderr, "handle_socket(): socketpair = { our=%d, their=%d}\n", fds[0], fds[1]); /* Once the client tells us what its fd is for the other end, we can then complete the mapping */ new_conn->pending = true; } else { fprintf(stderr, "handle_socket(): Memory not available for new PCB\n"); } } /* * Handles an RPC to connect to a given address and port * * @param Client that is making the RPC * @param structure containing the data and parameters for this client's RPC * */ void NetconEthernetTap::handle_connect(PhySocket *sock, void **uptr, struct connect_st* connect_rpc) { TcpConnection *conn = (TcpConnection*)*uptr; struct sockaddr_in *connaddr; connaddr = (struct sockaddr_in *) &connect_rpc->__addr; int conn_port = lwipstack->ntohs(connaddr->sin_port); ip_addr_t conn_addr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr); if(conn != NULL) { lwipstack->tcp_sent(conn->pcb, nc_sent); // FIXME: Move? lwipstack->tcp_recv(conn->pcb, nc_recved); lwipstack->tcp_err(conn->pcb, nc_err); lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ); lwipstack->tcp_arg(conn->pcb, new Larg(this, conn)); int err = 0; if((err = lwipstack->tcp_connect(conn->pcb,&conn_addr,conn_port, nc_connected)) < 0) { fprintf(stderr, "handle_connect(): unable to connect\n"); // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! send_return_value(conn, err); } // Everything seems to be ok, but we don't have enough info to retval conn->pending=true; } else { fprintf(stderr, "could not locate PCB based on their fd\n"); } } /* * Writes data pulled from the client's socket buffer to LWIP. This merely sends the * data to LWIP to be enqueued and eventually sent to the network. * * * @param Client that is making the RPC * @param structure containing the data and parameters for this client's RPC * * TODO: Optimize write logic (should we stop using poll?) */ void NetconEthernetTap::handle_write(TcpConnection *conn) { if(conn) { int sndbuf = conn->pcb->snd_buf; float avail = (float)sndbuf; float max = (float)TCP_SND_BUF; float load = 1.0 - (avail / max); if(load >= 0.9) { return; } int sz, write_allowance = sndbuf < conn->idx ? sndbuf : conn->idx; if(write_allowance > 0) { // NOTE: this assumes that lwipstack->_lock is locked, either // because we are in a callback or have locked it manually. int err = lwipstack->_tcp_write(conn->pcb, &conn->buf, write_allowance, TCP_WRITE_FLAG_COPY); if(err != ERR_OK) { fprintf(stderr, "handle_write(): error while writing to PCB\n"); return; } else { sz = (conn->idx)-write_allowance; if(sz) { memmove(&conn->buf, (conn->buf+write_allowance), sz); } conn->idx -= write_allowance; return; } } else { fprintf(stderr, "handle_write(): LWIP stack full\n"); return; } } else { fprintf(stderr, "handle_write(): could not locate connection for this fd\n"); } } } // namespace ZeroTier #endif // ZT_ENABLE_NETCON