/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include "../version.h" #include "Constants.hpp" #include "Node.hpp" #include "RuntimeEnvironment.hpp" #include "NetworkController.hpp" #include "Switch.hpp" #include "Multicaster.hpp" #include "AntiRecursion.hpp" #include "Topology.hpp" #include "Buffer.hpp" #include "Packet.hpp" #include "Address.hpp" #include "Identity.hpp" #include "SelfAwareness.hpp" #include "Cluster.hpp" #include "DeferredPackets.hpp" const struct sockaddr_storage ZT_SOCKADDR_NULL = {0}; namespace ZeroTier { /****************************************************************************/ /* Public Node interface (C++, exposed via CAPI bindings) */ /****************************************************************************/ Node::Node( uint64_t now, void *uptr, ZT_DataStoreGetFunction dataStoreGetFunction, ZT_DataStorePutFunction dataStorePutFunction, ZT_WirePacketSendFunction wirePacketSendFunction, ZT_VirtualNetworkFrameFunction virtualNetworkFrameFunction, ZT_VirtualNetworkConfigFunction virtualNetworkConfigFunction, ZT_EventCallback eventCallback) : _RR(this), RR(&_RR), _uPtr(uptr), _dataStoreGetFunction(dataStoreGetFunction), _dataStorePutFunction(dataStorePutFunction), _wirePacketSendFunction(wirePacketSendFunction), _virtualNetworkFrameFunction(virtualNetworkFrameFunction), _virtualNetworkConfigFunction(virtualNetworkConfigFunction), _eventCallback(eventCallback), _networks(), _networks_m(), _prngStreamPtr(0), _now(now), _lastPingCheck(0), _lastHousekeepingRun(0) { _online = false; // Use Salsa20 alone as a high-quality non-crypto PRNG { char foo[32]; Utils::getSecureRandom(foo,32); _prng.init(foo,256,foo); memset(_prngStream,0,sizeof(_prngStream)); _prng.encrypt12(_prngStream,_prngStream,sizeof(_prngStream)); } std::string idtmp(dataStoreGet("identity.secret")); if ((!idtmp.length())||(!RR->identity.fromString(idtmp))||(!RR->identity.hasPrivate())) { TRACE("identity.secret not found, generating..."); RR->identity.generate(); idtmp = RR->identity.toString(true); if (!dataStorePut("identity.secret",idtmp,true)) throw std::runtime_error("unable to write identity.secret"); } RR->publicIdentityStr = RR->identity.toString(false); RR->secretIdentityStr = RR->identity.toString(true); idtmp = dataStoreGet("identity.public"); if (idtmp != RR->publicIdentityStr) { if (!dataStorePut("identity.public",RR->publicIdentityStr,false)) throw std::runtime_error("unable to write identity.public"); } try { RR->sw = new Switch(RR); RR->mc = new Multicaster(RR); RR->antiRec = new AntiRecursion(); RR->topology = new Topology(RR); RR->sa = new SelfAwareness(RR); RR->dp = new DeferredPackets(RR); } catch ( ... ) { delete RR->dp; delete RR->sa; delete RR->topology; delete RR->antiRec; delete RR->mc; delete RR->sw; throw; } postEvent(ZT_EVENT_UP); } Node::~Node() { Mutex::Lock _l(_networks_m); _networks.clear(); // ensure that networks are destroyed before shutdow RR->dpEnabled = 0; delete RR->dp; delete RR->sa; delete RR->topology; delete RR->antiRec; delete RR->mc; delete RR->sw; #ifdef ZT_ENABLE_CLUSTER delete RR->cluster; #endif } ZT_ResultCode Node::processWirePacket( uint64_t now, const struct sockaddr_storage *localAddress, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile uint64_t *nextBackgroundTaskDeadline) { _now = now; RR->sw->onRemotePacket(*(reinterpret_cast(localAddress)),*(reinterpret_cast(remoteAddress)),packetData,packetLength); return ZT_RESULT_OK; } ZT_ResultCode Node::processVirtualNetworkFrame( uint64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile uint64_t *nextBackgroundTaskDeadline) { _now = now; SharedPtr nw(this->network(nwid)); if (nw) { RR->sw->onLocalEthernet(nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } class _PingPeersThatNeedPing { public: _PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now,const std::vector< std::pair > &relays) : lastReceiveFromUpstream(0), RR(renv), _now(now), _relays(relays), _world(RR->topology->world()) { } uint64_t lastReceiveFromUpstream; // tracks last time we got a packet from an 'upstream' peer like a root or a relay inline void operator()(Topology &t,const SharedPtr &p) { bool upstream = false; InetAddress stableEndpoint4,stableEndpoint6; // If this is a world root, pick (if possible) both an IPv4 and an IPv6 stable endpoint to use if link isn't currently alive. for(std::vector::const_iterator r(_world.roots().begin());r!=_world.roots().end();++r) { if (r->identity.address() == p->address()) { upstream = true; for(unsigned long k=0,ptr=RR->node->prng();kstableEndpoints.size();++k) { const InetAddress &addr = r->stableEndpoints[ptr++ % r->stableEndpoints.size()]; if (!stableEndpoint4) { if (addr.ss_family == AF_INET) stableEndpoint4 = addr; } if (!stableEndpoint6) { if (addr.ss_family == AF_INET6) stableEndpoint6 = addr; } } break; } } if (!upstream) { // If I am a root server, only ping other root servers -- roots don't ping "down" // since that would just be a waste of bandwidth and could potentially cause route // flapping in Cluster mode. if (RR->topology->amRoot()) return; // Check for network preferred relays, also considered 'upstream' and thus always // pinged to keep links up. If they have stable addresses we will try them there. for(std::vector< std::pair >::const_iterator r(_relays.begin());r!=_relays.end();++r) { if (r->first == p->address()) { if (r->second.ss_family == AF_INET) stableEndpoint4 = r->second; else if (r->second.ss_family == AF_INET6) stableEndpoint6 = r->second; upstream = true; break; } } } if (upstream) { // "Upstream" devices are roots and relays and get special treatment -- they stay alive // forever and we try to keep (if available) both IPv4 and IPv6 channels open to them. bool needToContactIndirect = true; if (p->doPingAndKeepalive(RR,_now,AF_INET)) { needToContactIndirect = false; } else { if (stableEndpoint4) { needToContactIndirect = false; p->sendHELLO(RR,InetAddress(),stableEndpoint4,_now); } } if (p->doPingAndKeepalive(RR,_now,AF_INET6)) { needToContactIndirect = false; } else { if (stableEndpoint6) { needToContactIndirect = false; p->sendHELLO(RR,InetAddress(),stableEndpoint6,_now); } } if (needToContactIndirect) { // If this is an upstream and we have no stable endpoint for either IPv4 or IPv6, // send a NOP indirectly if possible to see if we can get to this peer in any // way whatsoever. This will e.g. find network preferred relays that lack // stable endpoints by using root servers. Packet outp(p->address(),RR->identity.address(),Packet::VERB_NOP); RR->sw->send(outp,true,0); } lastReceiveFromUpstream = std::max(p->lastReceive(),lastReceiveFromUpstream); } else if (p->activelyTransferringFrames(_now)) { // Normal nodes get their preferred link kept alive if the node has generated frame traffic recently p->doPingAndKeepalive(RR,_now,0); } } private: const RuntimeEnvironment *RR; uint64_t _now; const std::vector< std::pair > &_relays; World _world; }; ZT_ResultCode Node::processBackgroundTasks(uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline) { _now = now; Mutex::Lock bl(_backgroundTasksLock); unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL; const uint64_t timeSinceLastPingCheck = now - _lastPingCheck; if (timeSinceLastPingCheck >= ZT_PING_CHECK_INVERVAL) { try { _lastPingCheck = now; // Get relays and networks that need config without leaving the mutex locked std::vector< std::pair > networkRelays; std::vector< SharedPtr > needConfig; { Mutex::Lock _l(_networks_m); for(std::vector< std::pair< uint64_t,SharedPtr > >::const_iterator n(_networks.begin());n!=_networks.end();++n) { SharedPtr nc(n->second->config2()); if (((now - n->second->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!nc)) needConfig.push_back(n->second); if (nc) networkRelays.insert(networkRelays.end(),nc->relays().begin(),nc->relays().end()); } } // Request updated configuration for networks that need it for(std::vector< SharedPtr >::const_iterator n(needConfig.begin());n!=needConfig.end();++n) (*n)->requestConfiguration(); // Do pings and keepalives _PingPeersThatNeedPing pfunc(RR,now,networkRelays); RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc); // Update online status, post status change as event const bool oldOnline = _online; _online = (((now - pfunc.lastReceiveFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amRoot())); if (oldOnline != _online) postEvent(_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } else { timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck; } if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) { try { _lastHousekeepingRun = now; RR->topology->clean(now); RR->sa->clean(now); RR->mc->clean(now); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } try { #ifdef ZT_ENABLE_CLUSTER // If clustering is enabled we have to call cluster->doPeriodicTasks() very often, so we override normal timer deadline behavior if (RR->cluster) { RR->sw->doTimerTasks(now); RR->cluster->doPeriodicTasks(); *nextBackgroundTaskDeadline = now + ZT_CLUSTER_PERIODIC_TASK_PERIOD; // this is really short so just tick at this rate } else { #endif *nextBackgroundTaskDeadline = now + (uint64_t)std::max(std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY); #ifdef ZT_ENABLE_CLUSTER } #endif } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } return ZT_RESULT_OK; } ZT_ResultCode Node::join(uint64_t nwid) { Mutex::Lock _l(_networks_m); SharedPtr nw = _network(nwid); if(!nw) _networks.push_back(std::pair< uint64_t,SharedPtr >(nwid,SharedPtr(new Network(RR,nwid)))); std::sort(_networks.begin(),_networks.end()); // will sort by nwid since it's the first in a pair<> return ZT_RESULT_OK; } ZT_ResultCode Node::leave(uint64_t nwid) { std::vector< std::pair< uint64_t,SharedPtr > > newn; Mutex::Lock _l(_networks_m); for(std::vector< std::pair< uint64_t,SharedPtr > >::const_iterator n(_networks.begin());n!=_networks.end();++n) { if (n->first != nwid) newn.push_back(*n); else n->second->destroy(); } _networks.swap(newn); return ZT_RESULT_OK; } ZT_ResultCode Node::multicastSubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastSubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } uint64_t Node::address() const { return RR->identity.address().toInt(); } void Node::status(ZT_NodeStatus *status) const { status->address = RR->identity.address().toInt(); status->worldId = RR->topology->worldId(); status->worldTimestamp = RR->topology->worldTimestamp(); status->publicIdentity = RR->publicIdentityStr.c_str(); status->secretIdentity = RR->secretIdentityStr.c_str(); status->online = _online ? 1 : 0; } ZT_PeerList *Node::peers() const { std::vector< std::pair< Address,SharedPtr > > peers(RR->topology->allPeers()); std::sort(peers.begin(),peers.end()); char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size())); if (!buf) return (ZT_PeerList *)0; ZT_PeerList *pl = (ZT_PeerList *)buf; pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList)); pl->peerCount = 0; for(std::vector< std::pair< Address,SharedPtr > >::iterator pi(peers.begin());pi!=peers.end();++pi) { ZT_Peer *p = &(pl->peers[pl->peerCount++]); p->address = pi->second->address().toInt(); p->lastUnicastFrame = pi->second->lastUnicastFrame(); p->lastMulticastFrame = pi->second->lastMulticastFrame(); if (pi->second->remoteVersionKnown()) { p->versionMajor = pi->second->remoteVersionMajor(); p->versionMinor = pi->second->remoteVersionMinor(); p->versionRev = pi->second->remoteVersionRevision(); } else { p->versionMajor = -1; p->versionMinor = -1; p->versionRev = -1; } p->latency = pi->second->latency(); p->role = RR->topology->isRoot(pi->second->identity()) ? ZT_PEER_ROLE_ROOT : ZT_PEER_ROLE_LEAF; std::vector paths(pi->second->paths()); Path *bestPath = pi->second->getBestPath(_now); p->pathCount = 0; for(std::vector::iterator path(paths.begin());path!=paths.end();++path) { memcpy(&(p->paths[p->pathCount].address),&(path->address()),sizeof(struct sockaddr_storage)); p->paths[p->pathCount].lastSend = path->lastSend(); p->paths[p->pathCount].lastReceive = path->lastReceived(); p->paths[p->pathCount].active = path->active(_now) ? 1 : 0; p->paths[p->pathCount].preferred = ((bestPath)&&(*path == *bestPath)) ? 1 : 0; ++p->pathCount; } } return pl; } ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const { Mutex::Lock _l(_networks_m); SharedPtr nw = _network(nwid); if(nw) { ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig)); nw->externalConfig(nc); return nc; } return (ZT_VirtualNetworkConfig *)0; } ZT_VirtualNetworkList *Node::networks() const { Mutex::Lock _l(_networks_m); char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size())); if (!buf) return (ZT_VirtualNetworkList *)0; ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf; nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList)); nl->networkCount = 0; for(std::vector< std::pair< uint64_t,SharedPtr > >::const_iterator n(_networks.begin());n!=_networks.end();++n) n->second->externalConfig(&(nl->networks[nl->networkCount++])); return nl; } void Node::freeQueryResult(void *qr) { if (qr) ::free(qr); } int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr) { if (Path::isAddressValidForPath(*(reinterpret_cast(addr)))) { Mutex::Lock _l(_directPaths_m); _directPaths.push_back(*(reinterpret_cast(addr))); std::sort(_directPaths.begin(),_directPaths.end()); _directPaths.erase(std::unique(_directPaths.begin(),_directPaths.end()),_directPaths.end()); return 1; } return 0; } void Node::clearLocalInterfaceAddresses() { Mutex::Lock _l(_directPaths_m); _directPaths.clear(); } void Node::setNetconfMaster(void *networkControllerInstance) { RR->localNetworkController = reinterpret_cast(networkControllerInstance); } ZT_ResultCode Node::circuitTestBegin(ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *)) { if (test->hopCount > 0) { try { Packet outp(Address(),RR->identity.address(),Packet::VERB_CIRCUIT_TEST); RR->identity.address().appendTo(outp); outp.append((uint16_t)((test->reportAtEveryHop != 0) ? 0x03 : 0x02)); outp.append((uint64_t)test->timestamp); outp.append((uint64_t)test->testId); outp.append((uint16_t)0); // originator credential length, updated later if (test->credentialNetworkId) { outp.append((uint8_t)0x01); outp.append((uint64_t)test->credentialNetworkId); outp.setAt(ZT_PACKET_IDX_PAYLOAD + 23,(uint16_t)9); } outp.append((uint16_t)0); C25519::Signature sig(RR->identity.sign(reinterpret_cast(outp.data()) + ZT_PACKET_IDX_PAYLOAD,outp.size() - ZT_PACKET_IDX_PAYLOAD)); outp.append((uint16_t)sig.size()); outp.append(sig.data,sig.size()); outp.append((uint16_t)0); // originator doesn't need an extra credential, since it's the originator for(unsigned int h=1;hhopCount;++h) { outp.append((uint8_t)0); outp.append((uint8_t)(test->hops[h].breadth & 0xff)); for(unsigned int a=0;ahops[h].breadth;++a) Address(test->hops[h].addresses[a]).appendTo(outp); } for(unsigned int a=0;ahops[0].breadth;++a) { outp.newInitializationVector(); outp.setDestination(Address(test->hops[0].addresses[a])); RR->sw->send(outp,true,0); } } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; // probably indicates FIFO too big for packet } } { test->_internalPtr = reinterpret_cast(reportCallback); Mutex::Lock _l(_circuitTests_m); if (std::find(_circuitTests.begin(),_circuitTests.end(),test) == _circuitTests.end()) _circuitTests.push_back(test); } return ZT_RESULT_OK; } void Node::circuitTestEnd(ZT_CircuitTest *test) { Mutex::Lock _l(_circuitTests_m); for(;;) { std::vector< ZT_CircuitTest * >::iterator ct(std::find(_circuitTests.begin(),_circuitTests.end(),test)); if (ct == _circuitTests.end()) break; else _circuitTests.erase(ct); } } ZT_ResultCode Node::clusterInit( unsigned int myId, const struct sockaddr_storage *zeroTierPhysicalEndpoints, unsigned int numZeroTierPhysicalEndpoints, int x, int y, int z, void (*sendFunction)(void *,unsigned int,const void *,unsigned int), void *sendFunctionArg, int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *), void *addressToLocationFunctionArg) { #ifdef ZT_ENABLE_CLUSTER if (RR->cluster) return ZT_RESULT_ERROR_BAD_PARAMETER; std::vector eps; for(unsigned int i=0;icluster = new Cluster(RR,myId,eps,x,y,z,sendFunction,sendFunctionArg,addressToLocationFunction,addressToLocationFunctionArg); return ZT_RESULT_OK; #else return ZT_RESULT_ERROR_UNSUPPORTED_OPERATION; #endif } ZT_ResultCode Node::clusterAddMember(unsigned int memberId) { #ifdef ZT_ENABLE_CLUSTER if (!RR->cluster) return ZT_RESULT_ERROR_BAD_PARAMETER; RR->cluster->addMember((uint16_t)memberId); return ZT_RESULT_OK; #else return ZT_RESULT_ERROR_UNSUPPORTED_OPERATION; #endif } void Node::clusterRemoveMember(unsigned int memberId) { #ifdef ZT_ENABLE_CLUSTER if (RR->cluster) RR->cluster->removeMember((uint16_t)memberId); #endif } void Node::clusterHandleIncomingMessage(const void *msg,unsigned int len) { #ifdef ZT_ENABLE_CLUSTER if (RR->cluster) RR->cluster->handleIncomingStateMessage(msg,len); #endif } void Node::clusterStatus(ZT_ClusterStatus *cs) { if (!cs) return; #ifdef ZT_ENABLE_CLUSTER if (RR->cluster) RR->cluster->status(*cs); else #endif memset(cs,0,sizeof(ZT_ClusterStatus)); } void Node::backgroundThreadMain() { ++RR->dpEnabled; for(;;) { try { if (RR->dp->process() < 0) break; } catch ( ... ) {} // sanity check -- should not throw } --RR->dpEnabled; } /****************************************************************************/ /* Node methods used only within node/ */ /****************************************************************************/ std::string Node::dataStoreGet(const char *name) { char buf[16384]; std::string r; unsigned long olen = 0; do { long n = _dataStoreGetFunction(reinterpret_cast(this),_uPtr,name,buf,sizeof(buf),(unsigned long)r.length(),&olen); if (n <= 0) return std::string(); r.append(buf,n); } while (r.length() < olen); return r; } #ifdef ZT_TRACE void Node::postTrace(const char *module,unsigned int line,const char *fmt,...) { static Mutex traceLock; va_list ap; char tmp1[1024],tmp2[1024],tmp3[256]; Mutex::Lock _l(traceLock); time_t now = (time_t)(_now / 1000ULL); #ifdef __WINDOWS__ ctime_s(tmp3,sizeof(tmp3),&now); char *nowstr = tmp3; #else char *nowstr = ctime_r(&now,tmp3); #endif unsigned long nowstrlen = (unsigned long)strlen(nowstr); if (nowstr[nowstrlen-1] == '\n') nowstr[--nowstrlen] = (char)0; if (nowstr[nowstrlen-1] == '\r') nowstr[--nowstrlen] = (char)0; va_start(ap,fmt); vsnprintf(tmp2,sizeof(tmp2),fmt,ap); va_end(ap); tmp2[sizeof(tmp2)-1] = (char)0; Utils::snprintf(tmp1,sizeof(tmp1),"[%s] %s:%u %s",nowstr,module,line,tmp2); postEvent(ZT_EVENT_TRACE,tmp1); } #endif // ZT_TRACE uint64_t Node::prng() { unsigned int p = (++_prngStreamPtr % (sizeof(_prngStream) / sizeof(uint64_t))); if (!p) _prng.encrypt12(_prngStream,_prngStream,sizeof(_prngStream)); return _prngStream[p]; } void Node::postCircuitTestReport(const ZT_CircuitTestReport *report) { std::vector< ZT_CircuitTest * > toNotify; { Mutex::Lock _l(_circuitTests_m); for(std::vector< ZT_CircuitTest * >::iterator i(_circuitTests.begin());i!=_circuitTests.end();++i) { if ((*i)->testId == report->testId) toNotify.push_back(*i); } } for(std::vector< ZT_CircuitTest * >::iterator i(toNotify.begin());i!=toNotify.end();++i) (reinterpret_cast((*i)->_internalPtr))(reinterpret_cast(this),*i,report); } } // namespace ZeroTier /****************************************************************************/ /* CAPI bindings */ /****************************************************************************/ extern "C" { enum ZT_ResultCode ZT_Node_new( ZT_Node **node, void *uptr, uint64_t now, ZT_DataStoreGetFunction dataStoreGetFunction, ZT_DataStorePutFunction dataStorePutFunction, ZT_WirePacketSendFunction wirePacketSendFunction, ZT_VirtualNetworkFrameFunction virtualNetworkFrameFunction, ZT_VirtualNetworkConfigFunction virtualNetworkConfigFunction, ZT_EventCallback eventCallback) { *node = (ZT_Node *)0; try { *node = reinterpret_cast(new ZeroTier::Node(now,uptr,dataStoreGetFunction,dataStorePutFunction,wirePacketSendFunction,virtualNetworkFrameFunction,virtualNetworkConfigFunction,eventCallback)); return ZT_RESULT_OK; } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (std::runtime_error &exc) { return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_Node_delete(ZT_Node *node) { try { delete (reinterpret_cast(node)); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_processWirePacket( ZT_Node *node, uint64_t now, const struct sockaddr_storage *localAddress, const struct sockaddr_storage *remoteAddress, const void *packetData, unsigned int packetLength, volatile uint64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processWirePacket(now,localAddress,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up } } enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame( ZT_Node *node, uint64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void *frameData, unsigned int frameLength, volatile uint64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processVirtualNetworkFrame(now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processBackgroundTasks(now,nextBackgroundTaskDeadline); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->join(nwid); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->leave(nwid); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastSubscribe(nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi); } catch (std::bad_alloc &exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } uint64_t ZT_Node_address(ZT_Node *node) { return reinterpret_cast(node)->address(); } void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status) { try { reinterpret_cast(node)->status(status); } catch ( ... ) {} } ZT_PeerList *ZT_Node_peers(ZT_Node *node) { try { return reinterpret_cast(node)->peers(); } catch ( ... ) { return (ZT_PeerList *)0; } } ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid) { try { return reinterpret_cast(node)->networkConfig(nwid); } catch ( ... ) { return (ZT_VirtualNetworkConfig *)0; } } ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node) { try { return reinterpret_cast(node)->networks(); } catch ( ... ) { return (ZT_VirtualNetworkList *)0; } } void ZT_Node_freeQueryResult(ZT_Node *node,void *qr) { try { reinterpret_cast(node)->freeQueryResult(qr); } catch ( ... ) {} } int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr) { try { return reinterpret_cast(node)->addLocalInterfaceAddress(addr); } catch ( ... ) { return 0; } } void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node) { try { reinterpret_cast(node)->clearLocalInterfaceAddresses(); } catch ( ... ) {} } void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance) { try { reinterpret_cast(node)->setNetconfMaster(networkControllerInstance); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_circuitTestBegin(ZT_Node *node,ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *)) { try { return reinterpret_cast(node)->circuitTestBegin(test,reportCallback); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_Node_circuitTestEnd(ZT_Node *node,ZT_CircuitTest *test) { try { reinterpret_cast(node)->circuitTestEnd(test); } catch ( ... ) {} } enum ZT_ResultCode ZT_Node_clusterInit( ZT_Node *node, unsigned int myId, const struct sockaddr_storage *zeroTierPhysicalEndpoints, unsigned int numZeroTierPhysicalEndpoints, int x, int y, int z, void (*sendFunction)(void *,unsigned int,const void *,unsigned int), void *sendFunctionArg, int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *), void *addressToLocationFunctionArg) { try { return reinterpret_cast(node)->clusterInit(myId,zeroTierPhysicalEndpoints,numZeroTierPhysicalEndpoints,x,y,z,sendFunction,sendFunctionArg,addressToLocationFunction,addressToLocationFunctionArg); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_clusterAddMember(ZT_Node *node,unsigned int memberId) { try { return reinterpret_cast(node)->clusterAddMember(memberId); } catch ( ... ) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_Node_clusterRemoveMember(ZT_Node *node,unsigned int memberId) { try { reinterpret_cast(node)->clusterRemoveMember(memberId); } catch ( ... ) {} } void ZT_Node_clusterHandleIncomingMessage(ZT_Node *node,const void *msg,unsigned int len) { try { reinterpret_cast(node)->clusterHandleIncomingMessage(msg,len); } catch ( ... ) {} } void ZT_Node_clusterStatus(ZT_Node *node,ZT_ClusterStatus *cs) { try { reinterpret_cast(node)->clusterStatus(cs); } catch ( ... ) {} } void ZT_Node_backgroundThreadMain(ZT_Node *node) { try { reinterpret_cast(node)->backgroundThreadMain(); } catch ( ... ) {} } void ZT_version(int *major,int *minor,int *revision,unsigned long *featureFlags) { if (major) *major = ZEROTIER_ONE_VERSION_MAJOR; if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR; if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION; if (featureFlags) { *featureFlags = ( ZT_FEATURE_FLAG_THREAD_SAFE ); } } } // extern "C"